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REGRET MINIMIZATION IN STOCHASTIC NON-CONVEX LEARNING
VIA A PROXIMAL-GRADIENT APPROACH

NADAV HALLAK∗,c, PANAYOTIS MERTIKOPOULOS�,], AND VOLKAN CEVHER‡

Abstract. Motivated by applications in machine learning and operations research, we
study regret minimization with stochastic first-order oracle feedback in online constrained,
and possibly non-smooth, non-convex problems. In this setting, the minimization of
external regret is beyond reach, so we focus on a local regret measure defined via a
proximal-gradient mapping. To achieve no (local) regret in this setting, we develop a
prox-grad method based on stochastic first-order feedback, and a simpler method for when
access to a perfect first-order oracle is possible. Both methods are min-max order-optimal,
and we also establish a bound on the number of prox-grad queries these methods require.
As an important application of our results, we also obtain a link between online and
offline non-convex stochastic optimization manifested as a new prox-grad scheme with
complexity guarantees matching those obtained via variance reduction techniques.

1. Introduction

First-order methods have proven to be extremely flexible and efficient in online convex
optimization: they enjoy tight performance guarantees in a wide range of relevant settings
such as convex, strongly convex, composite, etc., and they can adapt to different measures
of regret under different oracle feedback assumptions, e.g., perfect/stochastic gradients or
bandit feedback. For example, see Abernethy et al. (2008), Hazan (2016), Hazan et al.
(2007) and Xiao (2010) for applications to different convex settings, Besbes et al. (2015),
Cesa-Bianchi et al. (2012), and Hazan and Seshadhri (2009) for variant regret measures, and
Abernethy et al. (2008), Agarwal et al. (2010), and Bubeck and Eldan (2016, 2017) for a
range of feedback assumptions.

On the other hand, many contemporary problems, especially in machine learning, involve
highly multi-modal non-convex functions. In this case, the results obtained in the above
framework do not – in fact, cannot – apply, and new analytical tools and algorithms are
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needed. Nevertheless, and somewhat surprisingly at that, online non-convex optimization
problems are not as well explored, and significantly less is known about the performance of
first-order methods in this context.

The key difficulties encountered in the online non-convex setting are twofold: First,
the standard regret comparator of a “best action in hindsight” (fixed or otherwise) is too
ambitious because, in general, even offline non-convex optimization problems are intractable.
Second, compared to problems with a convex structure, non-convex problems have no local-
to-global guarantees, so the adversary has a near-insurmountable advantage (in analogy to
non-convexified/non-randomized optimizers facing an adversarial bandit). Our paper seeks
to address these challenges in a unified way.

Related work. One approach to treat online non-convex optimization is to regard the
problem as an adversarial multi-armed bandit (MAB) with a continuum of arms. This
approach was pioneered by Bubeck et al. (2011), Kleinberg (2004) and Kleinberg et al.
(2008), who proposed a range of hierarchical search methods, with and without a doubling
trick, that guarantee no regret in problems with a geometry that is amenable to local search
such as the hypercube. Krichene et al. (2015) and, more recently, Perkins et al. (2017) and
Héliou et al. (2020), took an approach based on a suitable adaptation of the Hedge/EXP3
algorithms to bandits with a continuum of arms and established the method’s no-regret
properties under relatively mild regularity conditions. However, in full generality, sampling
from continuous Gibbs distributions can be quite challenging, so it is not a-priori clear how
to implement these methods without a sampling oracle in place.

Another approach, manifesting in the recent works of Agarwal et al. (2019) and Suggala
and Netrapalli (2019), is the classical Follow-the-Perturbed-Leader algorithm with access to
an offline non-convex optimization oracle, which was shown to enjoy a polynomial regret
bound. Simplifying assumptions that render a non-convex problem tractable, were also
considered in the literature in more particular cases such as the principal component analysis
model; see Garber (2019) and references therein for additional examples.

Complementing this literature in an orthogonal direction, Hazan et al. (2017) took a more
direct, “pure-strategy”, approach based on a “smoothed” inner-loop / outer-loop version of
projected gradient descent. In this general framework, a straightforward extension of Cover’s
impossibility result shows that the minimization of standard regret measures is unattainable.
On account of this, Hazan et al. (2017) considered instead a local regret measure based on a
sliding evaluation window and a suitable measure of stationarity (as opposed to optimality).
When faced with a stream of Lipschitz smooth functions, the algorithm of Hazan et al. (2017)
enjoys a local regret bound that scales with the horizon T of the process and the size w of the
sliding window as O(T/w2), with projection calls complexity O(Tw); as a result, sublinear
(local) regret is possible as long as w = ω(1). Importantly, Hazan et al. (2017) also showed
that the local regret bound is unimprovable from a min-max perspective, so the proposed
algorithm is optimal in this regard. For unconstrained problems with stochastic gradient
observations, Hazan et al. (2017) further showed that a suitable variant of their method
achieves similar guarantees in expectation.

Our contributions. Our goals are twofold: First, we seek to treat online problems that are
potentially non-smooth, covering e.g., the case of L1-regularization. Second, in line with the
above, we also wish to account for problems with stochastic oracle feedback, simultaneously
with constraints and regularization, thus including problems subjected to both random and
seasonal fluctuations. To achieve the desiderata, we consider a general composite non-convex
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online framework in which each loss function encountered consists of a smooth and non-
smooth part; this study is the first to provide methods with theoretical guarantees to address
this scenario. Concisely, our main contributions are

• Assuming access to only a stochastic first-order oracle, we introduce a smoothed
prox-grad method to handle stochastic, constrained, non-smooth, non-convex online
optimization problems with tight regret guarantees of O(T/w2) in expectation and
stochastic first-order oracle calls bound of O(w3). This represents a significant step
forward relative to the literature, mainly, compared to the online stochastic method
proposed by Hazan et al. (2017), as the latter can only address the basic smooth
unconstrained case.
• Relaxing the feedback assumptions to a perfect first-order oracle, we also present
a simpler method that can simultaneously tackle online non-convex optimization
problems with both constraints and regularization, and obtain tight regret guarantees
O(T/w2) with prox-grad calls complexity O(w2) in the process.

• As a by-product, but of an independent interest and contribution of its own, we
derive from our methods new schemes for stochastic offline optimization under the
online framework assumptions with the best known guarantees, achievable only via
variance reduction techniques (see Arjevani et al. (2019) and references therein).

2. Problem setup

2.1. Statement of the problem and blanket assumptions. We consider the class of online
non-convex, nonsmooth, composite problems over a finite and discrete time horizon T ≥ 1 of
the form

min{`t(x) = ft(x) + g(x) : x ∈ Rn}, t ∈ [T ], (P)

where

(1) g : Rn → R+ ∪ {∞} is a proper, convex, lower semicontinuous (l.s.c) function.

(2) For any t ∈ [T ], the function ft : Rn → R is L-smooth (L > 0 ) over dom g, i.e.,

‖∇ft(x)−∇ft(y)‖ ≤ L‖x− y‖ ∀x,y ∈ dom g, ∀t ∈ [T ].

(3) There exists M > 0 such that for any x ∈ dom g and t ∈ [T ], it holds that
|ft(x)| ≤M .

Our blanket assumptions are fundamental in the study of online learning, even when the
objective function is convex (see e.g., Hazan (2016)). We also note that ft is assumed to be
L-smooth and bounded only over the domain of g, meaning that if dom g is bounded, then
the assumptions on ft trivially hold true.

2.2. Motivating applications. Examples of (P) are ubiquitous in theoretical computer science,
operations research, and many other fields where online decision-making is the norm. For
concreteness, we shortly describe next a few conceptual examples; further details are provided
in the supplement.

• Non-convex games: A multi-player non-convex game can be modeled by simultane-
ously optimizing several copies of (P), where all share the same function ft, and
(un-shared) penalty functions may be utilized to induce stability (e.g., risk aversion)
in the choices of each of the players independently; see e.g., Agarwal et al. (2019),
Hazan et al. (2017).
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A particularly interesting instance of a two players non-convex game in which the
feasible set is usually compact, and the objective function is accessible through a
stochastic oracle, is the generative adversarial network (GAN) model; GANs were
already considered via an online framework by Grnarova et al. (2017) and Agarwal
et al. (2019) for example.

• Online path planning with splittable traffic demands: The online traffic assignment
problem is a hallmark path planning problem that requires the full capacity of our
model, and whose formulation further applies to learning perfect matchings, multitask
bandits, spanning tree exploration, etc. Referring to Bertsekas and Gallager (1992)
and Shakkottai and Srikant (2008) for an introduction to the topic, the key objective
in traffic assignment problems is the optimal allocation of traffic over a given network
with variable traffic inflows. The feasibe set here is compact, the cost functions are
smooth yet non-convex, and a sparsity-inducing L1 term is typically included to
“robustify” solutions by minimizing the overall number of paths employed; we provide
a fully detailed formulation in the supplement.

• Stochastic (offline) optimization: Stochastic optimization, which follows naturally
from online optimization by restricting the adversarial behavior accordingly, plays a
prominent role in modern applications, such as neural networks.

2.3. Local regret minimization. In the online non-convex framework of (P), there are two key
issues with the standard definition of the regret as Reg(T ) = maxx∈dom g

∑T
t=1[`t(xt)−`t(x)]:

First, the global minimization of a non-convex objective is intractable in general, so using
the best fixed action in hindsight as a comparator is too ambitious. Second, as we explain
below, even if one uses a proxy for stationarity in lieu of a global minimizer, an informed
adversary can still impose Reg(T ) = Ω(T ), so the notion of regret minimization must also
be re-examined in this setting.

We address both of these problems by extending the local regret minimization framework
of Hazan et al. (2017) to the composite problem (P). To do so, we begin by defining the
proximal mapping of g along the search direction d ∈ Rn with step-size η > 0 as

T gη (x;d) ≡ proxηg (x− ηd) = arg minz∈Rn{ηg(z) + 1
2‖x− ηd− z‖2}, (1)

where ‖ · ‖ stands for the Euclidean norm, and the corresponding prox residual as

Pgη (x;d) =
1

η

(
x− T gη (x;d)

)
. (2)

Remark 2.1. We note that the purpose behind the use of a general vector d in Eq. (1) and
Eq. (2) is to be able to accommodate for stochastic gradients later on in Section 4.

As an illustration, let us set d = ∇f(x) and examine Eq. (1) and Eq. (2) in the smooth
unconstrained and constrained scenarios. If g ≡ 0, then Eq. (1) is the gradient descent
operator and Eq. (2) reduces to Pgη (x;∇f(x)) = ∇f(x). Likewise, if g ≡ δK for some closed
convex subset K of Rn, we get the projected gradient descent in Eq. (1) and its corresponding
projection residual Pgη (x;∇f(x)) = η−1(x− projK(x− η∇f(x))).

A fundamental result in optimization is that Pgη (x;∇f(x)) = 0 if and only if x is a
stationary point of (P), making the residual quantity Resgη(x) ≡ ‖Pgη (x;∇f(x))‖2 ≥ 0 an
efficient proxy for the first-order optimality condition (see also (Beck, 2017, Ch. 10)).
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Motivated by this, it would seem natural to define the regret of an online policy xt at
time T as the classical measure in non-convex optimization

Reg(T ) ≡
T∑
t=1

Resgη(xt) =

T∑
t=1

∥∥Pgη (xt;∇ft(xt)
∥∥2 . (3)

However, as was shown by Hazan et al. (2017), it is not difficult for the adversary to
impose linear regret by providing a sequence of “spiked” non-convex loss functions with large
‖∇ft(xt)‖ and small gradient away from each xt (for completeness, we provide a simple
example in the supplement). Perhaps more intuitively, one may consider a dynamical system
with a time varying function that is only accessible via a stochastic oracle (e.g. GAN as a
two-players game), in which case, attaining stationarity through the classical use of Eq. (3)
seems impossible.

Because of this, it is more reasonable to consider a smoothed, local version of the regret that
averages the sequence of loss functions encountered over a sliding window of w consecutive
time periods. Formally, for all w ∈ [T ], consider the sliding average

St,w(x) =
1

w

t∑
i=t−w+1

fi(x),

with the convention ft ≡ 0 for t ≤ 0. Building on the notion of regret proposed by Hazan
et al. (2017), the local regret of a policy xt up to time T with window leghth w is then
defined as

Regw(T ) =

T∑
t=1

∥∥Pgη (xt;∇St,w(xt))
∥∥2 . (4)

In the above, the sliding window w can be seen as an "effective time unit": essentially,
instead of working with the stream of (potentially volatile) loss functions ft directly, we work
with the average loss over a window of length w. In practice, the sliding window w acts as a
"stabilizer" controlling the effects of the noise and variability of the function on the decision
making of the optimization protocol; this will become apparent in the sequel.

In the non-composite case, when g is the indicator of a closed convex set, the local regret
measure Eq. (4) is quantified by the minimax bound of Hazan et al. (2017) who showed that
an informed adversary can impose Regw(T ) = Ω(T/w2). This bound becomes sublinear in
T if w = ω(1), so this definition provides the required flexibility for a tractable measure of
regret.

To further substantiate the motivation for our smoothing approach, we provide four
prototypical scenarios in which Eq. (4) generalizes standard measures in simpler models:

• In the offline case ft ≡ f , we immediately recover the classical measure of Eq. (3).
• If g ≡ 0, we readily obtain Regw(T ) = (1/w2)

∑T
t=1 ‖

∑t
i=t−w+1∇fi(xt)‖2, i.e.,

the original definition of Hazan et al. (2017) for unconstrained online non-convex
problems.

• If additionally ft = F (·, ωt) where F is a stochastic objective and ωt is an i.i.d
sequence of random seeds, then E (Regw(T )) /T ≥

∑T
t=1 ‖∇f(xt)‖2, meaning that

local regret minimization leads to stationarity in expectation in unconstrained
stochastic models; we will return to this example in Section 3.

• More generally, as discussed in detail in Section 4.2, if each ft is drawn from an under-
lying stationary distribution with expectation f , and a stopping time t∗ is selected uni-
formly at random from [T ], we will have E

[ ∥∥Pgη (xt∗ ;∇f(xt∗))
∥∥2 ] ≤ E (Regw(T )) /T ,
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i.e., local regret minimization implies average stationarity in composite (offline) sto-
chastic problems.

We close this section by introducing a measure of variation of the loss functions encountered
by the optimizer, and which will be particularly useful in the sequel:

Definition 2.1 (Sliding window variation). The sliding window variation of a sequence of loss
functions ft is

Vw[T ] = sup
x∈domg

{
T∑
i=1

‖∇fi(x)−∇fi−w(x)‖2
}
. (5)

An immediate observation is that if the gradients of the functions are bounded (e.g., if ft
is Lipschitz continuous), we automatically have Vw[T ] = O(T ); as such, any regret guarantee
stated in terms of Vw[T ] automatically translates to O(T ) in this context.

The main reason that we introduce this variation measure instead of working with a more
uniform hypothesis, such as the standard Lipschitz continuity of the objective function, is
to account for cases where this quantity is naturally small. For example, in the routing
problem mentioned in Section 2.2 and detailed in the supplemental, Vw[T ] corresponds to
the variability of the encountered traffic demands at a time-scale of w. As such, if the sliding
window w is attuned to the seasonal variability of the process (e.g., an hour, a day or a week,
depending on granularity), Vw[T ] could be considerably smaller than T , so the obtained
regret bounds would be considerably sharper as a result.

We should also note that, when w = 1, Vw[T ] boils down to the “gradual variation” measure
of Chiang et al. (2012) – and, indirectly, to the variation budget of Besbes et al. (2015). The
above suggests an interesting interplay between our analysis and regret minimization relative
to a dynamic comparator; this is also part of the reason that we state our results in terms of
Vw[T ] in the sequel.

3. The time-smoothed online prox-grad method

Assuming perfect first-order oracle, we introduce the Time-Smoothed Online Prox-Grad
Descent method, cf. Algorithm 1, which generalizes the time-smoothed online gradient
descent method of Hazan et al. (2017).

Algorithm 1: Time-smoothed online prox-grad descent
Input. x1 ∈ Rn, η ∈ (0, 1/L), w ∈ [T ], δ > 0.
General step. For any t = 1, . . . , T do:

(1) ft : Rn → R is determined;
(2) Set xt+1 ← xt;
(3) While

∥∥Pgη (xt+1;∇St,w(xt+1))
∥∥ > δ/w do:

(a) Update xt+1 ← arg minz∈Rn g(z) + 〈∇St,w(xt+1), z− xt+1〉+ 1
2η‖z− xt+1‖2;

As we show below, Algorithm 1 achieves an optimal regret bound of O
(
T
w2

)
when Vw[T ]

is bounded by O(T ), and executes O(w2) prox-grad operations. We note that the bound
O(w2) on the number of prox-grad operations improves the bound O(Tw) established for
the simplified case of g ≡ 0 by Hazan et al. (2017).
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Theorem 3.1 (Local regret minimization). Algorithm 1 enjoys the local regret bound

Regw(T ) ≤ 2

w2

(
Tδ2 + Vw[T ]

)
.

Theorem 3.2 (Oracle queries). Let τt be the number of prox-grad operations at time t ∈ [T ].
The total number of oracle queries τ =

∑T
t=1 τt made by Algorithm 1 is bounded as

τ ≤ 2w2(g(x1) + 2M)

(2− ηL) ηδ2
= O(w2).

We conclude this section by examining the theoretical guarantees of Algorithm 1 when
ft is an unbiased stochastic approximation of f , so that, implicitly, ∇ft is generated via
an unbiased SFO. It should be noted that the SFO must satisfy that Vw[T ] is O(T ), which
effectively bounds the variability of the stochastic gradient; this assumption is different than
the standard variance bound in stochastic gradient analysis (cf. Definition 4.1).

Corollary 3.1. Suppose that g ≡ 0, E(∇ft(x)−∇f(x)) = 0 for any x ∈ Rn, and that Vw[T ] ≤
cT for some c > 0. Let ε > 0, and t∗ ∈ [T ] be chosen uniformly from {w,w + 1, . . . , T}. If
T = 2w and w =

⌈
2
√

(δ2 + c)/ε
⌉
. Then Algorithm 1 achieves E

(
‖∇f(xt∗)‖

2
)
≤ ε with at

most O(ε−1) prox-grad operations and O(ε−3/2) SFO calls.

Note that the complexities reported in Corollary 3.1 match those obtained for the state-
of-the-art Prox-SpiderBoost method proposed by Wang et al. (2019), but under a different
procedure using more stringent assumptions (boundedness of f and that Vw[T ] is O(T )). We
stress that the Prox-SpiderBoost method is only applicable to stochastic problems, and as
such, it has no online guarantees, unlike Algorithm 1.

The proofs of Theorems 3.1 and 3.2, and of Corollary 3.1, are deferred to the supplemental.

4. Stochastic time-smoothed online prox-grad method

4.1. Method and Analysis. Moving forward from the deterministic guarantees of Algorithm 1,
we proceed to consider a more flexible framework that only posits access to a stochastic
first-order oracle (SFO). Specifically, following Nemirovski et al. (2009), we assume that it
is possible to generate an i.i.d. sequence of random seeds ω1, ω2, . . . , that are concurrently
used as input to an SFO as follows:

Definition 4.1 (Stochastic first-order oracle). A stochastic first-order oracle (SFO) is a
function Sσ such that, given a point x ∈ Rn, a random seed ω, and a smooth function
h : Rn → R satisfies:

(1) Sσ(x;ω, h) is unbiased relative to ∇h(x): E (Sσ(x;ω, h)−∇h(x)) = 0;
(2) Sσ(x;ω, h) has variance bounded by σ > 0: E

(
‖Sσ(x;ω, h)−∇h(x)‖2

)
≤ σ2.

With all this hand, the heuristics of the proposed stochastic prox-grad method are as
follows: (i) ft is determined; (ii) successive SFO queries generate a noisy descent process in
an inner loop until a δ/w-stationary point is reached. In detail, the algorithm is presented
in pseudocode form below:

The process of Algorithm 2 might be better understood by comparing it to offline stochastic
variance reduction methods (SVR); see e.g., Fang et al. (2018), Metel and Takeda (2019),
Wang et al. (2019), Yurtsever et al. (2019), and references therein. For these methods, which
usually implement a non-diminishing step-size policy in the non-convex setting, a batch-size
variance relation is required in order to achieve the methods’ guarantees.
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Algorithm 2: Time-smoothed online stochastic prox-grad method
Input. x1 ∈ Rn, η ∈ (0, 1/L), w ∈ [T ], δ > 0.
Initialization. ∇̃Si,w(x1) = 0 for all i ≤ 0.
General step. For any t = 1, 2, . . . , T do:

(1) Function is updated to ft : Rn → R;
(2) Sample ∇̃ft(xt)← Sσ/w(xt;ω, ft);

(3) Set ∇̃St,w(xt) = ∇̃St−1,w(xt) + 1
w (∇̃ft(xt)− ∇̃ft−w(xt));

(4) Set y1
t = xt, G1

t = ∇̃St,w(xt), k = 1;
(5) While

∥∥Pgη (ykt ;Gkt
)∥∥ > δ/w do:

(a) Update yk+1
t = arg minz∈Rn g(z) + 〈Gkt , z− ykt 〉+ 1

2η‖z− ykt ‖2;

(b) Sample ∇̃fi(yk+1
t )← Sσ/w(yk+1

t ;ω, fi) for any i = t− w + 1, . . . , t;

(c) Set Gk+1
t = 1

w

∑t
i=t−w+1 ∇̃fi(y

k+1
t );

(d) Set k ← k + 1;
(6) Set xt+1 = ykt and ∇̃St(xt+1) = Gkt .

Algorithm 2 takes a different approach in this context by, instead of stating this connection
in the analysis, it explicitly links the batch-size (w mimics the role of the batch-size) to the
variance of the SFO in the scheme itself. The affinity of Algorithm 2 to SVR methods is
further expressed when considering its guarantees in the offline scenario of ft ≡ f . Then,
Algorithm 2 achieves the best known SFO complexity as that obtained by SVR methods;
see our Section 4.2 for additional details.

Before stating Algorithm 2’s guarantees, let us first define the algorithm’s natural filtration:
For all t ≥ 1, the filtration Ft includes all gradient feedback up to, but not including, the
execution of step 2 at stage t. In particular, it includes ft, xt and ∇̃St−1(xt), but it does
not include ∇̃ft(xt).

With all this in hand, we now state our main results. Denote by τt the number of times the
condition in step 5 at t-th iteration is checked, that is the number of prox-grad operations at
the t-th iteration, and let τ =

∑
t∈[T ] τt. We begin by establishing that Algorithm 2 almost

surely executes a finite number of prox-grad operations provided that δ is not too small.

Theorem 4.1 (Oracle queries). Let t ∈ [T ] and let the filtration Ft be given. Suppose that the
inputs δ and η satisfy that

δ2 >
2σ2

η (1− ηL)
. (6)

Then τt and τ are almost surely finite, and

P(τt > K) ≤ (h1t +M)w2

2 (η (1− ηL) δ2 − 2σ2)K
= O(1/K), ∀K ≥ 1.

Next we provide a tight bound on the expected local regret in terms of Vw[T ]; recall that
under the standard assumptions of bounded feasible domain or Lipschitz continuity of ft,
Vw[T ] is bounded by O(T ), in which case we have that E [Regw(T )] achieves the optimal
local regret bound of O

(
T
w2

)
.
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Theorem 4.2 (Local regret minimization). Algorithm 2 enjoys the average local regret bound

E [Regw(T )] ≤ 2

(
T

w2

)(
δ2 + 7σ2

)
+

6

w2
Vw[T ].

The local regret bound established in Theorem 4.2, and the almost sure termination in
finite time proved in Theorem 4.1, leave the question of the number of prox operation still
unattended. To answer this nontrivial question, we require more control of the random
processes originating from the SFO in the form of the following assumption on the noise.

Assumption 1. Given any point (x, ω) ∈ Rn × Ω and a function h : Rn → R, the stochastic
first-order oracle Sσ satisfies that ‖Sσ(x;ω, h)−∇h(x)‖ ≤ σ;

Assumption 1 is not uncommon in the stochastic setting, even in convex problems, see
e.g., Jain et al. (2019), Kavis et al. (2019), Li and Orabona (2019), and references therein.
We emphasize that Theorems 4.1 and 4.2 do not require, nor assume, that Assumption 1
holds true.

The next theorem states that Algorithm 2 executes O(w2) prox operations and O(w3)

SFO calls.

Theorem 4.3 (Iteration bound). Suppose that Assumption 1 holds true, and that η ∈ (0, 1/(L+

1)), δ2 > σ2/η(1− η(L+ 1)). Then the number of SFO calls is O(wτ) with

τ =

T∑
t=1

τt ≤
2w2(g(x1) + 2M)

(1− η(L+ 1))ηδ2 − σ2
= O(w2). (7)

Remark 4.1. Under the conditions of Theorem 4.3, both Theorem 4.1 and Theorem 4.3 hold
true.

4.2. Implications to Offline Stochastic Optimization. This section considers the reduction of
our model to an offline stochastic non-convex composite optimization problem by examining
our results when ft ≡ f for any t ∈ [T ]. In this scenario, where the goal is to obtain an
ε-stationary point x∗ ∈ Rn satisfying that ‖P(x∗;∇f(x∗))‖2 ≤ ε (cf. (Beck, 2017, Ch. 2)),
our sliding average St,w(x) is reduced to the objective function itself, and the local regret
measure Regw(T ) is reduced to the standard sum of prox-residuals in the consecutive points
generated by the algorithm. Algorithm 2 itself takes the form of a stochastic prox-grad type
method in which w calls to the SFO are used to approximate the gradient at each iteration.
This resulting scheme bare some resembles to variance reduction techniques appearing in
Metel and Takeda (2019), Wang et al. (2019), Yurtsever et al. (2019), where here, w seemingly
takes the role of the batch-size, and the process of Algorithm 2 enforces the relation between
the SFO’s variance and w.

The connection between Algorithm 2 and SVR methods is further supported by the
O(Mσε−3/2) SFO calls complexity guarantee for obtaining a ε-stationary point in expectation,
which we will derive shortly. This complexity is currently the best known (sometimes written
as O(Mσε−3) due to square-difference in the stationarity definition), and can only be
obtained by SVR methods; see the already mentioned Arjevani et al. (2019) for details.

Although obtained as a by-product, our offline-related result are of an independent
interest and contribution, as, apart from providing a new connection between online learning
and offline stochastic optimization, we also derive a new stochastic method with the best
known guaranteess under different model assumptions and procedure compared to the SVR
literature.
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It should be noted though that our assumptions, albeit standard in online optimization,
are more restrictive compared to the related stochastic (offline) optimization literature (e.g.,
Wang et al. (2019)), as the former facilitate guarantees, first and foremost, for our online
stochastic model. Indeed, methods for stochastic problems cannot address the adversarial
online settings we study here. Notwithstanding, our complexity results suggest new scheme’s
design directions to explore in the development of (offline) stochastic methods, encouraging
future study on the matter, that is unfortunately out of the scope if this paper.

Let us now derive the aforementioned guarantees, proofs are provided in the supplemental.

Theorem 4.4. Let ε > 0, and t∗ be chosen uniformly from {w,w + 1, . . . , T}. Suppose that

Vw[T ] ≤ cT/6 for some c > 0. Then E
(
‖P(xt∗ ;∇f(xt∗))‖

2
)
≤ 2T(δ2+7σ2+c)

(T−w)w2 .

From Theorem 4.3 and Theorem 4.4 we obtain the desired guarantees.

Corollary 4.1. Let ε > 0, and t∗ ∈ [T ] be chosen uniformly from {w,w + 1, . . . , T}. Suppose
that Vw[T ] ≤ cT/6 for some c > 0. If T = 2w and w =

⌈
2
√

(δ2 + 7σ2 + c)/ε
⌉
. Then

Algorithm 2 achieves E
(
‖P(xt∗ ;∇f(xt∗))‖

2
)
≤ ε. Additionally, under the conditions of

Theorem 4.3 with δ2 = 2ησ2/(1− η(L+ 1)), Algorithm 2 executes at most O(Mσε−3/2) SFO
calls.

5. Conclusions and future work

Our aim in this paper was to develop an online prox-grad methodology for stochastic
non-convex online optimization problems with constraints and regularization (possibly non-
smooth). In this regard, the proposed framework achieves the min-max optimal bounds for
local regret minimization while at the same time bounding the number of overall operator
queries. From a top-down perspective, this departure from standard notions of regret
suggests various extensions based on different notions of local regret, ranging from measures
of stationarity in offline non-convex analysis, to proxies for constraint qualification in problems
with sufficient regularity. Additionally, our reductions to the offline stochastic setting suggest
new and interesting schemes to address stochastic non-convex optimization problems. We
defer these questions to future research.

A. Motivating examples

A.1. A conceptual approach for non-convex games. We extend here the solution concept for
non-convex m-player games with smoothed local equilibrium proposed by Hazan et al. (2017)
to be valid in our stochastic composite game setup. We emphasize that the guarantees we
present in this section are also valid for when each player only has access to a stochastic
first-order oracle, making it closer to practical use.

To model the multi-player setting, consider m problems of the form (P) corresponding to
each of the players, where every player i observes her online part of her objective function

f it (z) := f(x1
t , . . . ,x

i−1
t , z, . . . ,xmt ), (8)

and then decides on xit+1.
It is sometimes desirable to induce specific properties in the game, this is fully supported

by our model (P). For example: (i) to incur risk-aversion, the regularizer of each player gi

can be chosen accordingly, e.g., L1-norm; (ii) to ensure a meaningful solution, such as the
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global minimax point condition defined by Jin et al. (2019), restriction of the decision set to
a compact convex set can be applied.

In our non-convex setting, obtaining the global measure of Nash equilibrium is beyond
reach, and may not exist at all (Jin et al., 2019, Prop. 6). Thus, a different, local, measure
for equilibrium is essential. This topic is already receiving much attention in the literature,
for example, for a multi-player non-convex games, Pang and Scutari (2011) proposes the
local quasi-Nash equilibrium measure defined using KKT conditions. In the case of a (two-
players) minmax game (e.g., GANs) for example, local measure is defined as the stationarity
(first-order condition) of both players in the very recent Jin et al. (2019), Nouiehed et al.
(2019). For additional details, we refer to the works alluded above.

We follow the smoothed local equilibrium approach (Hazan et al., 2017, Sec. 6) , and
extend it here to our composite model. This approach comes naturally from assuming that
the players take into account the behavior history of the other players. Other than that, it
allows for a tractable notion of equilibrium.

The smoothed local equilibrium is defined for the joint cost function (8) as follows, where
Sit,w(x) = 1

w

∑t
j=t−w+1 f

i
j(x).

Definition A.1 (smoothed local equilibrium). Let η > 0, w ≥ 1. For an m-player iterative
game with cost functions as in (8), a joint strategy at iteration t > 0, (x1

t , . . . ,x
i−1
t ,xit, . . . ,x

m
t ),

is an ε-(η, w) smoothed local equilibrium with respect to the history of w-iterates if:∥∥∥Pgiη (xit;∇Sit,w(xit)
∥∥∥2 ≤ ε ∀i ∈ [m]. (9)

Denote by Regiw(T ) the local regret (cf. Eq. (4)) of the i-th player. We first derive a
guarantee for when each player has access to a perfect first-order oracle (using Theorem 3.1).

Theorem A.1 (Equilibrium with perfect oracle). Let the sequence (x1
t , . . . ,x

i−1
t ,xit, . . . ,x

m
t ),

t = 1, . . . , T be generated by running Algorithm 1 for all players simultaneously with input
η > 0 and w = d2k(δ2 + c)ε−1/2e, given that the online function is determined by (8).
Suppose that Vw[T ] ≤ cT for some c > 0. Then there exists t∗ ≥ w such that (9) holds true.

Proof. There exists a t∗ ≥ w such that
k∑
i=1

∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)
∥∥∥2 ≤ 1

T − w

k∑
i=1

T∑
t=w

∥∥∥Pgiη (xit;∇f it (xit)
∥∥∥2

≤ 1

T − w

k∑
i=1

Regiw(T ).

Thus, if each player has access to a perfect first-order oracle and Vw[T ] ≤ cT , then by
Theorem 3.1

k∑
i=1

∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)
∥∥∥2 ≤ 1

T − w

k∑
i=1

2

w2

(
Tδ2 + Vw[T ]

)
≤ 2kT (δ2 + c)

(T − w)w2
.

Consequently, by setting T = w2 and w = d2k(δ2 + c)ε−1/2e we obtain
k∑
i=1

∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)
∥∥∥2 ≤ 2k(δ2 + c)

(w − 1)w
≤ ε,

as desired. �
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By similar arguments, we derive the guarantees for when players have access via a
stochastic first-order oracle, only now we utilize Theorem 4.2; we implicitly assume here that
all the conditions of Theorem 4.2 are satisfied.

Theorem A.2 (Equilibrium with stochastic first-order oracle). Suppose that the sequence
(x1
t , . . . ,x

i−1
t ,xit, . . . ,x

m
t ), t = 1, . . . , T is generated by running Algorithm 1 for all players

simultaneously with input η > 0 and w = d 2k(δ
2+7σ2+6c)√

ε
e, given that the online function is

determined by (8). Suppose that Vw[T ] ≤ cT for some c > 0. Then there exists t∗ ≥ w such
that (9) holds true in expectation.

Proof. There exists a t∗ ≥ w such that

k∑
i=1

∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)
∥∥∥2 ≤ 1

T − w

k∑
i=1

T∑
t=w

∥∥∥Pgiη (xit;∇f it (xit)
∥∥∥2

≤ 1

T − w

k∑
i=1

Regiw(T ).

Thus, by taking expectation and using the fact that Vw[T ] ≤ cT , we obtain from Theorem 4.2
that

k∑
i=1

E
∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)

∥∥∥2 ≤ 1

T − w

k∑
i=1

2

((
T

w2

)(
δ2 + 7σ2

)
+

6

w2
Vw[T ]

)

=
2kT

(
δ2 + 7σ2 + 6c

)
(T − w)w2

.

Consequently, by setting T = w2 and w = d 2k(δ
2+7σ2+6c)√

ε
e we obtain

k∑
i=1

E
∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)

∥∥∥2 ≤ 2k
(
δ2 + 7σ2 + 6c

)
(w − 1)w

≤ ε,

as desired. �

A.2. The online traffic assignment problem. Referring to Bertsekas and Gallager (1992) and
Shakkottai and Srikant (2008) for an introduction to the topic, the key objective in traffic
assignment problems is the optimal allocation of traffic over a given network with variable
traffic inflows. To state this precisely, consider a directed multi-graph G = (V, E) with vertex
set V and edge set E . Embedded in this network is a set of origin-destination (O/D) pairs
(oi, di) ∈ V × V, i ∈ N = {1, 2, . . . , N}, each routing a (possibly random) quantity of traffic
from oi to di via a set of paths Pi in G. Writing Ki = ∆(Pi) for the simplex spanned by Pi, a
trafic allocation vector for the i-th O/D pair is defined to be a vector xi = (xi,pi)pi∈Pi

∈ Ki
with each xi,pi denoting the fraction of the traffic of the i-th O/D pair that is routed via pi.
Then, collectively, a traffic allocation profile is an ensemble x = (x1, . . . ,xN ) of such vectors
belonging to the product space K =

∏
iKi.

In this general context, the cost (delay, latency, etc.) of routing a certain amount of traffic
via a given path pi is a function `pi(x;λ) of the chosen allocation profile x ∈ K and the set
of traffic demands λ = (λ1, . . . , λN ) of each O/D pair.These demands are typically assumed
to follow a non-stationary probability distribution (e.g., accounting for diurnal variations in
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an urban traffic network), leading to the online traffic assignment problem (OnTAP) stated
below:

minimize `t(x) =
∑
i∈N

∑
pi∈Pi

xi,pi`pi(x;λt) + µ‖x‖1

subject to x ∈ K.
(OnTAP)

In the above formulation, the sparsity-inducing L1 term is intended to “robustify” solutions
by minimizing the overall number of paths employed. The cost functions `pi are sums of
positive polynomials (described below), so they are smooth over K but may otherwise be
non-convex. As such, (OnTAP) can be cast in the framework of (P) by taking g = δK+µ‖·‖1
with δK denoting the convex indicator of K.

Let us now detail the definition of the cost functions `pi for (OnTAP). For simplicity, we
will suppress the O/D index i ∈ N , i.e., we will treat the problem as a single-O/D one; this
doesn’t play a major role in the sequel and only serves to make the notation ligther.

To begin, given a traffic allocation vector x ∈ K and an inflow rate λ, the traffic load
carried by edge e ∈ E is defined to be the total traffic routed via the edge in question, i.e.,

ye ≡ ye(x;λ) = λ
∑
p:p3e

xp, (10)

and we write y = (ye)e∈E for the corresponding load profile on the network. Given all this,
the cost (delay, latency, etc.) experienced by an infinitesimal traffic element traversing edge
e is given by a non-decreasing continuous cost function `e : R+ → R+; more precisely, if
y ≡ y(x;λ) is the load profile induced by a traffic allocation profile x ∈ K and a traffic
demand λ, the incurred cost on edge e ∈ E is simply `e(ye). Hence, the associated cost for
path p ∈ P will be

`p(x;λ) ≡
∑
e∈p

`e(ye(x;λ)) =
∑
e∈p

`e

λ ∑
p′:p′3e

xp′

 . (11)

In urban traffic networks, the cost functions `e are typically non-decreasing positive polyno-
mials fitted to appropriate statistical data; a common choice is the so-called “quartic BPR”
model `e(ye) = ae + bey

4
e of the US Bureau of Public Roads (BPR), but this is beyond our

scope.

B. Regretfulness when w = 1

For completeness, we provide a simple example for when the "standard" stationarity
measure Eq. (3), obtained from the local regret when w = 1, fails. The bound O(T/w2)

established in (Hazan et al., 2017, Thm. 2.7) is proved via a similar example.
Suppose that g(x) = δ[−1,1](x) is the indicator function for the set [−1, 1], and that

ft(x) =

{
−x with probability 0.5,

x with probability 0.5.

Then

EReg1(T ) = E
T∑
t=1

∥∥Pgη (xt;∇ft(xt)
∥∥2 ≥ O(T ).
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C. Fundamental Properties

Throughout the analysis, we utilize fundamental properties of the prox operator for
L-smooth functions. The descent lemma (see e.g., (Beck, 2017, Lem. 5.7)) and the sufficient
decrease property of the prox-grad operator (cf. (Beck, 2017, Lem. 10.4)) are given as
follows.

Lemma C.1 (Descent lemma). Let f : Rn → (−∞,∞] be an L-smooth function (L ≥ 0) over
a convex set C ⊆ Rn. Then for any x,y ∈ C, f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L

2 ‖x− y‖2.

Lemma C.2 (Sufficient decrease property). Let h : Rn → R ∪ {∞} be a proper, convex, l.s.c
function, and f : Rn → (−∞,∞) be an L-smooth function (L ≥ 0) over domh. Then for
any x ∈

∫
domh and η ∈ (0, L/2) it holds for x+ = proxηh(x− η∇f(x)) that

h(x) + f(x)− h(x+)− f(x+) ≥ η
(

1− ηL

2

)∥∥∥∥1

η

(
x+ − x

)∥∥∥∥2 .
We also use a trivial, yet essential, property of the prox-grad mapping.

Lemma C.3. For any x,d1,d2 ∈ Rn and η > 0 it holds that∥∥Pgη (x;d1 + d2)
∥∥ ≤ ∥∥Pgη (x;d1)

∥∥+ ‖d2‖ .

Proof. By the triangle inequality and non-expensiveness of the prox operator (cf. (Beck,
2017, Theorem 6.42))∥∥Pgη (x;d1 + d2)

∥∥− ∥∥Pgη (x;d1)
∥∥ ≤ ∥∥Pgη (x;d1 + d2)− Pgη (x;d1)

∥∥
≤ 1

η
‖(x− η(d1 + d2))− (x− ηd1)‖ = ‖d2‖.

�

D. Proofs of Section 3

Proof of Theorem 3.1. Note that

St(x) =
1

w

t∑
i=t−w+1

fi(x) = St−1(x) +
1

w
(ft(x)− ft−w(x)).

Setting h1 = St−1, h2 = 1
w (ft − ft−w), applying Lemma C.3 and the triangle inequality

yields

‖P(xt;∇St(xt))‖ = ‖P(xt;∇(h1 + h2)(xt))‖

≤ ‖P(xt;∇St−1(xt))‖+
1

w
‖∇ft(xt)−∇ft−w(xt)‖ .

By the definition of the method, i.e. ‖P(xt;∇St−1(xt))‖ ≤ δ
w , we thus have that

‖P(xt;∇St(xt))‖ ≤
δ

w
+

1

w
‖∇ft(xt)−∇ft−w(xt)‖ , ∀t ∈ [T ],

and consequently, for any t ∈ [T ],

‖P(xt;∇St(xt))‖2 ≤
2δ2

w2
+

2

w2
‖∇ft(xt)−∇ft−w(xt)‖2 .
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Summing over t = 1, . . . , T , then results with

Regw(T ) =

T∑
t=1

‖P(xt;∇St(xt))‖2 ≤
2

w2

(
Tδ2 + Vw[T ]

)
.

�

To prove that Algorithm 1 executes O(w2) prox-grad calls, we require a sufficient decrease
property that is given next.

Lemma D.1 (Sufficient decrease property). Let t ∈ [T ], and let τt be the number of times
step 3 is executed at the t-th iteration. Then

St,w(xt) + g(xt)− St,w(xt+1)− g(xt+1) ≥ τt
(
η − η2L

2

)
δ2

w2
, ∀t ∈ [T ].

Proof. Denote the sequence generated in the inner loop at time t ∈ [T ] by

y0
t = xt, yk+1

t = arg min
z∈Rn

g(z) + 〈∇St(ykt ), z− ykt 〉+
1

2η
‖z− ykt ‖2, k = 0, 1, . . . , τt − 1,

and note that yτtt = xt+1. By the sufficient decrease property of the prox-grad operator (cf.
Lemma C.2), and the stopping criteria of the inner loop, we have that for all k = 0, 1, . . . , τt−1

St(y
k
t ) + g(ykt )− St(yk+1

t )− g(yk+1
t ) ≥

(
η − η2L

2

)∥∥P(ykt ;∇St(ykt ))
∥∥2 ≥ (η − η2L

2

)
δ2

w2
.

(12)
Summing (12) over k = 0, 1, . . . , τt − 1, then yields

St(xt) + g(xt)− St(xt+1)− g(xt+1) = St(y
0
t ) + g(y0

t )− St(y
τt
t )− g(yτtt )

≥ τt
(
η − η2L

2

)
δ2

w2

which completes our proof. �

We will now bound the number of prox-grad iterations executed by Algorithm 1.

Proof of Theorem 3.2. Recall that S0(x0) ≡ 0, and St(x) = 1
w (ft(x)− ft−w(x)) + St−1(x).

Thus,

ST (xT ) =

T∑
t=1

(St(xt)− St−1(xt−1))

=
1

w

T∑
t=1

(ft(xt)− ft−w(xt)) +

T∑
t=2

(St−1(xt)− St−1(xt−1))

=
1

w

T∑
t=T−w+1

ft(xt) +

T∑
t=2

(St−1(xt)− St−1(xt−1))

≤M +

T∑
t=2

(St−1(xt)− St−1(xt−1)) ,

where the last inequality follows from our blanket assumptions. Consequently, by Lemma
D.1, we have that

ST (xT ) + g(xT )− g(x1) ≤M +

T∑
t=2

(St−1(xt) + g(xt)− St−1(xt−1)− g(xt−1))
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≤M −
T−1∑
t=1

τt

(
η − η2L

2

)
δ2

w2

≤M − τ
(
η − η2L

2

)
δ2

w2
,

where the last inequality uses τ =
∑T−1
t=1 τt. On the other hand, by our blanket assumptions,

ST (xT ) =
1

w

T∑
i=T−w+1

fi(xi) ≥ −M.

By combining both sides we obtain that

−M ≤ g(x1)− g(xT ) +M − τ
(
η − η2L

2

)
δ2

w2
,

and the desired immediately follows from the nonnegativity of g:

τ ≤ g(x1)− g(xT ) + 2M(
η − η2L

2

)
δ2

w2

≤ 2w2(g(x1) + 2M)

(2− ηL) ηδ2
. �

We conclude with the implication of our guarantees to the stochastic offline setting.

Proof of Corollary 3.1. From the choice of t∗, Jensen’s inequality, and Theorem 3.1, we have
that

Et∗
(
‖∇f(xt∗)‖

2
)

=
1

T − w

T∑
t=w

‖E (∇ft(xt))‖2

=
1

T − w

T∑
t=w

∥∥∥∥∥E
(

1

w

t∑
i=t−w+1

∇fi(xt)

)∥∥∥∥∥
2

≤ 1

T − w

T∑
t=w

E

∥∥∥∥∥ 1

w

t∑
i=t−w+1

∇fi(xt)

∥∥∥∥∥
2


≤ 1

T − w
E (Regw(T ))

≤ 2

(T − w)w2

(
Tδ2 + Vw[T ]

)
.

Plugging the parameters’ values T = 2w, w = d
√

2(δ2+c)
ε e, and Vw[T ] = cT , we immediately

obtain that

E
(
‖∇f(xt∗)‖

2
)
≤ 2

(T − w)w2

(
δ2T + Vw[T ]

)
≤ 4

w2

(
δ2 + c

)
≤ ε.

Once again, by plugging the parameters’ values we obtain from (7) in Theorem 3.2 that

τ ≤ 2w2(g(x1) + 2M)

(2− ηL) ηδ2
∝ O(ε−1).

Since for each prox-grad update the algorithm computes w gradient samples (for each function
sampled in the time-window), the SFO complexity is

τw ∝ O(ε−3/2). �
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E. Proofs of Section 4

Before proceeding to the stochastic analysis, we make some notational conventions for the
sake of readability: St ≡ St,w, T (x;d) ≡ T f,gη (x;d), and P(x;d) ≡ Pgη (x;d). Additionally,
we set ykt = yτtt for all k ≥ τt; this means that ykt = yk+1

t if and only if k ≥ τt.

The forthcoming analysis of Algorithm 2 requires delicate treatment of what is known,
and what is not, at specific moments during the run. To avoid confusion, we state explicitly
what is included in the algorithm’s natural filtration at time t ≥ 1 and at each inner iteration
k ≥ 1, thus extending on our original description.

Definition E.1 (Filtration). For all t ≥ 1, the filtration Ft includes all gradient feedback up
to, but not including, the execution of step 2 at stage t. In particular, it includes ft, xt and
∇̃St−1(xt), but it does not include ∇̃ft(xt).

For all t ≥ 1 and all k ≥ 1, the filtration Ft,k includes all gradient feedback up to, but not
including, the execution of the k-th iteration of step 5(b) at time t. In particular, it contains
Ft, and includes ykt , G

k
t , and yk+1

t , but it does not include {∇̃fi(yk+1
t )}ti=t−w, G

k+1
t .

We will utilize two trivial technical corollaries of Definition 4.1 given next.

Corollary E.1. Let x ∈ Rn, then

E (‖Sσ(x;ω, h)−∇h(x)‖)2 ≤ E
(
‖Sσ(x;ω, h)−∇h(x)‖2

)
≤ σ2. (13)

Lemma E.1. Let x ∈ Rn and hi : Rn → R for any i = 1, 2, . . . , w. Then

E

∥∥∥∥∥ 1

w

w∑
i=1

Sσ(x;ω, hi)−
1

w

w∑
i=1

∇hi(x)

∥∥∥∥∥
2
 ≤ σ2.

Proof. Follows from Jensen’s inequality. �

The following technical lemma is of key importance in the analysis ahead.

Lemma E.2. Let t ∈ [T ] and k ≥ 2. It holds that

E
(
〈Gkt −∇St(ykt ),yk+1

t − ykt 〉|Ft,k−1
)
≥ −ησ

2

w2
.

Proof. Define the full gradient prox-grad by ŷkt = T gη (ykt ;∇St,w(ykt )), and note that

〈Gkt −∇St(ykt ),yk+1
t − ykt 〉 = 〈Gkt −∇St(ykt ),yk+1

t − ŷkt 〉+ 〈Gkt −∇St(ykt ), ŷkt − ykt 〉

≥ −‖Gkt −∇St(ykt )‖‖yk+1
t − ŷkt ‖+ 〈Gkt −∇St(ykt ), ŷkt − ykt 〉,

(14)

where the last inequality follows from Cauchy-Schwartz inequality. By the nonexpansivity of
the prox operator (Beck, 2017, Theorem 6.42) we have that

‖yk+1
t − ŷkt ‖ ≤ ‖ykt − ηGkt − ykt + η∇St(ykt )‖ = η‖Gkt −∇St(ykt )‖,

meaning that

− ‖Gkt −∇St(ykt )‖‖yk+1
t − ŷkt ‖ ≥ −η‖Gkt −∇St(ykt )‖2. (15)

Plugging (15) to (14) then implies that

〈Gkt −∇St(ykt ),yk+1
t − ykt 〉 ≥ −η‖Gkt −∇St(ykt )‖2 + 〈Gkt −∇St(ykt ), ŷkt − ykt 〉. (16)
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Noting that by Definition 4.1

E
(
〈Gkt −∇St(ykt ), ŷkt − ykt 〉|Ft,k−1

)
= 0,

we obtain, from taking expectation on (16) and using Lemma E.1, that

E
(
〈Gkt −∇St(ykt ),yk+1

t − ykt 〉|Ft,k−1
)
≥ −ησ

2

w2
. �

We can now embark on proving our claims stated in Section 4.

Proof of Theorem 4.1. Recall that y1
t = xt,y

τt
t = xt+1, and

yk+1
t = arg min

z∈Rn

g(z) + 〈Gkt , z− ykt 〉+
1

2η
‖z− ykt ‖2, k ∈ [τt − 1].

Denote hkt := St(y
k
t ) + g(ykt ). By combining the descent lemma (cf. Lemma C.1), the

definition of yk+1
t , and the stopping criteria of the inner loop, we have that for any k ∈ [τt−1]

(assuming that Ft is given),

hkt − hk+1
t ≥ 〈Gkt −∇St(ykt ),yk+1

t − ykt 〉+
1

2

(
η − η2L

) ∥∥P(ykt ;Gkt )
∥∥2

≥ 〈Gkt −∇St(ykt ),yk+1
t − ykt 〉+

1

2

(
η − η2L

) δ2
w2

.

Applying expectation to the latter, using the law of total expection (tower rule), and invoking
Lemma E.2 and relation (6), we obtain that for any k ∈ [τt − 1] it holds that

E
(
hkt − hk+1

t

)
≥ E

(
〈Gkt −∇St(ykt ),yk+1

t − ykt 〉
)

+
1

2

(
η − η2L

) δ2
w2

≥ 2

w2

(
η (1− ηL) δ2 − 2σ2

)
> 0.

Set α := 2
(
η (1− ηL) δ2 − 2σ2

)
/w2 > 0. From the former, by using the law of total

expectation, for any K ≥ 1 we have that

h1t +M ≥ E
(
h1t − hK+1

t

)
= E

(
K∑
k=1

(hkt − hk+1
t )

)

=

K∑
k=1

E
(
hkt − hk+1

t

)
=

K∑
k=1

(
E
(
hkt − hk+1

t |τt ≥ k + 1
)
P(τt ≥ k + 1) + 0 · P(τt ≤ k)

)
≥ α

K∑
k=1

P(τt > k)

≥ α
K∑
k=1

P(τt > K) = αKP(τt > K).

Consequently, we must have that τt is almost surely finite, which in turn implies that τ must
be almost surely finite as it is the finite sum of almost surely finite variables. �

Let us now establish the local regret bound stated in Theorem 4.2.
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Proof of Theorem 4.2. Recall that

Regw(T ) =

T∑
t=1

‖P(xt;∇St(xt))‖2 =

T∑
t=1

1

η2
‖xt − T (xt;∇St(xt))‖2 . (17)

By simple algebra,

‖xt − T (xt;∇St(xt))‖2 ≤ 2
∥∥∥xt − T (xt; ∇̃St(xt))

∥∥∥2 + 2
∥∥∥T (xt; ∇̃St(xt))− T (xt;∇St(xt))

∥∥∥2 .
(18)

Using the nonexpansivity of the prox operator (Beck, 2017, Theorem 6.42) we have that∥∥∥T (xt; ∇̃St(xt))− T (xt;∇St(xt))
∥∥∥2 ≤ ∥∥∥xt − η∇̃St(xt)− xt + η∇St(xt)

∥∥∥2
= η2

∥∥∥∇̃St(xt)−∇St(xt)∥∥∥2 .
Subsequently, using the law of total expectation and Lemma E.1, we obtain the relation

E
(∥∥∥T (xt; ∇̃St(xt))− T (xt;∇St(xt))

∥∥∥2) = E
[
E
(∥∥∥T (xt; ∇̃St(xt))− T (xt;∇St(xt))

∥∥∥2 |Ft)]
≤ η2E

[
E
(∥∥∥∇̃St(xt)−∇St(xt)∥∥∥2 |Ft)] ≤ η2σ2

w2
.

Then, plugging the latter to the expected value of (18) yields

E
(
‖xt − T (xt;∇St(xt))‖2

)
≤ 2η2E

(∥∥∥P(xt; ∇̃St(xt))
∥∥∥2)+

2η2σ2

w2
.

Thus,

E (Regw(T )) ≤ 2

T∑
t=1

[
E
(∥∥∥P(xt; ∇̃St,w(xt))

∥∥∥2)+
σ2

w2

]
. (19)

Setting G1 = ∇̃St−1(xt), G2 = 1
w (∇̃ft(xt)− ∇̃ft−w(xt)), and applying Lemma C.3 yields∥∥∥P(xt; ∇̃St(xt))

∥∥∥ = ‖P(xt;G1 +G2)‖ ≤
∥∥∥P(xt; ∇̃St−1(xt))

∥∥∥+
1

w

∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥

≤ δ

w
+

1

w

∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥ , (20)

where the last inequality follows from the termination rule of the inner loop. Therefore,∥∥∥P(xt; ∇̃St(xt))
∥∥∥2 ≤ 2

w2

(
δ2 +

∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥2) .

Using the triangle inequality and the relation (a+ b+ c)2 ≤ 3(a2 + b2 + c2), yields that∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥2 ≤

3
∥∥∥∇̃ft(xt)−∇ft(xt)∥∥∥2 + 3 ‖∇ft(xt)−∇ft−w(xt)‖2 + 3

∥∥∥∇ft−w(xt)− ∇̃ft−w(xt)
∥∥∥2 .

Applying expectation, from the law of total expectation together with Definition 4.1, we
obtain that

E
[∥∥∥∇̃ft(xt)−∇ft(xt)∥∥∥2] = E

[
E
(∥∥∥∇̃ft(xt)−∇ft(xt)∥∥∥2 |Ft)] ≤ σ2

w2
,

E
[∥∥∥∇ft−w(xt)− ∇̃ft−w(xt)

∥∥∥2] = E
[
E
(∥∥∥∇ft−w(xt)− ∇̃ft−w(xt)

∥∥∥2 |Ft−w,xt)] ≤ σ2

w2
.
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Thus, E
(∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)

∥∥∥2) ≤ 6σ2

w2
+ 3E

(
‖∇ft(xt)−∇ft−w(xt)‖2

)
, and conse-

quently

E
(∥∥∥P(xt; ∇̃St(xt))

∥∥∥2) ≤ 2

w2

(
δ2 + E

(∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥2))

≤ 2

w2

(
δ2 +

6σ2

w2
+ 3E

(
‖∇ft(xt)−∇ft−w(xt)‖2

))
.

Summing over t ∈ [T ] and plugging Vw[T ] defined in (5) then yields

T∑
t=1

E
(∥∥∥P(xt; ∇̃St(xt))

∥∥∥2) ≤ 2

(
δ2 +

6σ2

w2

)(
T

w2

)
+

6

w2
Vw[T ].

Finally, plugging the latter into (19), and recalling that w ≥ 1, results with the desired
bound. �

Finally, we prove the bound on the number of SFO calls, as stated by Theorem 4.3.

Proof of Theorem 4.3. Denote hkt := St(y
k
t ) + g(ykt ). By combining the descent lemma (cf.

Lemma C.1), the definition of the sequence {ykt }k≥1, Young’s inequality, and the stopping
criteria of the inner loop, we have that for any K ≥ 1 (assuming that Ft is given)

h1t − hK+1
t =

K∑
k=1

(hkt − hk+1
t ) ≥

min{K,τt}∑
k=1

(
〈Gkt −∇St(ykt ),yk+1

t − ykt 〉+
1− ηL

2η

∥∥yk+1
t − ykt

∥∥2)

≥ 1

2

min{K,τt}∑
k=1

(
−
∥∥Gkt −∇St(ykt )

∥∥2 − ∥∥yk+1
t − ykt

∥∥2 +
1− ηL
η

∥∥yk+1
t − ykt

∥∥2) .
Hence, by Assumption 1 and the stopping condition of the inner loop, we obtain

h1t − hK+1
t ≥ 1

2w2

min{K,τt}∑
k=1

(
−σ2 + (1− η(L+ 1))ηδ2

)
=

(1− η(L+ 1))ηδ2 − σ2

2w2
min{K, τt} > 0.

Recall that S0,w(x0) ≡ 0, and St(x) = 1
w (ft(x)− ft−w(x)) + St−1(x). Using the previous

derivations for t− 1 (setting K = τt−1 and noting that hτt−1+1
t−1 = h

τt−1

t−1 ), we have that

St−1(xt) + g(xt)− St−1(xt−1)− g(xt−1) = h
τt−1

t−1 − h1t−1 ≤ −τt−1
(1− η(L+ 1))ηδ2 − σ2

2w2
.

(21)
Thus, since

ST (xT ) =

T∑
t=1

(St(xt)− St−1(xt−1)) =

T∑
t=1

(
1

w
(ft(xt)− ft−w(xt)) + St−1(xt)− St−1(xt−1)

)

=
1

w

T∑
t=T−w+1

ft(xt) +

T∑
t=2

(St−1(xt)− St−1(xt−1)) ,

we have from our blanket assumptions and relation (21), that

ST (xT ) ≤ g(x1)− g(xT ) +M − τ (1− η(L+ 1))ηδ2 − σ2

2w2
.
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On the other hand, again by our blanket assumptions, ST (xT ) = 1
w

∑T
i=T−w+1 fi(xi) ≥

−M. By combining both sides, we obtain that

−M ≤ g(x1)− g(xT ) +M − τ (1− η(L+ 1))ηδ2 − σ2

2w2
,

and the bound on τ immediately follows due to the nonnegativity of g. Finally, the desired
bound on the SFO oracle calls follows from the fact that the inner loop makes O(w) SFO
calls per loop. �

E.1. Implications to Offline Stochastic Optimization. Next we establish our derivations in
the offline scenario described in Section 4.2.

Proof of Theorem 4.4. Note that ft ≡ f for any t ∈ [T ] implies that ∇St,w(x) ≡ ∇f(x).
From Theorem 4.2 and the choice of t∗ we have that

E
(
‖P(xt∗ ;∇f(xt∗))‖

2
)

=
1

T − w
E

(
T∑
t=w

‖P(xt;∇f(xt))‖2
)

≤ 1

T − w
E (Regw(T ))

≤ 2

(T − w)w2

((
δ2 + 7σ2

)
T + 6Vw[T ]

)
.

�

Proof of Corollary 4.1. From Theorem 4.4 we immediately obtain that
2

(T − w)w2

((
δ2 + 7σ2

)
T + 6Vw[T ]

)
=

4w

w3

(
δ2 + 7σ2 + c

)
≤ ε.

The bound O(Mσε−3/2) is obtained by plugging the assumed values of w, T , and δ2, to (7)
in Theorem 4.3:

wτ ≤ 2ηw3(g(x1) + 3M)

(1− η(L+ 1))δ2 − ησ2
=

2w3(g(x1) + 3M)

σ2
∝ O(Mσε−3/2),

where we used the fact that w is O(σ/
√
ε). �
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