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Abstract—Surface meshes associated with diffuse texture or color attributes are becoming popular multimedia contents. They provide
a high degree of realism and allow six degrees of freedom (6DoF) interactions in immersive virtual reality environments. Just like other
types of multimedia, 3D meshes are subject to a wide range of processing, e.g., simplification and compression, which result in a loss
of quality of the final rendered scene. Thus, both subjective studies and objective metrics are needed to understand and predict this
visual loss. In this work, we introduce a large dataset of 480 animated meshes with diffuse color information, and associated with
perceived quality judgments. The stimuli were generated from 5 source models subjected to geometry and color distortions. Each
stimulus was associated with 6 hypothetical rendering trajectories (HRTs): combinations of 3 viewpoints and 2 animations. A total of
11520 quality judgments (24 per stimulus) were acquired in a subjective experiment conducted in virtual reality. The results allowed us
to explore the influence of source models, animations and viewpoints on both the quality scores and their confidence intervals. Based
on these findings, we propose the first metric for quality assessment of 3D meshes with diffuse colors, which works entirely on the
mesh domain. This metric incorporates perceptually-relevant curvature-based and color-based features. We evaluate its performance,
as well as a number of Image Quality Metrics (IQMs), on two datasets: ours and a dataset of distorted textured meshes. Our metric
demonstrates good results and a better stability than IQMs. Finally, we investigated how the knowledge of the viewpoint (i.e., the visible
parts of the 3D model) may improve the results of objective metrics.

Index Terms—Computer Graphics, Perception, Virtual reality, Diffuse Color, 3D Mesh, Visual Quality Assessment, Subjective Quality
Evaluation, Objective Quality Evaluation, Dataset, Perceptual Metric.
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1 INTRODUCTION

A S technological advances and capabilities in the field
of computer graphics grow day by day, the need to

master the manipulation, visualization and processing of
3D digital data increases at an equal pace. Indeed, the
development of modeling software and acquisition devices
(3D scan, reconstruction process) makes 3D graphics (mesh,
voxel, point cloud) rich and realistic: complex models with
millions of geometric primitives, enriched with various ap-
pearance attributes (color, texture, materiall, etc.). The way
in which this 3D content is consumed is also evolving from
standard screens to Virtual and Mixed Reality (VR/MR).
However, the size and complexity of these rich 3D models
often make their interactive visualization problematic. This
is particularly the case in immersive environments (using
head-mounted displays) and/or in case of online applica-
tions (where fast transmission is needed). Thus, to adapt the
complexity of the 3D content for lightweight devices and
to avoid latency due to transmission, diverse processing
operations, including simplification and compression, are
usually applied. These processes are lossy. They operate on
both geometry and appearance attributes, which inevitably
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Univ Lyon, LIRIS, France.
E-mail: yana.nehme@insa-lyon.fr, jean-philippe.farrugia@univ-lyon1.fr,
Florent.Dupont@liris.cnrs.fr, glavoue@liris.cnrs.fr.

• P. Le Callet is with the CNRS, Univ Nantes, LS2N, France.
E-mail: patrick.lecallet@univ-nantes.fr.

Manuscript submitted June 16, 2020.

introduce distortions that impact the perceived quality of
the data and thus the quality of user experience (QoE).

Objective quality metrics are thus critically needed to
automatically predict the level of annoyance caused by
these operations. Most metrics in the literature evaluate only
geometric distortions (i.e. they consider meshes without
appearance attributes), e.g. [1], [2], [3]. When it comes to
meshes with diffuse color information (either in the form
of texture or vertex-colors), little work has been published
[4] [5]. Actually, for this kind of data, it is still unclear how
color and geometry distortions affect quality. There is a lack
of both objective metrics and subjective datasets. Another
factor that has not yet been explored, and which is relevant
in the case of 6 Degrees of Freedom (DoF) interactions, is
how the viewpoint and movement of 3D models affect their
perceived quality.

In this work, we address the problem of subjective and
objective quality assessment of 3D models with diffuse
colors. Our first goal is to produce a ground truth database
of 3D graphics with quality judgments, and to understand
the impact of several factors (such as the source models,
distortions, viewpoints, and animations) on the perceived
quality of these data. The experiment is based on a double
stimulus impairment scale (DSIS) method and involves 480
animated stimuli created from five source models, each cor-
rupted with color and geometry distortions and displayed
in 3 different viewpoints that we animated with 2 short
movements. We chose to conduct the experiment in Virtual
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Reality (VR) using the HTC Vive Pro headset, since VR
user studies offer the most ecological and realistic use cases
and are in high demand. This database is used to analyze
the factors that influence the subjective quality assessment
of 3D graphics: we evaluate not only the visual impact of
color and geometry distortions on the appearance of such
data, but also the impact of source models, animations and
viewpoints.

Considering the findings of this subjective evaluation,
we design an objective quality assessment metric for colored
meshes: CMDM (Color Mesh Distortion Measure). This is a
full-reference data-driven metric that fully operates on the
mesh domain, at vertex level. It consists of a linear combi-
nation of perceptually-relevant features related to color and
geometry. The optimal set of features was selected through
logistic regression. We use our subjective ground truth to
evaluate the performance of CMDM as well as other state-
of-the-art image quality metrics. Moreover, to assess the
robustness of our metric, we test it on a new dataset of
textured meshes corrupted with compound distortions that
differ significantly from those used to train it. Our metric
demonstrates good results. Finally, we study the relevance
of incorporating the viewpoint (the visible parts) of the 3D
model into objective metrics.
We summarize our contributions as follows:
1) We provide the community with a ground truth dataset

of 480 animated meshes with vertex colors, each rated
by 24 subjects. This dataset is the largest one for quality
assessment of 3D contents with diffuse color information,
and the first based on vertex color representation. It is
also the first public dataset1 produced in VR for such
data.

2) We provide an in-depth analysis of the effects of source
models, distortions, viewpoints and movement on both
mean opinion scores (MOSs) and confidence intervals
(CIs). Our findings provide insights for the design of both
subjective studies and objective metrics.

3) We evaluate individually the performance of a set of
perceptually-relevant curvature-based and color-based
features for predicting the perceived visual quality of
colored meshes.

4) We develop and learn a perceptually-validated metric
for measuring the quality of colored meshes. To the
best of our knowledge, our proposed metric is the first
attempt to integrate both geometry and color informa-
tion for quality assessment of such data. Our metric
demonstrates good results and stability on two different
datasets. The source code of the metric is made publicly
available2 on the MEsh Processing Platform (MEPP) to
support further research in this area.

5) We investigate how knowledge of the viewpoint may
improve results from objective metrics.

The paper is organized as follows: section 2 provides a
review of the existing works on subjective and objective
quality assessment of 3D data. In section 3, we describe
the subjective study, before presenting the results in section
4. Section 5 details the proposed metric, while section 6
presents its validation as well as a comparison with state-

1. https://yananehme.github.io/
2. https://github.com/MEPP-team/MEPP2

of-the-art image and mesh quality metrics. The study on
integrating the viewpoint in objective metrics is presented in
section 7 along with its results. Finally, concluding remarks
and perspectives are outlined in section 8.

2 RELATED WORK

In this section, we provide an overview of existing datasets
and metrics for predicting the perceived visual impact of
distortions applied to graphical 3D content (3D meshes and
point clouds). We are specifically interested in 3D content
with diffuse colors, either in the form of texture maps
or vertex/point colors. Note also that this state-of-the-art
focuses on the visual impact of distortions applied on the 3D
content itself (e.g. introduced by compression, simplification
or filtering); it does not cover the visibility prediction of
artifacts introduced during the rendering process (e.g. by
global illumination approximation) or after rendering (e.g.
by tone mapping). A dataset has been recently introduced
that focuses on these types of artifacts [6]. For a more
complete survey of the field of perception and quality
assessment in computer graphics, we refer the reader to [7].

2.1 Subjective quality experiments and datasets

As stated in the introduction, datasets of human perceptual
similarity judgments are of primary importance for under-
standing human behavior in evaluating perceived quality,
as well as for training and benchmarking objective metrics.
Many authors have conducted subjective quality assessment
tests involving 3D meshes [2], [5], [8], [9], [10], [11], [12], [13],
[14], [15], [16] or 3D point clouds [17], [18], [19], [20], [21].
They considered a variety of methods: Absolute Category
Rating (ACR) [11], [13], [22], Double-Stimulus Impairment
Scale (DSIS) [2], [8], [9], [18], [19], [21] and Pairwise Com-
parison (PC) [5], [14], [15], [23]. Very recently, a study [16]
attempted to compare these subjective methods and showed
that, for the particular case of 3D graphical content, the
DSIS method tends to produce more accurate results than
ACR (i.e., MOS with smaller confidence intervals). Existing
subjective experiments also considered different ways of
presenting 3D content: static images [8], animated content
without interaction (usually low-speed rotation) [5], [9], [10],
[16], [19], [20], [21], [22], [23] or interactive content [2], [11],
[13], [14], [15], [17], [18]. We denote that only in [15], [16], the
experiments were conducted in a VR environment. So far, no
attempts have been made to fully understand the impact of
these design choices on the obtained mean opinion scores
and their accuracy.

Unfortunately, among the works presented above, very
few have publicly released their datasets. For 3D meshes, the
available datasets of mean opinion scores concern mostly
geometry-only content [11], [12], [14] and are all rather
small (resp. 88, 26 and 30 models). The only public datasets
involving 3D meshes with diffuse color information are
provided by Guo et al. [5] and from Zerman et al. [22], and
contain respectively 136 and 28 stimuli. For both cases, the
color information is provided as texture maps. For colored
point clouds, the available datasets are those provided by
Javaheri et al. [20], Alexiou et al. [18] and Zerman et al. [22],
and contain respectively 54, 244 and 136 stimuli. Note that
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the dataset from Zerman et al. [22] actually contains both
meshes and point clouds, for a total of 164 stimuli that were
rated in the same subjective test. All these datasets were
generated through experiments conducted on screen.

In this work, we propose a dataset of 480 animated
meshes with vertex colors. It is the largest one for quality
assessment of 3D content with diffuse color information,
and the first based on vertex color representation. Note
that the mesh representation differs considerably from the
point cloud representation in several aspects such as the way
they are rendered, and the nature of commonly applied
processing operations (and thus distortions). Our dataset
allows us to provide an initial investigation on the influence
of movement and viewpoint on the quality evaluation of
3D content. As in [15], [16] we considered a VR context and
we used a DSIS method with 24 observers per stimulus, as
recommended in [16].

2.2 Objective quality metrics

Inspired by the vast amount of previous works on im-
age and video quality assessment, several objective quality
metrics have been introduced for 3D meshes. These are
mostly full-reference (compare the distorted model with its
original/reference) and follow the classical approach used
in image quality assessment: local feature differences are
calculated at vertex level, which are then pooled over the
entire 3D model to obtain a global quality score. Existing
metrics rely on various geometry characteristics: curvature
[1], [24], dihedral angles [2] or roughness [3], [13]. A survey
[25] showed that MSDM2 [1], FMPD [3] and DAME [2] are
excellent predictors of visual quality. Very recently, several
authors proposed data-driven approaches based on machine
learning [26], [27]. Besides these works on global visual
quality assessment (suited for supra-threshold distortions),
Nader et al. [28] introduced a bottom-up visibility threshold
predictor for 3D meshes. Guo et al. [29] also studied the local
visibility of geometric artifacts and showed that curvature
could be a good predictor of distortion visibility.
The above-presented works only take geometry into ac-
count. With respect to 3D content with color or material
information, very few works have been published. For
meshes with diffuse texture, Tian et al. [4] and Guo et al.
[5] proposed metrics based on a weighted combination of a
global distance over geometry (Mean Squared Error (MSE)
over mesh vertices in [4], and MSDM2 in [5]) and a global
distance over texture image (MSE over texture pixels in [4],
and SSIM in [5]). While the latter metric demonstrated good
results on a subjective dataset of distorted textured meshes
[5], combining errors computed on different domains (3D
mesh and texture image) may be hazardous since many
external factors (e.g. texel size, visibility of different parts)
may impact the results.

With regard to this previous work [4], [5], we propose
a data-driven metric that fully operates on the mesh do-
main, at vertex level. We consider an initial collection of
perceptually-relevant features related to color and geometry.
These features are taken from existing works on quality
assessment of 3D meshes [1] and color images [30]. A subset
of these features is then optimally selected and combined,
based on the results of our subjective study. Our metric

provides excellent results and demonstrates a good stability,
both for meshes with vertex colors and for textured meshes.

For quality assessment of 3D colored point clouds, a
data-driven metric (PCQM) has been recently introduced by
Meynet et al. [31]. Our metric considers the same initial col-
lection of color and geometric features as [31]. Nevertheless,
moving from point cloud domain to mesh domain implies
major adaptations in the computation of these features.
Other differences between our metric and PCQM are: the
optimal selection and combination of features, the multi-
scale approach, and the viewpoint integration mechanism.
Our metric is also related to the work of Vanhoey et al.
[23], who proposed a quality metric for surface light-fields
(i.e., per-vertex directional color). However, their metric
considers color information only and is actually a simple
MSE over both the directional and spatial domains.

All the metrics presented above are model-based, i.e.,
they operate on the 3D model itself (or its attributes like
texture maps). However, to evaluate the quality of 3D con-
tent, several authors have also considered Image Quality
Metrics (IQM) computed on rendered snapshots. For ex-
ample, Yang et al. [32] and Caillaud et al. [33] respectively
used image MSE and SSIM [34] to optimize textured mesh
transmission. The advantage of image-based metrics over
model-based metrics is their natural ability to handle the
multimodal nature of data (geometry and color or texture
information), as well as their natural incorporation of the
complex rendering pipeline (computation of light material
interactions, viewpoint selection and rasterization). On the
other hand, IQMs pose other problems: (1) it is necessary to
know in advance the final rendering of the stimuli in order
to predict their quality with these metrics (because IQMs
operate on 2D rendered snapshots). (2) IQMs also need the
knowledge of the displayed viewpoint. Using them in a
view-independent way introduces new parameters such as
choice of the 2D views, or pooling of quality scores obtained
from different views into a single global score. (3) IQMs are
not practical for driving processing operations (e.g. mesh
simplification). Model-based metrics are better suited for
these operations since they operate on the mesh domain,
i.e. the same representation space as mesh processing algo-
rithms. This makes it possible to drive a process globally (on
the entire mesh) as well as locally (at vertex level). (4) Recent
studies about these view-based approaches [5], [35] tend to
show that their performance greatly depends on distortions
and contents, and fall well behind model-based approaches.

3 SUBJECTIVE EXPERIMENT

We conducted a large-scale subjective experiment to evalu-
ate the visual impact of color and geometry distortions on
the appearance of colored 3D models. Our dataset contains
480 animated 3D models created from five reference objects,
on which are applied four types of distortion and two types
of animation. This dataset extends the one presented in [16]
composed of 80 stimuli. The subjective study was conducted
in a virtual reality setting using a DSIS method. This section
provides details on the subjective study.
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Fig. 1: Illustration of the 3D graphic source models and their selected viewpoints, respectively. Acronyms refer to
Model Viewpoint.

3.1 Stimuli
3.1.1 3D source model selection
To build our dataset of colored 3D models, we selected 5
high-resolution triangle meshes, each having diffuse color
information represented by vertex colors (no texture map-
ping). These models were chosen so as to ensure a variety
of shapes and colors. Table 1 details the characteristics of the
models, while Figure 1 illustrates them. Note that, the sixth
model (”Dancing Drummer”) is not part of the dataset. It was
used at the training stage of the experiment.

TABLE 1: Characteristics of the 3D graphic source models
Models #Vertices Geometry

complexity
Color

characteristics
Semantic
category

Created
using

Aix 686061 Plane with
small details Mono-color Art 3D scanning

Ari 645492 Intermediate Cool & light
colors

Human
statues 3D scanning

Chameleon 588441 High & sharp
edges

Cool & dull
colors Animal Modeling

software

Fish 216578 Low & sharp
edges

Cool & warm
colors Animal Modeling

software

Samurai 449997 High warm colors Human
statues 3D scanning

Dancing
Drummer 1335436 Intermediate/

High Cool colors Human
statues 3D scanning

3.1.2 Distortions
The source models presented above have been corrupted by
the following 4 types of distortion applied on geometry and
color. These selected distortions represent common simpli-
fication and compression operations typically used in 3D
model modeling and post-processing. They are described
below.
• Uniform geometric quantization (QGeo): applied on ge-

ometry. This is a very common process for lossy compres-
sion.

• Uniform LAB color quantization (QCol): applied on ver-
tex colors. This is inspired by the usual 2D image com-
pression processes.

• ”Color-ignorant” simplification (SGeo): a surface simpli-
fication algorithm that takes into account geometry only.
It consists of iterative edge collapse operations driven by
the quadric error metrics [36].

• ”Color-aware” simplification (SCol): a surface simplifica-
tion algorithm that takes into account both geometry and
color. It consists of iterative vertex removal operations,
driven by a combination of (1) a geometry metric: the
area loss caused by the removal; and (2) a color metric:
the LAB distance between the color of the vertex to be
removed and its interpolation after removal [37].

Each distortion was applied with 4 different strengths,
adjusted manually in order to span the whole range of
visual quality from imperceptible levels to high levels of
impairment (as is typically the case in subjective image
quality studies [38]). Figure 2 illustrates some visual exam-
ples, while all details about the distortion parameters are
available in Table 2.
Thus, we generated 80 distorted models (5 source models ×
4 distortion types × 4 strengths).

3.1.3 Stimuli generation

In existing subjective studies involving 3D content, different
methods have been used to display the 3D models to the
observers: still images, free interaction or animations. As
shown by Rogowitz et al. [9], still images are not sufficient
to evaluate the visual quality of 3D models. Thus, it is
important that the object moves so that the observer can
see the dynamic effects of shading on the shape. It is also
important for the observer to see the whole object and not
to focus on one single viewpoint. However, allowing free
interaction leads to a cognitive overload which may alter
human judgments. Inspired by the principle of pseudo-
videos, 3D animation is a simple yet efficient way to control
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Fig. 2: Some examples of distorted models. Acronyms refer to Model Dist-Type Dist-Strength Viewpoint.

TABLE 2: Details on the distortions applied to each source model.
Distortion

type
Distortion
strength Aix Ari Chameleon Fish Samurai

QGeo

1 10 bits 10 bits 9 bits 9 bits 10 bits
2 9 bits 9 bits 8 bits 8 bits 9 bits
3 8 bits 8 bits 7 bits 7 bits 8 bits
4 7 bits 7 bits 6 bits 6 bits 7 bits

QCol

1 (L=5, A=4, B=4) bits (L=5, A=4, B=4) bits (L=4, A=3, B=3) bits (L=5, A=5, B=5) bits (L=4, A=3, B=3) bits
2 (L=4, A=3, B=3) bits (L=4, A=3, B=3) bits (L=3, A=2, B=2) bits (L=4, A=3, B=3) bits (L=4, A=2, B=2) bits
3 (L=3, A=2, B=2) bits (L=2, A=3, B=3) bits (L=2, A=2, B=2) bits (L=3, A=2, B=2) bits (L=3, A=2, B=2) bits
4 (L=2, A=2, B=2) bits (L=3, A=3, B=3) bits (L=2, A=1, B=1) bits (L=2, A=2, B=2) bits (L=2, A=2, B=2) bits

SGeo

1 50% removed 30% removed 50% removed 31% removed 24% removed
2 75% removed 50% removed 75% removed 50% removed 50% removed
3 88% removed 75% removed 87% removed 77% removed 75% removed
4 94% removed 87% removed 92% removed 88% removed 88% removed

SCol

1 71% removed 50% removed 67% removed 77% removed 66% removed
2 87% removed 64% removed 83% removed 79% removed 80% removed
3 94% removed 88% removed 92% removed 87% removed 90% removed
4 98% removed 94% removed 95% removed 96% removed 96% removed

the interaction between subject and stimulus. So as a com-
promise, we selected, for each model, 3 viewpoints that we
animated with 2 short movements. These 6 combinations of
viewpoints and movements can be considered to be the hy-
pothetical rendering trajectories (HRTs), concept introduced
in [39] for free-viewpoint videos. HRTs reflect/represent the
dimension of the test object related to the interactivity part
such as the camera configurations, viewpoints, trajectories
of 3D objects.

In our experiment, the viewpoints were perceptually
chosen and adjusted by experts, so that viewpoint 1 repre-
sents the one which contains the most geometry, color and
semantic information. Viewpoint 2 and viewpoint 3 cover the
remaining semantically relevant parts of the model (see Fig-
ure 1). For each viewpoint of a given stimulus, we applied
2 types of animation:

• Slow rotation (R) of 15 degrees around the vertical axis in
a clockwise and then in a counterclockwise direction.

• Slow zoom in (Z) of 0.75 meters, followed by a zoom out.

Note that, the animations we generate do not involve non-
rigid transformations of the objects. Generating different
stimulus orientations and animations will allow us to ex-
plore the impact of animations and viewpoints (HRT) on
the perceived quality.

Our dataset thus contains 480 dynamic stimuli (5 source
models × 4 distortion types × 4 strengths × 3 viewpoints ×
2 animation types).

3.2 Experimental procedure and apparatus

The objective of our experiment is to produce a ground truth
of subjective opinions on our set of 480 stimuli. We selected
the Double Stimulus Impairment Scale (DSIS) methodology,
as the subjective rating method. The observer sees the refer-
ence model and the same model impaired, simultaneously,
side by side, for 10s and rates the impairment of the sec-
ond stimulus in relation to the reference using a five-level
impairment scale [40]. This method was shown to be more
stable and more accurate than the Absolute Category Rating
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with Hidden Reference (ACR-HR) method for assessing the
quality of 3D models [16]. Indeed, the authors showed that
the presence of an explicit reference greatly improves the
accuracy of results and reduces confidence intervals. This is
due to the fact that people have less prior knowledge on 3D
graphic quality compared to natural images/videos.

We chose to conduct the experiment in a fully immersive
virtual environment (VE) since Virtual Reality is becoming a
popular way of consuming and visualizing 3D content. We
used the HTC Vive Pro headset, a high-end virtual reality
headset with a resolution of 1440 x 1600 pixels per eye (2880
x 1600 pixels combined), a field of view of 110 degrees and a
refresh rate of 90 Hz. The reference and the distorted model
were rendered in a virtual scene, side by side, at a viewing
distance fixed at 3 meters from the observer, under a given
viewpoint and type of animation. Note that these 2 dynamic
stimuli were specifically oriented in order to show exactly
the same vertices of the 2 models at the same time. Their
size is approximately 37 degrees of visual angle. Their ma-
terial type complies with the Lambertian reflectance model
(diffuse surfaces). The apparent brightness of such a surface
to an observer is the same regardless of the observer’s angle
of view/position in the scene. The stimuli are visualized in a
neutral virtual room (light gray walls) without shadows and
under a directional light (all the vertices are illuminated as
though the light were always from the same direction.). We
aimed to design a neutral room so that the experimental
environment does not influence the users’ perception of the
stimulus.

We integrated the rating billboard in the VE of our exper-
iment. This board is displayed after the presentation of each
pair of stimuli. There is no time limit to vote and the stimuli
are not shown during that time. The same neutral room
(light gray walls), utilized to show the stimuli, is used in the
rating environment. To vote, the subject selects and saves
the score using the trigger of the HTC Vive controller. As
in [41], to facilitate the interaction with the rating panel, we
attached a laser beam to the controller. Figure 3 illustrates
the experimental environment.
The entire experiment was developed with Unity3D using
c# scripting.

3.3 Participants and training

Training: As recommended in the ITU-R BT.500 [42], the
experiment started with training, during which observers
familiarized themselves with the virtual environment and
the task. We selected a training 3D model not included in
our original test set: ”Dancing Drummer” (see Figure 1) and
generated 11 distorted models that span the whole range
of distortions. After each stimulus (displayed for 10s), the
rating panel is displayed for 5s. An example score assigned
to this distortion is highlighted. We added a practice trial
stage at the end of the training: we displayed 2 extra stimuli
and asked the subject to rate the quality or the impairment.
The results of these stimuli were not recorded. This stage
was used to allow the observer to familiarize him/herself
with the experimentation, to focus appropriately, and to
ensure that observers fully understand the task of the
experiment.

  

Fig. 3: The experimental environment of our subjective test
based on the DSIS method.

Creation of test sessions: In order to maintain a sufficient
level of attention, we decided to limit the number of
stimuli rated per participant to 160 stimuli out of 480.
As we specifically aim to assess whether the animation
influences the ratings, we decided to show each participant
one viewpoint in both rotation and zoom animations.
Furthermore, we wanted each participant to see all the
reference models, where each model is corrupted by all the
distortion types and levels.
According to the recommendations of [16] about the
required number of observers for assessing the quality of
3D data using the DSIS method, each stimulus must be
rated by at least 24 observers.
With this in mind, we have developed an algorithm which
creates, for each subject, a random batch of 160 stimuli
respecting 2 constraints: (1) each batch must contain 5
reference models x 4 distortion types x 4 strengths x 1
viewpoint x 2 animations. (2) each stimulus must be rated
24 times (i.e. present in 24 batches).

Participants: A total of 72 (480*24/160) subjects took part
in the experiment and they were remunerated. Participants
were aged between 18 and 55. The majority were students
from the University of Nantes, University of Lyon and LIRIS
laboratory, while the rest were workers and professionals in
different occupations. 49 males and 23 females, 45 of whom
had already tried (or were familiar with) a VR headset,
they were naive about the purpose of the experiments. All
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observers had a normal or corrected to normal vision.

Duration: To avoid fatigue, boredom and cyber sickness,
we divided the 160 stimuli into 2 sessions of 23 min each
(informed consent/instructions + 11 training stimuli x (10s
display + 5s rating) + 80 test stimuli x (10s display + ≈4s
rating)). None of these sessions took place on the same
day in order to prevent any learning effect between stimuli.
Thus, these two sessions were held at least two days apart.
The stimuli were displayed in a random order (3D models,
distortion types, levels and animations all mixed) to each
observer. Each stimulus was presented once; the observer
was not able to replay the objects.

4 ANALYSIS OF SUBJECTIVE DATA

The following sections analyze and discuss the results of our
experiment. First, we evaluate the agreement between the
subjects. We also study their bias and inconsistency during
the test. Then, we analyze the impact of main factors such
as the reference models (also known as source contents),
the viewpoints and the animations on the obtained opinion
scores and their accuracy.

4.1 Screening observers and computing mean ratings
Before starting any analysis, participants were screened
using the ITU-R BT.500 recommendation [42]. Applying
this procedure on our data, we did not find any outlier
participants.

A common way to analyze the opinion scores of a DSIS
test is to compute the Mean Opinion Score (MOS) of each
stimulus.

MOSe =
1

N

N∑
i=1

sie (1)

sie refers to the score assigned by observer i to the stimulus
e. N denotes the number of subjects.

To better understand the influence of user and source
variability on the opinion scores, we used the recovery
model based on maximum likelihood estimation (MLE)
recently introduced by Li et al. [43]. This approach recovers
subjective quality scores from noisy raw measurements, by
jointly estimating the subjective quality of impaired stimuli
(true score), the bias and inconsistency of test subjects, and
the ambiguity of the visual content all together.

Xe,s = xe +Be,s +Ae,s (2)

Be,s ∼ N(bs, v
2
s) (3)

Ae,s ∼ N(0, a2c) (4)

Xe,s is the raw opinion score. xe is the (true) quality score
of the stimulus e. Be,s is the noise factor of subject s on
rating stimulus e, it follows a Gaussian distribution in which
the mean bs represents the subject’s bias, and the variance
v2s represents the subject’s inconsistency. The factor Ae,s

refers to the source c that corresponds to the stimulus e.
Its parameter a2c represents the ambiguity related to c. The
estimate of each parameter (xe, bs, vs, ac) is associated with
a 95% confidence interval (calculated as described in [43]
[44]).

The MLE model improves classical MOS calculation by
removing the uncertainty from subjects and contents. In our
case, these recovered MOSs (xe in eq. 2) remain close to
classical MOSs (from eq. 1) (0.998 Spearman correlation).
However, the bias, inconsistency, and content ambiguity
values obtained constitute valuable information for further
analysis (see paragraphs below). In the rest of this paper, we
consider the recovered MOSs (xe instead of MOSe) as the
ground truth values for our database.

4.2 Observer agreement
Before analyzing the results of the experiment, it is essen-
tial to evaluate the agreements between the subjects and
whether they maintained their attentiveness during the test.
To do so, we consider two types of indicators: (1) the
correlations between subjects’ ratings, and (2) the bias and
inconsistency from the MLE model.

First, as in [21], we computed the Pearson Linear Cor-
relation Coefficient (PLCC) and the Spearman Rank Order
Correlation Coefficient (SROCC) between the scores of each
observer and the MOSs of the stimuli rated by this observer.
We then averaged the correlations over all the subjects.
The (mean, standard deviation) of PLCC and SROCC are
(0.85,0.055) and (0.81,0.063) respectively. The mean of the 2
correlations is high, while the standard deviation is rather
low, which indicates a good agreement between the subjects.
We then further explored the internal consistency of the
subject data as proposed by [45]. For each stimulus, we
randomly divided the subjects who rated it into two equal
size groups (12 observers per group) and calculated the
SROCC between the recovered MOSs of the 2 groups. After
repeating this test 500 times, the range of correlations was
found to be between 0.915 and 0.944 with a mean and
a median value of 0.929. Hence, there is a high degree
of inter-subject agreement despite the immersive viewing
environment.

Moving to the second type of indicators, the subject’s
bias and inconsistency results, computed by the MLE model,
are shown in Figures 4 and 5.
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Fig. 4: Bias bs of each subject involved in our subjective
experiment, and its confidence interval.
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Fig. 5: Inconsistency vs of each subject involved in our
subjective experiment, and its confidence interval.

Bias reflects the sensitivity of the subject to impairments. It
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Fig. 6: The mean opinion scores of all the stimuli, associated with their confidence intervals. For a given distortion
strength, the dots are horizontally spaced apart to avoid overlapping.

is a systematic error generated by the subject throughout the
experiment (i.e. picky/expert participants tend to be biased
toward lower scores). Inconsistency, also known as random
error, points out the inattentive subjects that give random
scores or subjects showing absent-mindedness for a portion
of the test.
Figures 4 and 5 show that the range of bias and inconsis-
tency values is within those of image/video experiments
[43] [44] [46]. These figures reported no implausible bias
or inconsistency values, nor any loose confidence inter-
vals, which means that subjects maintained attentiveness
throughout the test and were sensitive to impairments. This
is coherent with the results obtained using the BT.500’s
outlier detection method.

Finally, we assess whether previous VR experience in-
fluences the subjects’ judgments. Thus, we divided the
observers into 2 groups: those who are familiar with VR
(45 subjects) and those who have never tried a VR headset
(27 subjects). For each group, we computed the correlations
between subjects’ ratings and MOS. We then averaged the
correlations over all the subjects. Furthermore, we assessed
the inconsistency of the 2 groups. Table 3 shows the results.
We include, in the supplementary material, the correspond-
ing boxplot of subjects’s inconsistency.
For the three computed indicators, no significant difference
was found in the behavior of observers with no-VR expe-

TABLE 3: agreement and inconsistency of subjects familiar
with VR and those without VR experience.

(Mean, SD) PLCC SROCC Inconsistency
Subjects unfamiliar with VR (0.845, 0.057) (0.811, 0.065) (0.536, 0.156)
Subjects familiar with VR (0.845, 0.056) (0.813, 0.062) (0.517, 0.165)

rience and those familiar with VR. We believe this is due
to the fact that the task given to the participants is rather
simple: observe and then vote using the trigger of the HTC
Vive controller. As can be seen, no VR expertise is required,
since there is no manipulation of the objects. Results also
point out that our training stage was well-designed.

4.3 Factors that influence subjective opinions
Our objective is to provide a deep and evidence-based
understanding of the factors that influencing subjective
opinions. We quantitatively evaluate the effects of source
models, distortions, viewpoints and movement on the mean
opinion scores and their confidence intervals (CIs). Note
that, the classic MOSs and CIs are used in this analysis since
the quality scores and their corresponding CIs obtained by
the MLE model are recovered from the influence of the
source models (content ambiguity).

4.3.1 Resulting MOSs and confidence intervals
Figure 6 shows the MOSs and confidence intervals for all the
stimuli, averaged over all the observers. As expected, on the
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whole, MOSs decrease as distortion strengths increase. We
notice that observers’ behavior was virtually the same for
the stimuli whether they were rotating or zooming in/out.
However, we can observe that the effect of the viewpoints
is strongly related to the source model (e.g. Fish SGeo vs.
Chameleon SGeo) and the distortion type (e.g. Fish SGeo
vs. Fish SCol).
We also notice variations in confidence interval length de-
pending on the source content (i.e. the Chameleon’s CIs are
globally larger than those of Ari). In addition, it seems that,
overall, viewpoint 3 provides smaller CIs than viewpoint 1.
All these factors and phenomena are quantitatively ana-
lyzed in the following paragraphs. To ensure better read-
ability in interpreting the influence of the viewpoints, we
separated the results of the 2 animations. The corresponding
figures are provided in the supplementary material.

4.3.2 Influence on MOSs
We ran a Multivariate Analysis of Variance (ANOVA: Ref-
erence models × distortion types × distortion strengths ×
viewpoints × animation types) on the rating scores of the
observers. Figure 7 summarizes the most important results
using boxplots of MOSs.
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Fig. 7: Boxplots of MOSs obtained for the different factors or
combination of factors. Mean values are displayed as circles.

Source models, distortion types and strengths: as expected,
the ANOVA test shows that these 3 factors are the most
significant factor variables (the corresponding p-values <<
0.0001) (see Figure 7.a).

Viewpoints: there are no significant differences in the
subjective scores associated with the 3 selected viewpoints
(p-value=0.189). However, a significant interaction effect
was found between the viewpoint and the source content
(p-value << 0.0001) (see Figure 7.b). This effect appears in

Figure 6. In addition, the viewpoint is also strongly related
to the distortion types (p-value << 0.0001). For instance, as
illustrated in Figure 7.c, viewpoint 1 is much more sensitive
to geometric simplification (SGeo) than viewpoint 3. This
effect is reversed for geometric quantization (QGeo), since
viewpoint 3 got the lowest average scores. Our hypothesis
is that the geometry and silhouette alterations caused by
QGeo are masked by rich colors and details of viewpoint
1 (viewpoint 1 is much richer than viewpoints 2 and 3).
This is not the case for geometric simplification (SGeo),
which markedly degrades colors and is thus more visible
on viewpoint 1. The geometrically simplified Fish (see
Figures 2 and 6) is a good case in point: observers were
able to detect SGeo distortion when the stimulus was
shown in viewpoints 1 and 2. This distortion is not so
apparent/visible when the Fish was displayed in viewpoint
3 and is thus harder to detect in both rotation and zoom.
For QGeo, we clearly observe the opposite effect.
Figure 7.d shows that a significant interaction exists
between the viewpoint and the distortion strength (with
a p-value << 0.0001). Indeed, stimuli with high strength
of impairment (strength=4) obtained better scores when
displayed in viewpoints 2 and 3 than in viewpoint 1. This
is due to the fact that viewpoint 1 covers most of the
shape and carries the most information and details. Thus,
it is easier to detect loss in the visual quality of stimuli
in viewpoint 1 than in viewpoints 2 and 3. This effect is
obviously less visible for high quality stimuli (strength = 1).
Figure 6 shows a concrete example: for Ari geometrically
simplified and shown in viewpoints 2 and 3, as distortion
forces increase, MOS values remain almost stable. These
2 viewpoints show the side and the back of the statue,
respectively (see Figure 2). These areas are almost flat and
contain very few geometric details/features, especially
relating to the shape of the back (viewpoint 3). Therefore,
simplifying these regions, even with high strength, will not
introduce introduce any markedly visible distortions to the
model. This is not the case of Ari displayed in viewpoint
1, since viewpoint 1 contains more salient features/details
such as the face.

Animations: according to the ANOVA test, the animation
itself does not affect significantly the perceived quality (p-
value = 0.165). However, a significant interaction was found
between the animation and the distortion strength (p-value
< 0.0001). Indeed, weak distortions (strength = 1) are easier
to detect in zoom than in rotation, while stimuli with high
distortion (strength=4) obtained roughly the same score in
both animations. Moreover, there is a slight interaction effect
between the animation and the viewpoint (p-value=0.09).
The interaction between these 2 factors will be discussed in
the following subsection since it has much more influence
on the CI than on the MOS.

4.3.3 Influence on confidence intervals

This time, we ran the ANOVA test on the 95% confidence
intervals of the MOSs. This allows us to evaluate the impact
of the factors on the dispersion of individual ratings. As
above, Figure 8 summarizes the most important results
using boxplots of CIs.
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Fig. 8: Boxplots of CIs obtained for the different factors or
combination of factors. Mean values are displayed as circles.
In (a), Cham. and Sam. refer to Chameleon and Samurai,
respectively.

Source models: When looking at Figure 8.a, it appears
obvious that the source models influence the agreement
among the subjects (p-value=0.0016). Indeed, selection of
source models is no trivial task: some contents tend to
be more difficult to rate than others. This phenomenon
is represented in the MLE model by the ambiguity of
the content ac (see the supplementary material). Overall,
the chameleon tends to be the source associated with the
highest content ambiguity (subjects disagree). A reasonable
explanation for this is that the chameleon model carries
more information content than all the other models: it
has a high average curvature, sharp edges, diversity of
colors, and many small details to reflect its skin tone and
geometrical characteristics.

Viewpoints: It is interesting to observe that the viewpoint
has a significant impact on CIs (p-values=0.0035), unlike
that on MOSs. Figure 8.b shows that the CIs of viewpoint 1
are larger than those of the other viewpoints. The fact that
viewpoint 1 contains more details/information on color
and geometry than the others implies that this viewpoint
results in higher dispersion between the observers’ scores.

Animations: Overall, the CIs of the stimuli in rotation are
smaller than those in zoom. Still this difference is moderate
(p-value=0.052). The impact of this factor is emphasized
when considering the interaction between animations and
viewpoints (p-value=0.0019). Indeed, Figure 8.c shows that
models with animated zoom tend to be more ambiguous
(result in larger CIs) than those that rotate, notably when
the models are displayed in viewpoint 1, which is the
viewpoint that covers most of the shape and carries the
most information. This effect can be observed in Figure 6
for Samurai, Aix and Chameleon models shown in viewoint
1 and animated with a slow zoom. This can be explained
by the fact that while zooming, especially in viewpoint 1,
the observer can see more details and low-level features,
which makes the task of evaluating differences between the
reference and the impairment stimulus more difficult than
the other HRTs.

We analyzed the ambiguity of our source contents
(ac), obtained by the MLE model, for each viewpoint and

animation. The result is provided in the supplementary
material. It is consistent with the findings of this section:
sources with high confidence intervals are also associated
with high ambiguity values.

Thus, the results point out a relationship between
the ambiguity of the source (i.e. dispersion of subject
ratings) and its geometric and color complexity. Models
with more details are the most difficult to rate (larger
confidence intervals). Furthermore, the rating is affected
by the selected viewpoint: the most informative view-
point tends to produce the largest confidence intervals,
especially when combined with a zoom movement. For
given distortions, an impact of the viewpoint on the MOSs
can also be observed. Complex masking effects occur
when considering the interaction between viewpoint and
distortion. The animation has no significant impact on
the perceived quality/degradation. We stress that, further
studies should be carried out so that these results can be
generalized to a non-VR scenario.

Our findings suggest recommendations for the design
of an objective quality assessment metric for 3D meshes.
First, since the models and their distortions and strengths
have crucial importance on perceived quality, the metric
must be able to adapt to the models, and to their shapes
and colors. Moreover, it must be able to detect/capture
different distortions applied on both geometry and color
map. We develop such a metric in section 5. Considering
the animation as a non-influential factor, it is ineligible
for integration in the metric. However, since the viewpoint
has an impact, albeit moderate, it may be useful to take it
into account in the objective model. We investigate this in
section 7.

5 TOWARD AN OBJECTIVE METRIC FOR ASSESS-
MENT OF COLORED MESH QUALITY

As outlined in the introduction, constructing an objective
metric for the quality assessment of 3D content with ap-
pearance attributes is no trivial task. The main reasons
are: (1) the multimodal nature of the data (geometry and
color or texture information) and (2) the complex process-
ing pipeline that constructs the final rendered image from
the 3D content (computation of light-material interactions,
viewpoint selection, and rasterization). To overcome this
problem, we consider a data-driven approach based on the
results and data of our subjective study. Thus, we propose
an objective metric for colored mesh quality assessment as
a linear combination of accurate geometry and color quality
measurements.

5.1 Overview of our approach

The metric we propose is a full-reference multiscale metric
based on curvature and color statistics computed on
local corresponding neighborhoods from the original and
distorted models. The metric is largely inspired by the
MSDM2 frameworks from which we take the curvature
features and the neighborhood correspondence mechanisms
[1]. To address the color-related aspects of our metric, we
consider the features introduced in the 2D image-difference
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framework of Lissner et al. [30]. Their color features have
recently been used successfully for the quality assessment
of colored 3D point clouds [31]. We refer to our metric as
CMDM (for Color Mesh Distortion Measure).

Our framework is as follows: For given distorted Mdist

and reference Mref meshes, we first establish a correspon-
dence between Mdist and Mref (see section 5.2). Then for
each scale hi, we define a spherical neighborhood around
each vertex v of Mdist (see section 5.3) and compute a set
of local geometry and color based features over the points
belonging to the neighborhood of v and their corresponding
points on Mref (see section 5.4). Local single-scale feature
values are pooled into global multiscale features fj . Finally,
CMDM is defined as a linear combination of an optimal
subset of features determined through logistic regression
(see section 5.5).

5.2 Correspondence between meshes
The first objective is to establish a correspondence between
the meshes being compared (Mdist and Mref ). Thus, we
match each vertex v of the distorted mesh Mdist with its
nearest 3D point v̂ on the surface of the reference mesh
Mref using a fast asymmetric projection (as in MSDM2, we
consider the AABB tree structure from CGAL [47]). Then,
for each projected 3D point (v̂), we compute its curvature
and color using barycentric interpolation from vertices of
the triangle it belongs to. This way, each vertex from Mdist

has a corresponding point on Mref (with a curvature and a
color value).
The correspondence is scale-independent: it takes place once
only at the beginning of the process. Nevertheless, the
curvature and color values of v̂ are updated for each scale
hi.

5.3 Neighborhood Computation
As stated above, the features used in our metric are not
computed globally on the entire mesh but locally at multiple
scales over spherical neighborhoods around each vertex.
Thus as in [1], we define, for each scale h, a neighborhood
N(v, h) of radius h around each vertex v of Mdist as the
connected set of vertices belonging to the sphere with center
v and radius h. We also add to this neighborhood the inter-
sections between this sphere and the edges of Mdist. The
curvature and color values of the intersection points are in-
terpolated. Then, we consider for the set of points belonging
toN(v, h) their projected 3D points onMref (corresponding
neighborhood of v̂). Features are computed by considering
curvature and color statistics over N(v, h) ∈ Mdist and
N(v̂, h) ∈Mref .
In this paper, we consider the following three scales: hi ∈
{0.003BB, 0.0045BB, 0.006BB}, where BB is the maxi-
mum length of the Axis-Aligned Bounding Box (AABB)
of the stimulus. The choice of these scales is detailed and
justified in the supplementary material.

5.4 Perceptually relevant features
For each scale h, the following 8 features are computed over
the local corresponding neighborhood of each vertex v of

Mdist.

A. Geometry-based features
These features are based on mean curvature information de-
fined at multiple scales. To compute curvature, we adopted
the method developed by Alliez et al. [48], which evaluates
the curvature tensor on a geodesic neighborhood around
each vertex. This method is interesting and robust because it
avoids the problem of sensitivity to connectivity (Mdist and
Mref do not necessarily share the same connectivity nor the
same level of details). Note that, we used a radius r = h

3
for the computation of curvature as a good compromise
between small radii which capture tiny details and larger
radii which provide strong smoothing effects.
As in [1], we consider the following geometry features:

Curvature comparison fh1 (v) =

∥∥∥Ch
v − Ch

v̂

∥∥∥
max(Ch

v , C
h
v̂ ) + k

(5)

Curvature contrast fh2 (v) =

∥∥∥σCh
v
− σCh

v̂

∥∥∥
max(σCh

v
, σCh

v̂
) + k

(6)

Curvature structure fh3 (v) =

∥∥∥σCh
v
σCh

v̂
− σCh

v Ch
v̂

∥∥∥
σCh

v
σCh

v̂
+ k

(7)

where k is a constant to avoid instability when
denominators are close to zero (k = 1 as in [1]). Ch

v

and Ch
v̂ are Gaussian-weighted averages of curvature over

the points belonging to the neighborhood N(v, h) and
N(v̂, h), respectively. Similarly, σCh

v
, σCh

v̂
and σCh

v Ch
v̂

are
Gaussian-weighted standard deviations and covariance of
curvature over these neighborhoods.

B. Color-based features
To compute the color features, we first transform the RGB
color values of each vertex of the meshes being compared
(Mdist and Mref ) into the perceptually uniform color space
LAB200HL [49]. Lissener et al. recommended working in
this color space since there is little cross contamination
between the color attributes (lightness, chroma, hue). Each
vertex v has of a lightness and two chromatic values (Lv , av ,
bv). The chroma of the vertex is as follows:Chv =

√
a2v + b2v .

We transposed for 3D meshes, the 2D image features
proposed by [30]. These features take into account not only
the luminance but also the chroma and hue components to
better assess the chromatic distortions.

Lightness comparison fh4 (v) =
1

c1(Lh
v − Lh

v̂ )2 + 1
(8)

Lightness contrast fh5 (v) =
σLh

v
σLh

v̂
+ c2

σ2
Lh

v
+ σ2

Lh
v̂

+ c2
(9)

Lightness structure fh6 (v) =
σLh

vL
h
v̂

+ c3

σLh
v
σLh

v̂
+ c3

(10)

Chroma comparison fh7 (v) =
1

c4(Chhv − Chhv̂ )2 + 1
(11)

Hue comparison fh8 (v) =
1

c5∆Hh
vv̂

2
+ 1

(12)
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where Lh
v , Lh

v̂ , Chhv and Chhv̂ denote the Gaussian-
weighted averages of Lightness and Chroma computed
respectively over the set of points belonging to N(v, h) and
N(v̂, h). σLh

v
, σLh

v̂
and σLh

vL
h
v̂

are Gaussian-weighted
standard deviations and covariance of lightness in
the mentioned neighborhood. The term ∆Hh

vv̂ refers
to the Gaussian-weighted average hue difference
between N(v, h) and N(v̂, h). It is defined as follows:
∆Hvv̂ =

√
(av − av̂)2 + (bv − bv̂)2 − (Chv − Chv̂)2. The

constants c1, c2, c3, c4 and c5 were set respectively to 0.002,
0.1, 0.1, 0.002 and 0,008 as in [30].

We invert the scaling of the color-based features so that
they are consistent with curvature-based features (i.e. each
color feature fhj = 1 − fhj ). This way, a value of 0 means
that there is no local (geometric and color) distortion around
vertex v. All features ∈ [0, 1].

5.5 Global perceptual quality score
The set of local geometric and color features, presented in
the subsection above, is computed for each vertex of the
distorted mesh and for each scale hi. The local multiscale
measure of the features is simply the average of its single-
scale values.

fj(v) =
1

n

n∑
i=1

fhi
j (v) (13)

where n is the number of scales used. It is defined in section
5.3 as well as hi the scale values used (neighborhood radii) .

We aim to obtain a global score of visual distortion
according to each feature (fj). So, we average the local
values of each feature over all the vertices.

fj =
1

|Mdist|
∑

v∈Mdist

fj(v) (14)

where |Mdist| is the number of vertices of the distorted
mesh. The features fj are all within the range [0, 1].

Our metric is then defined as a combination of the
features fj . However, choosing the best combination model
is a crucial problem. For prediction of the color-image differ-
ences [30], the authors used a factorial combination model,
while Meynet et al. considered a linear model for their point
cloud quality metric [31]. In our case, we chose to consider
a linear model: (1) to make the optimization easier and
(2) because we tried nonlinear models such as Minkowski
pooling, which did not provide better performance. Thus,
the global multiscale distortion (GMD) score is computed
as follows:

GMDMdist→Mref
=
∑
j∈S

wjfj (15)

S is the set of feature indexes of our linear model. wj

weights the contribution of each feature to the overall distor-
tion prediction.GMDMdist→Mref

evaluates the distortion of
the distorted model regarding the reference model. In order
to strengthen the robustness of our method and to obtain
a symmetric measure, we also compute GMDMref→Mdist

and we retain the average as the final distortion measure
CMDM .

CMDM =
GMDMdist→Mref

+GMDMref→Mdist

2
(16)

As in [50], the optimal subset of features of CMDM and
their corresponding weights are obtained through an opti-
mization computed by logistic regression. The optimization
is based on cross-validation, using the ground truth dataset
from our subjective experiment (see section 6.3).

6 RESULTS AND EVALUATION

In this section, we evaluate the performance of our metric
and compare it to state-of-the-art approaches, including 2D
image metrics. To train and evaluate our metric, we used
the ground truth database obtained from our subjective
experiment (section 3). In this section, we do not take into
account either the influence of the viewpoints or that of the
animations: for a given stimulus, we averaged its recovered
MOSs over the 3 viewpoints and the 2 animations. Thus, the
database used is composed of 80 stimuli. We also validate
our metric on a dataset from [5], composed of distorted
textured meshes.

6.1 Performance evaluation measures

In order to evaluate the performance of objective metrics,
we compare the predicted quality scores given by these
metrics to the ground truth subjective data. The standard
performance evaluation measure consists in computing the
Pearson Linear Correlation Coefficient (PLCC) and the
Spearman Rank Order Correlation Coefficient (SROCC) be-
tween the metric predictions and subjective scores (MOS).
These indices measure, respectively, the accuracy and the
monotonicity of the predictions. Note that, the Pearson
correlation (PLCC) is computed after a logistic regression
which provides a non-linear mapping between the objective
and subjective scores. This allows the evaluation to take into
account the saturation effects associated with human senses.

However, the correlations ignore the uncertainty of the
subjective scores. Therefore, as a complementary assessment
of the performance of the objective metrics, we also imple-
ment the framework recently proposed by Krasula et al. [51].
This methodology consists in determining the classification
abilities of the metrics according to two scenarios:
• (A) Different vs. Similar: this analysis assesses how well

can the metric distinguish between significantly different
and similar pairs of stimuli. The first step consists in
determining the pairs in the dataset rated significantly
different. To do so, we conduct a statistical test (t-test)
on the raw subjective scores. Then for each pair of stimuli
(i, j), we compute the absolute difference of the predicted
scores (|∆PredictedScores(i, j)|) and measure how well these
values are able to correctly classify the pairs of stimuli.

• (B) Better vs. Worse: this analysis is performed on the
significantly different pairs only. The significantly differ-
ent pairs (i, j) are divided into 2 groups: i better than j
((∆MOS(i, j) > 0)) and i worse than j ((∆MOS(i, j) < 0)).
We then measure, according to (∆PredictedScores(i, j)) values,
how well the metric is able to predict this classification.

As can be seen, these scenarios take into account the un-
certainty of the subjective scores. Both scenarios refer to
a binary classification problem (different/similar and bet-
ter/worse). As a performance indicator, we consider the Re-
ceiver Operating Characteristic (ROC) and, more precisely,
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the Area Under the Curve (AUC) values. AUC is a direct
indicator of the performance/ability of the classifiers (1.0
corresponds to a perfect classification, 0.5 corresponds to a
random one). In what follows, it is noted by AUCDS and
AUCBW for scenarios A and B, respectively.

6.2 Single feature prediction performance
This section evaluates the prediction performance of each
feature implemented in our multiscale metric. Table 4 shows
the correlations of the individual features with the recovered
MOSs, as well as their classification abilities.

TABLE 4: Performance of individual features.
Feature Id PLCC SROCC AUCDS AUCBW

Curvature comparison f1 0.5 0.44 0.6 0.75
Curvature contrast f2 0.45 0.43 0.59 0.73
Curvature structure f3 0.3 0.32 0.53 0.67
Lightness comparison f4 0.58 0.69 0.69 0.83
Lightness contrast f5 0.7 0.71 0.7 0.87
Lightness structure f6 0.68 0.71 0.69 0.87
Chroma comparison f7 0.38 0.59 0.64 0.78
Hue comparison f8 0.33 0.43 0.6 0.71

Overall, the best features are those based on the lightness
information (especially f5, f6). They correlate well with the
subjective scores and provide a good performance in identi-
fying the significantly different stimuli as well as the stimuli
of better quality. For the geometry-based features, f1 and f2
perform better than f3. However, this does not necessarily
point to the ineffectiveness of f3. Finally, regarding the chro-
matic feature, chroma comparison f7 seems more relevant
than hue comparison f8. Note that, the geometry features
are penalized by the color quantization (QCol), since this
type of distortion is applied only on the vertex colors and
does not affect the model geometry at all. Removal of this
distortion improves their performance, notably with respect
to correlations (increase to 0.7 for f1 anf f2). This latter
analysis is available in the supplementary material.

6.3 Toward an Optimal Combination of features
Our metric contains 8 different features fj . In this 8 dimen-
sional space, some features are obviously more significant
than others. Also, features may be redundant with one
another, and if all the features are taken into account, this
could potentially lead to an overfitting. Therefore, in the
same vein as [50], we conduct two Leave-One Out Cross-
Validation tests (LOOCV) on the data obtained from our
subjective experiment to select an optimal subset of features.
Each cross-validation test divides the database into a train-
ing set that serves to optimize feature weights using linear
regression and a test used for testing the obtained metric.

1) We split the training and test sets according to the source
models. Given that there are 5 sources in our database,
we leave 1 source model and its distortions out for test-
ing, while the remaining stimuli (4 models * 16 distorted
stimuli) are used for training. Thus after 5 folds, each
source model has been used as a test set.

2) Similar to test 1, but we divide the database according to
the distortion types (regardless of the model). We train
the metric on 3 distortion types out of 4 (5 models * 12
distorted stimuli) and test on the fourth type. After 4
folds, each distortion type has been used once for testing.

These 2 types of LOOCV tests provide a good measure
of the robustness of our metric. We exhaustively search
through all possible combinations of features (255 combi-
nations), and select the feature-subset that generates the
best average performance of CMDM over all the test sets
(9 folds) in terms of the mean of PLCC and SROCC. We
obtained that the final model of our metric is composed of
only 4 features: Curvature contrast (f2), Lightness contrast
(f5) and structure (f6) and chroma comparison (f7). The
optimal features found are consistent with the results of the
single feature performance. The results of our metric and
comparisons with state-of-the-art approaches are reported
in the following sections.

6.4 Comparisons of objective metrics

In this section, we present the results of the cross-validation
tests, described in the previous subsection. As an abla-
tion study, we compare our metric with two of its ver-
sions trained with different subsets of features: CMDM Geo
that takes into account only the geometry features and
CMDM Col based only on color features. As a baseline,
we also include results of a classical color distance D LAB,
which is the average of the color difference (in LAB2000HL)
computed symmetrically between the reference and the
distorted model. Finally, we compare our metric with 3
state-of-the-art full-reference image quality metrics (IQMs):
SSIM [34], HDR-VDP2 [52], iCID [53]. To apply these IQMs,
we generate for each 3D object in our database, a set
of 18 snapshots taken from different viewpoints (camera
positions regularly sampled). The global quality score of
a stimulus, given by an IQM, is then the average of the
objective scores over all its snapshots. The parameters of
IQMs, as well as snapshots of the camera positions are
provided in the supplementary material.

Figure 9 compares the overall performance of the tested
metrics for the 2 cross-validation scenarios presented in 6.3.
Tables 5 and 6 detail the results of each test set.

For the LOOCV test according to the source models, Fig-
ure 9 demonstrates that CMDM outperforms other model-
based metrics. It shows almost the same performance as
IQMs in terms of correlations and detection of better quality
stimuli (AUCBW ). IQMs provide better results in identify-
ing the significantly different pairs of stimuli (AUCDS). We
believe this is primarily related to the advantage of IQMs
over our metric and other model-based metrics regarding
their natural incorporation/knowledge of the entire render-
ing pipeline. Indeed, IQMs operate on snapshots that con-
sider the same rendering, apparent brightness and lighting
conditions as those seen by participants. On the contrary,
our metric only considers 3D data, without any knowledge
of the rendering conditions. Considering the LOOCV test
among the distortions, we notice that our metric performs
better than the others, including IQMs. The color-based ver-
sion of our metric (CMDM Col) also produces good results.
IQMs show a significant decrease in performance, compared
to the LOOCV based on source models. These observations
corroborate previous results by Lavoué et al. [35]: image-
based metrics perform very well when evaluating the qual-
ity of different versions of a single source, yet they are less
accurate when differentiating/ranking distortions applied
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TABLE 5: Performance comparison of several metrics in a cross-validation test among source models
Aix Ari Chameleon Fish Samurai

PLCC SROCC AUCDS AUCBW PLCC SROCC AUCDS AUCBW PLCC SROCC AUCDS AUCBW PLCC SROCC AUCDS AUCBW PLCC SROCC AUCDS AUCBW

CMDM 0.958 0.956 0.783 0.982 0.96 0.91 0.823 0.986 0.83 0.83 0.692 0.943 0.93 0.914 0.805 0.987 0.933 0.944 0.746 0.976
CMDM Geo 0.53 0.621 0.562 0.79 0.68 0.468 0.577 0.788 0.457 0.474 0.504 0.76 0.554 0.554 0.622 0.788 0.462 0.407 0.598 0.737
CMDM Col 0.778 0.791 0.793 0.913 0.491 0.553 0.633 0.799 0.764 0.788 0.631 0.914 0.941 0.903 0.866 0.99 0.76 0.779 0.631 0.887
D LAB 0.791 0.826 0.77 0.924 0.282 0.497 0.523 0.737 0.776 0.747 0.609 0.897 0.734 0.779 0.713 0.9 0.546 0.659 0.59 0.787
SSIM 0.896 0.909 0.782 0.959 0.973 0.932 0.924 0.993 0.823 0.868 0.683 0.951 0.959 0.929 0.9 0.992 0.957 0.915 0.846 0.989
HDR-VDP2 0.893 0.853 0.728 0.958 0.976 0.947 0.877 0.998 0.849 0.818 0.727 0.963 0.895 0.897 0.751 0.981 0.978 0.962 0.86 0.995
iCID 0.958 0.932 0.849 0.983 0.953 0.929 0.85 0.989 0.924 0.921 0.743 0.986 0.954 0.935 0.912 0.988 0.966 0.968 0.914 0.999

TABLE 6: Performance comparison of several metrics in a cross-validation test among distortion types
QGeo QCol SGeo SCol

PLCC SROCC AUCDS AUCBW PLCC SROCC AUCDS AUCBW PLCC SROCC AUCDS AUCBW PLCC SROCC AUCDS AUCBW

CMDM 0.882 0.825 0.537 0.933 0.917 0.924 0.893 0.973 0.93 0.94 0.871 0.995 0.841 0.841 0.641 0.939
CMDM Geo 0.686 0.481 0.597 0.8 0.121 0.288 0.457 0.373 0.596 0.73 0.638 0.874 0.455 0.486 0.486 0.745
CMDM Col 0.787 0.758 0.493 0.904 0.821 0.845 0.772 0.943 0.889 0.908 0.838 0.984 0.853 0.795 0.712 0.934
D LAB 0.653 0.677 0.501 0.826 0.799 0.851 0.72 0.932 0.765 0.841 0.702 0.938 0.598 0.629 0.613 0.832
SSIM 0.875 0.794 0.709 0.903 0.792 0.708 0.696 0.896 0.722 0.756 0.623 0.901 0.588 0.704 0.598 0.855
HDR-VDP2 0.946 0.938 0.805 0.987 0.882 0.78 0.724 0.939 0.736 0.762 0.59 0.9 0.767 0.777 0.632 0.918
iCID 0.88 0.838 0.632 0.926 0.86 0.81 0.785 0.939 0.738 0.761 0.645 0.906 0.631 0.747 0.657 0.872

AUC DS AUC BW
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Fig. 9: Performance comparison of several metrics on two
cross-validation tests. Mean performance evaluation mea-
sures are reported. Error bars indicate the standard devia-
tion over the test sets.

on different sources. More details are provided in Tables 5
and 6.

From Table 5, it can be seen that our metrics and
IQMs demonstrate a good stability over the models. The
performance (especially the correlations) of the D LAB and
CMDM Col metrics drop dramatically for the Ari model.
We also notice that the quality of the Chameleon model
was hardest to predict, since almost all the metrics (except
D LAB and CMDM Col) exhibit a poorer performance than
the other models. This is coherent with our findings in
section 4.3.3.

When considering each distortion type separately (Table
6), several observations can be made. First, our metric
performs very well on 3 types of distortion out of 4: For
QCol, SCol and SGeo, it outperforms significantly the other
metrics, and particularly IQMs. However, our metric shows
a poor performance when distinguish between similar and
different pairs corrupted by geometric quantization (QGeo).
For this distorsion, HDR-VDP2 performs significantly better

in terms of correlations and classification abilities. CMDM
seems to underestimate the impact of geometric quantiza-
tion (QGeo), which is particularly harmful for such high-
resolution models in our database. We believe that this
is due to the fact that this distortion superimposes the
vertices of the stimulus, meaning that we cannot know or
control exactly which vertex color is taken into account in
Unity’s import and render pipelines. This case points out an
advantage for image-based quality metrics and highlights
the importance of taking rendering into account in the
assessment of visual quality.

6.5 Recommended weights
To provide the recommended model of our metric, we
averaged the weights obtained for each training subset of
the two LOOCV tests. CMDM is thus defined, for the three
selected scales (hi ∈ {0.003BB, 0.0045BB, 0.006BB}), as
follows:

CMDMrec = 0.091f2 + 0.22f5 + 0.032f6 + 0.656f7 (17)

In order to reveal the relative importance of each of the
4 features, we scaled the weights presented in the equation
above with the standard deviation of the features. Scaled
weights are 0.333, 0.46, 0.07 and 0.136, respectively, for f2,
f5, f6 and f7. The curvature and lightness contrast features
(f2 and f5) have the highest overall importance. It would
seem that users are particularly sensitive to artifacts that
harm the contrast (both geometric and color contrasts).

We evaluate the performance of the tested metrics, in-
cluding CMDMrec, on the whole dataset (80 stimuli). The
results are reported in Table 7. Figure 10 shows the subjec-
tive scores with respect to objective metric values.

TABLE 7: Performance comparison of different metrics on
the whole dataset.

PLCC SROCC AUCDS AUCBW

CMDMrec 0.913 0.9 0.782 0.968
CMDM Geo 0.501 0.437 0.604 0.749
CMDM Col 0.745 0.746 0.732 0.893
D LAB 0.55 0.603 0.651 0.805
SSIM 0.797 0.799 0.716 0.912
HDR-VDP2 0.853 0.84 0.703 0.944
iCID 0.825 0.83 0.747 0.924

CMDM performs notably better than the others in terms
of correlations. Moreover, the AUC values reflect its good
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Fig. 10: Scatter plot of subjective scores versus objective metric values for all the dataset. Each point represents one stimulus.
The fitted logistic function is displayed in black.

classification abilities in both Different vs. Similar and Better
vs. Worse analyses. This shows the good robustness of our
metric: it is able to differentiate and rank stimuli from
different sources and different distortions.

6.6 Validation on a dataset of textured 3D meshes

To evaluate the robustness of our recommended metric (eq.
17) and to verify that it did not just learn the distortions
that are specific to our dataset, we tested CMDMrec on a
new dataset. Only few subject-rated datasets of 3D models
with attributes are available to the scientific community [5]
[22]. We consider the LIRIS Textured Mesh Database [5],
produced from a subjective study based on a pairwise com-
parison method. This database is composed of 136 textured
meshes, obtained from 5 source models subjected to texture
and geometry distortions. Indeed, the authors generated 20
distorted versions of each source. They also selected a model
(the Dwarf) among the 5, and associated it with 36 mixed
distortions (combination of geometry and texture distor-
tions). As each of these 6 subsets of the database was rated
separately, they cannot be assessed together. To evaluate the
robustness of our approach, we selected the most difficult
subset, namely the one containing mixed distortions. The
source model of this subset is a scan of a Dwarf statue that
has been scanned and reconstructed into a textured mesh of
250004 vertices. Distortions are combinations of 3 geometry
distortions (geometric quantization, simplification, smooth-
ing), each applied with 2 strengths and 2 texture distortions
(JPEG compression, sub-sampling), each applied with 3
strengths. As can be seen, these compound distortions differ
significantly from the distortions generated in our dataset.
Before applying our metric, we transferred the texture color
information into vertex colors (we generate the vertex color
by picking the corresponding color from the texture).

The results are summarized in Table 8. We include results
of the IQMs presented previously, as well as the results
obtained by Guo et al. [5] for different metrics: three metrics
applied on rendered videos of the stimuli (the Discrete Cos-
inus Transform-based (DCT) metric [54], the PSNR and the
MS-SSIM [55] applied on all frames and averaged) and three
metrics directly applied on textured meshes (FQM [4] based
on a weighted combination of two simple mesh and texture
image error measures, CM1 and CM2 [5] both defined as
a linear combination of mesh quality and texture quality).

Note that, Table 8 shows only the correlation measures since
subjective scores are derived from a paired-comparison
method and are therefore not associated with CIs. In the
supplementary material, we illustrate the subjective scores
with respect to the values of the tested metrics.

TABLE 8: Performance comparison of different metrics on
a new dataset. For metrics marked with a *, the values are
reprinted from [5].

PLCC SROCC
CMDMrec 0.862 0.872
SSIM 0.624 0.657
HDR-VDP2 0.83 0.844
iCID 0.502 0.552
Video-DCT* 0.32 0.50
Video-PSNR* 0.33 0.58
Video-MS-SSIM* 0.67 0.66
FQM* 0.64 0.66
CM1* 0.74 0.77
CM2* 0.80 0.85

Our metric provides the best results, although it was
trained on a different dataset presenting different sources
and different distortions and even a different color repre-
sentation. SSIM and iCID show poor performances. They
may be affected by the fact that the snapshots used do not
have the same rendering and lighting conditions as those of
the experiment. Note that results for SSIM, computed using
snapshots of the stimuli, are consistent with those reported
by [5], which are computed on the rendered videos used in
the subjective test.
Our metric also outperforms CM2, which represents the
state-of-the-art of textured mesh quality assessment, and
which was learned on similar data. This metric is a
global combination of mesh and texture distortion measures
(MSDM2 and MS-SSIM, respectively). This tends to validate
the fact that operating fully on the mesh domain (like our
metric) ensures a better performance than combining errors
computed on different domains (i.e., mesh and texture im-
age). These results also confirm the great robustness of our
metric compared to IQMs.

7 INTEGRATION OF THE VIEWPOINT

According to the findings of our subjective experiment, the
viewpoint of stimuli may have a significant impact on user
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quality assessment. Thus, we hypothesized that incorporat-
ing this factor into our objective metric should improve its
results. Indeed, the invisible parts of the 3D model do not
contribute to its visual appearance. Given a stimulus and
a camera position, we determined, in a preprocessing step,
which vertices are visible and which vertices are occluded
by other faces of the mesh (using ray-vertex intersections).
Note that, we have ignored the slight change in visibility
of vertices on the borders/boundaries of objects caused by
their animation. Thus, our objective metric is now computed
only over the visible vertices. We can redefine Equation 14
as follows:

fi =
1

|M ′dist|
∑

v∈Mdist

fi(v)Ψ(v) (18)

where Ψ is a function that returns 0 or 1 according to the
visibility of vertex v and |M ′dist| is the number of visible
vertices of the distorted mesh.

To evaluate the performance of the new metric
CMDMvis, we used a subset of our database consisting
of 240 stimuli. Indeed, for a given stimulus, we considered
its 3 viewpoints and averaged the recovered MOSs of the
2 animations. We tested the performance of the metric
with and without integrating the visibility on these 240
stimuli. Similarly for the IQMs, we considered 2 scenarios:
(1) without taking the visibility into account, so we com-
puted the IQMs on multiple snapshots taken from different
viewpoints and (2) computing the IQMs directly on the
snapshot taken from the real viewpoint displayed to the ob-
server (IQMvis). Table 9 shows the improvement/evolution
of metric results when incorporating the viewpoint. The
improvement is defined as the difference in the evaluation
measures (correlations and AUC) computed before and
after integrating the viewpoint (e.g. for a given metric M :
∆PLCC = PLCCMvis

− PLCCM ). The full results of
the tested metrics in both scenarios are provided in the
supplementary material.

TABLE 9: Performance evolution of different metrics before
and after integrating the viewpoint

∆PLCC ∆SROCC ∆AUCDS ∆AUCBW

CMDM 0 -0.005 -0.001 0
SSIM 0.018 0.03 0.025 0.012
HDR-VDP2 -0.022 0.018 -0.053 0.001
iCID 0.057 0.071 0.049 0.03

We obtained, through the 2 versions of all the metrics,
roughly the same performance in terms of correlations and
classification abilities (no significant performance improve-
ment). Our hypothesis is that this lack of improvement is
due to the fact that only a small subset of the dataset is actu-
ally rated significantly different for its different viewpoints.
This led us to conduct a more precise study: we identified
those stimuli with viewpoints associated with significantly
different subjective scores. We found out that the viewpoint
has a significant influence only on 88 pairs out of 22695 pairs
of stimuli rated significantly different.

Thus, instead of considering all the possible pairs of
stimuli (240*239/2), we compared each stimulus separately
according to its 3 viewpoints V P (e.g. Fish SGeo 4 VP1 vs.
Fish SGeo 4 VP2, Fish SGeo 4 VP1 vs. Fish SGeo 4 VP3
and Fish SGeo 4 VP2 vs. Fish SGeo 4 VP3). This limited

the study to 240 pairs of stimuli (80 stimuli*3 possible
combinations of pairs of viewpoints), 88 of which were
significantly impacted by the viewpoints. The results are
shown in Table 10. Note that, only the AUC values are
reported since this study is based on pairs of stimuli and
thus the correlations could not be computed.

TABLE 10: Performance comparison of different metrics on
the pairs of stimuli significantly affected by the viewpoints.

CMDMvis SSIMvis HDR-VDP2vis iCIDvis
AUCDS 0.602 0.56 0.561 0.58
AUCBW 0.58 0.66 0.8 0.668

Without integrating the viewpoint information, the AUC
values of all the metrics are equal to 0.5. Including the
viewpoint slightly improved the results. Still, this improve-
ment is low, except for HDR-VDP2vis, which showed a good
ability to recognize the stimulus of higher quality in the
pair. This study takes the first step toward integrating the
knowledge of the viewpoint into objective metrics. The fact
that the IQMs exhibited a relatively poor performance, even
though they were computed directly on the displayed view,
shows that it is considerably difficult to distinguish the per-
ceived quality of different viewpoints of the same 3D model.
Further work is still needed to produce efficient metrics
in this difficult scenario. In particular, we hypothesize that
classical pooling should be replaced by more sophisticated
pooling. It could also be useful to consider visual attention
models.

8 CONCLUSION AND FUTURE WORK

In this work, we designed and produced a large
subjectively-rated database of colored 3D meshes. This
database is composed of 480 dynamic stimuli and obtained
through a subjective study based on the DSIS method, in
a virtual reality environment. The stimuli were generated
from 5 source models subjected to geometry and color
distortions. Each stimulus was associated with 6 HRTs:
combinations of 3 viewpoints and 2 animations. This study
allowed us to draw interesting conclusions regarding the
masking effects that occur when considering the interaction
between viewpoint and distortion. Although animation,
by itself, has a moderate impact on subjects’ opinions
and CIs, the impact of this factor is emphasized when it
interacts with other factors such as distortion strength for
subjective scores and viewpoint for CIs. Moreover, results
show that the ambiguity of the source is potentially related
to its geometric and color complexity. The more visible the
content’s information/complexity (as in zoom for example),
the higher the ambiguity.

We developed a perceptually-validated full-reference
metric CMDM for evaluating the quality of colored 3D
meshes. To achieve this, we adapted a set of perceptually-
relevant curvature-based and color-based features. We
further show how to select an optimal subset of features
and use them to train the metric (LOOCV tests using a
ground truth dataset). Extensive evaluation shows that
CMDM provides good results and good stability in terms of
correlations and classification abilities. It also demonstrates
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a good robustness: CMDM is able to differentiate and rank
stimuli from different sources and different distortions,
unlike IQMs which perform very well when assessing the
quality of different versions of a single source, but are less
accurate when ranking distortions applied on different
sources. Last but not least, we demonstrate that our metric
can also be used for textured meshes.
Our ground truth database, subjective scores, and the
metric code are made publicly available online.

As future work, we plan to further explore how to
effectively incorporate visibility information into objective
measures. We would also like to produce a huge subject-
rated database of 3D models, in order to be able to envisage
the creation of end-to-end deep-learning approaches. Fi-
nally, we will work towards adapting the perceived quality
of the objects according to the position/movement of the
subject in the VR scene.
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fessor at the École Nationale d’Ingénieurs de
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