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Monitoring the edges of a graph using distances * † ‡

We introduce a new graph-theoretic concept in the area of network monitoring. A set M of vertices of a graph G is a distance-edge-monitoring set if for every edge e of G, there is a vertex x of M and a vertex y of G such that e belongs to all shortest paths between x and y. We denote by dem(G) the smallest size of such a set in G. The vertices of M represent distance probes in a network modeled by G; when the edge e fails, the distance from x to y increases, and thus we are able to detect the failure. It turns out that not only we can detect it, but we can even correctly locate the failing edge.

In this paper, we initiate the study of this new concept. We show that for a nontrivial connected graph G of order n, 1 ≤ dem(G) ≤ n -1 with dem(G) = 1 if and only if G is a tree, and dem(G) = n -1 if and only if it is a complete graph. We compute the exact value of dem for grids, hypercubes, and complete bipartite graphs.

Then, we relate dem to other standard graph parameters. We show that dem(G) is lowerbounded by the arboricity of the graph, and upper-bounded by its vertex cover number. It is also upper-bounded by twice its feedback edge set number. Moreover, we characterize connected graphs G with dem(G) = 2.

Then, we show that determining dem(G) for an input graph G is an NP-complete problem, even for apex graphs. There exists a polynomial-time logarithmic-factor approximation algorithm, however it is NP-hard to compute an asymptotically better approximation, even for bipartite graphs of small diameter and for bipartite subcubic graphs. For such instances, the problem is also unlikey to be xed parameter tractable when parameterized by the solution size.

Introduction

The aim of this paper is to introduce a new concept of network monitoring using distance probes, called distance-edge-monitoring. Our networks are naturally modeled by nite undirected simple connected graphs, whose vertices represent computers and whose edges represent connections between them. We wish to be able to monitor the network in the sense that when a connection (an edge) fails, we can detect this failure. We will select a (hopefully) small set of vertices of the network, that will be called probes. At any given moment, a probe of the network can measure its graph distance to any other vertex of the network. Our goal is that, whenever some edge of the network fails, one of the measured distances changes, and thus the probes are able to detect the failure of any edge.

Probes that measure distances in graphs are present in real-life networks, for instance this is useful in the fundamental task of routing [START_REF] Dall'asta | Exploring networks with traceroute-like probes: Theory and simulations[END_REF][START_REF] Govindan | Heuristics for Internet map discovery[END_REF]. They are also frequently used for problems concerning network verication [START_REF] Bampas | Network verication via routing table queries[END_REF][START_REF] Beerliova | Network discovery and verication[END_REF][START_REF] Bilò | Discovery of network properties with all-shortest-paths queries[END_REF].

We will now proceed with the formal denition of our main concept. In this paper, by graphs we refer to connected simple graphs (without multiple edges and loops). A graph with loops or multiple edges is called a multigraph.

We denote by d G (x, y) the distance between two vertices x and y in a graph G. When there is no path connecting x and y in G, we let d G (x, y) = ∞. For an edge e of G, we denote by G -e the graph obtained by deleting e from G.

Denition 1. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with x a vertex of M and y a vertex of V (G) such that d G (x, y) = d G-e (x, y). In other words, e belongs to all shortest paths between x and y in G.

For a vertex x, let M (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e). If e ∈ M (x), we say that e is monitored by x.

A set M of vertices of a graph G is distance-edge-monitoring if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. Equivalently, x∈M M (x) = E(G).

We note dem(G) the smallest size of a distance-edge-monitoring set of G.

Note that V (G) is always a distance-edge-monitoring set of G, so dem(G) is always well-dened. Consider a graph G modeling a network, and a set M of vertices of G, on which we place probes that are able to measure their distances to all the other vertices. If M is distance-edge-monitoring, if a failure occurs on any edge of the network (in the sense that the communication between its two endpoints is broken), then this failure is detected by the probes.

In fact, it turns out that not only the probes can detect a failing edge, but they can also precisely locate it (the proof of the following is delayed to Section 2). Proposition 2. Let M be a distance-edge-monitoring set of a graph G. Then, for any two distinct edges e and e in G, we have P (M, e) = P (M, e ).

Thus, assume that we have placed probes on a distance-edge-monitoring set M of a network G and initially computed all the sets P (M, e). In the case a unique edge of the network has failed, Proposition 2 shows that by measuring the set of pairs (x, y) with x ∈ M and y ∈ V (G) whose distance has changed, we know exactly which is the edge that has failed.

We dene the decision and optimization problem associated to distance-edge-monitoring sets.

Distance-Edge-Monitoring Set

Instance: A graph G, an integer k.

Question: Do we have dem(G) ≤ k?

Min Distance-Edge-Monitoring Set Instance: A graph G. Task: Build a smallest possible distance-edge-monitoring set of G.

Related notions. A weaker model is studied in [START_REF] Bampas | Network verication via routing table queries[END_REF][START_REF] Beerliova | Network discovery and verication[END_REF] as a network discovery problem, where we seek a set S of vertices such that for each edge e, there exists a vertex x of S and a vertex y of G such that e belongs to some shortest path from x to y.

A dierent (also weaker) model is the Link Monitoring problem studied in [START_REF] Bejerano | Robust monitoring of link delays and faults in IP networks[END_REF], in which one seeks to monitor the edges of a graph network by selecting vertices to act as probes. To each probe is assigned a routing tree (a DFS tree spanning the whole graph), and it is essentially required that each edge of the graph belongs to one of the trees.

Distance-edge-monitoring sets are also related to resolving sets and edge-resolving sets, that model sets of sensors that can measure the distance to all other vertices in a graph. A resolving set is a set R of vertices such that for any two distinct vertices x and y in G, there is a vertex r in R such that d G (r, x) = d G (r, y). The smallest size of a resolving set in G is the metric dimension of G [START_REF] Harary | On the metric dimension of a graph[END_REF][START_REF] Slater | Leaves of trees[END_REF]. If instead, the set R distinguishes the edges of G (that is, for any pair e, e of edges of G, there is a vertex r ∈ R with d G (x, e) = d G (x, e ), where for e = uv, d G (x, e) = min{d G (x, u), d G (x, v)}), we have an edge-resolving set [START_REF] Kelenc | Uniquely identifying the edges of a graph: The edge metric dimension[END_REF]. A set that distinguishes all vertices and edges is a mixed resolving set [START_REF] Kelenc | Mixed metric dimension of graphs[END_REF]. Note that there is no relation, in general, between the (edge-)metric dimension of G, and dem(G), as shown by the examples of trees and grids: trees can have arbitrarily large metric dimension and edge-metric dimension [START_REF] Kelenc | Uniquely identifying the edges of a graph: The edge metric dimension[END_REF], but when G is a tree dem(G) = 1 (Theorem 9). Conversely, dem(G) can be arbitrarily large for grids (Theorem 10), while their edge-metric dimension and metric dimension is 2 [START_REF] Kelenc | Uniquely identifying the edges of a graph: The edge metric dimension[END_REF].

Another related concept is the one of strong resolving sets [START_REF] Oellermann | The strong metric dimension of graphs and digraphs[END_REF][START_REF] Seb® | On metric generators of graphs[END_REF]: a set R of vertices is strongly resolving if for any pair x, y of vertices, there exists a vertex z of R such that either x is on a shortest path from z to y, or y is on a shortest path from z to x. It is related to distance-edge-monitoring sets in the following sense. Given a distance-edge-monitoring set M , for every pair x, y of adjacent vertices, there is a vertex z of M such that either x is on every shortest path from z to y, or y is on every shortest path from z to x.

The concept of an (strong) edge-geodetic set is also related to ours. A set S of vertices is an edge-geodetic set if for every edge e of G, there are two vertices x, y of S such that e is on some shortest path from x to y. It is a strong edge-geodetic set if to every pair x, y of S, we can assign a shortest x -y path to {x, y} such that every edge of G belongs to one of these |S| 2 assigned shortest paths [START_REF] Manuel | Strong edge geodetic problem in networks[END_REF].

A model related (only by name) is the one of edge monitoring sets [START_REF] Baste | On the parameterized complexity of the Edge Monitoring problem[END_REF]: a set S is edge monitoring if for every edge xy of G, e belongs to a triangle xyz with z ∈ S. But this is very far from our denition.

Our results. We rst derive a number of basic results about distance-edge-monitoring sets in Section 2 (where we also give some useful denitions).

In Section 3, we study dem for some basic graph families (like trees and grids) and relate this parameter to other standard graph parameters such as arboricity arb, vertex cover number vc and feedback edge set number fes. We show that dem(G) = 1 if and only if G is a tree. We show that for any graph G of order n, dem(G) ≥ arb(G). Moreover, dem(G) ≤ vc(G) ≤ n -1 (with equality if and only if G is complete). We show that for some families of graphs G, dem(G) = vc(G), for instance this is the case for complete bipartite graphs and hypercubes. Then we show that dem(G) ≤ 2 fes(G) -2 when fes(G) ≥ 3 (when fes(G) ≤ 2, dem(G) ≤ fes(G) + 1). 1In Section 4, we characterize connected graphs G with dem(G) = 2.

In Section 5, we show that Distance-Edge-Monitoring Set is NP-complete, even for apex graphs (graphs obtained from a planar graph by adding an extra vertex). Then, we show that Min Distance-Edge-Monitoring Set can be approximated in polynomial time within a factor of ln(|E(G)| + 1) by a reduction to the set cover problem. Finally, we show that no essentially better ratio can be obtained (unless P=NP), even for graphs that are of diameter 4, bipartite and of diameter 6, or bipartite and of maximum degree 3. For the same restrictions, the problem is unlikely to be xed parameter tractable when parameterized by the solution size. These hardness results are obtained by reductions from the Set Cover problem.

We conclude our paper in Section 6.

Preliminaries

We now give some useful lemmas about basic properties of distance-edge-monitoring sets. We start with the proof of Proposition 2.

Proof of Proposition 2. Suppose by contradiction that there are two distinct edges e and e with P (M, e) = P (M, e ). Since by denition, P (M, e) = ∅, we have (x, v) ∈ P (M, e) (and thus (x, v) ∈ P (M, e )), where x ∈ M and v ∈ V (G). Thus, all shortest paths between x and v contain both e and e . Assume that on these shortest paths, e is closer to x than e , and let w be the endpoint of e that is closest to v. Then, we have (x, w) ∈ P (M, e) but (x, w) / ∈ P (M, e ): a contradiction.

An edge e in a graph G is a bridge if G -e has more connected components than G. We will now show that bridges are very easy to monitor. Lemma 3. Let G be a connected graph and let e be a bridge of G. For any vertex x of G, we have e ∈ M (x).

Proof. Assume that e = uv. Since e is a bridge, we have

d G (x, u) = d G (x, v). If d G (x, u) < d G (x, v), then (x, v) ∈ P ({x}, e)
. Otherwise, we have (x, u) ∈ P ({x}, e). In both cases, e ∈ M (x).

We next introduce the following terminology from [START_REF] Epstein | The (weighted) metric dimension of graphs: hard and easy cases[END_REF]. In a graph, a vertex is a core vertex if it has degree at least 3. A path with all internal vertices of degree 2 and whose end-vertices are core vertices is called a core path (note that we allow the two end-vertices to be equal, but all other vertices must be distinct). A core path that is a cycle (that is, both end-vertices are equal) is a core cycle. The base graph of a graph G is the graph obtained from G by iteratively removing vertices of degree 1 (thus, the base graph of a forest is the empty graph).

Lemma 3 implies the following.

Observation 4. Let G be a graph, and G be its base graph. Then, dem(G) = dem(G ).

Given a vertex x of a graph G and an integer i, we let L i (x) denote the set of vertices at distance i of x in G. Lemma 5. Let x be a vertex of a connected graph G. Then, an edge uv belongs to M (x) if and only if u ∈ L i (x) and v is the only neighbour of u in L i-1 (x).

Proof. Let uv ∈ M (x). Then, there exists a vertex y such that all shortest paths from y to x go through uv. Thus, one of u and v (say, u) is in a set L i (x) and the other (v) is in a set L i-1 (x), for some positive integer i. Moreover, v must be the only neighbour of u in L i-1 (x), since otherwise there would be a shortest path from y to x going through u but avoiding uv.

Conversely, if u is a vertex in L i (x) with a unique neighbour v in L i-1 (x), then the edge uv belongs to M (x) since all shortest paths from u to x use it.

We obtain some immediate consequences of Lemma 5. Lemma 6. For a vertex x of a graph G, the set of edges M (x) induces a forest.

Proof. Let G x be the subgraph of G induced by the edges in M (x). By Lemma 5, an edge e belongs to M (x) if and only if e = uv, u ∈ L i (x) and v is the only neighbour of u in L i-1 (x). In this case, we let v be the parent of u. Each vertex in G x has at most one parent in G x , and each edge of G x is an edge between a vertex and its parent. Thus, G x is a forest. Lemma 7. Let G be a graph and x a vertex of G. Then, for any edge e incident with x, we have e ∈ M (x).

Proof. For every vertex y of L 1 (x) (that is, every neighbour of x), x is the unique neighbour of y in L 0 (x) = {x}. Thus, the claim follows from Lemma 5.

We next give a characterization for the cases where no other edge (other than those incident with x) belongs to M (x).

Lemma 8. Let G be a connected graph with a vertex x of G. The two following conditions are equivalent.

(i) M (x) is the set of edges incident with x.

(ii) For every vertex y of G with x = y, there exist two shortest paths from x to y sharing at most one edge (the one incident with x).

Proof. If (ii) holds, then for any i > 1, every vertex in level L i (x) has at least two neighbours in level L i-1 (x), so (i) is implied by Lemma 5. Conversely, if (i) holds, we can prove (ii) by induction on d G (x, y). The claim is true for all vertices in L 1 (x). Assume it is true for vertices at levels L 1 (x), . . . , L i (x) and let y be a vertex in L i+1 (x). By Lemma 5, y has at least two distinct neighbours, u and v, in L i (x). Consider two shortest paths P u from u to x and P v from v to x. If (ii) is satised, we are done. Otherwise, let st be the edge common to both P u and P v that is closest to u and v (with s ∈ L j and t ∈ L j-1 for some j > 1). By the induction hypothesis, there are two shortest paths P 1 and P 2 from s to x that share at most an edge incident with x. Using these two shortest paths, we can easily combine them with P u and P v to obtain the two shortest paths from y to x, as required.

Basic graph families and bounds

In this section, we study dem for standard graph classes, and its relation with other standard graph parameters.

Trees and grids

Theorem 9. Let G be a connected graph with at least one edge. We have dem(G) = 1 if and only if G is a tree.

Proof. In a tree, every edge is a bridge. Thus, by Lemma 3, if G is a tree, any vertex x of G is a distance-edge-monitoring set and we have dem(G) ≤ 1 (and of course as long as there is an edge in G, dem(G) ≥ 1).

For the converse, suppose that dem(G) = 1. Then, clearly, G must have at least one edge. Moreover, since all edges of G must belong to M (x), by Lemma 6, G must be a forest. Since G is connected, G is a tree. Proof. Without loss of generality we assume that max{a, b} = a, and G a,b has a rows and b columns.

Clearly, for any vertex x, by Lemma 5, M (x) consists of the edges that are in the same row and column as x. This shows that any distance-edge-monitoring set M must contain a vertex of each row and column, and dem(G a,b ) ≥ a.

To see that dem(G a,b ) ≤ a, we can choose any set M of a vertices containing exactly one vertex of every row and at least one vertex of every column of G a,b : M is a distance-edge-monitoring set of G a,b of size a.

Connection to arboricity and clique number

The arboricity arb(G) of a graph G is the smallest number of sets into which E(G) can be partitioned and such that each set induces a forest. The clique number ω(G) of G is the size of a largest clique in G.

Theorem 11. For any graph G of order n and size m, we have dem(G) ≥ arb(G), and thus

dem(G) ≥ m n-1 and dem(G) ≥ ω(G)
2 . Proof. By Lemma 6, for each vertex x of a distance-edge-monitoring set M , M (x) induces a forest. Thus, to each edge e of G we can assign one of the forests M (x) such that e ∈ M (x). This is a partition of G into |M | forests, and thus arb(G) ≤ dem(G).

Moreover, it is not dicult to see that arb(G) ≥ m n-1 (since a forest has at most n -1 edges) and arb(G) ≥ ω(G)

2

(since a clique of size k = ω(G) has k(k -1)/2 edges but a forest that is a subgraph of G can contain at most k -1 of these edges).

Connection to vertex covers and consequences for hypercubes and complete bipartite graphs

We next see that distance-edge-monitoring sets are relaxations of vertex covers. A set C of vertices is a vertex cover of G if every edge of G has one of its endpoints in C. The smallest size of a vertex cover of G is denoted by vc(G).

Theorem 12. In any graph G of order n, any vertex cover of G is a distance-edge-monitoring set, and thus dem(G) ≤ vc(G) ≤ n -1. Moreover, we have dem(G) = n -1 if and only if G is the complete graph of order n.

Proof. Let C be a vertex cover of G. By Lemma 7, for every edge e, there is a vertex in x with e ∈ M (x), thus C is distance-edge-monitoring. Moreover, any graph G of order n has a vertex cover of size n -1: for any vertex x, the set

V (G) \ {x} is a vertex cover of G. Finally, suppose thet dem(G) = n -1: then also vc(G) = n -1. If G is not connected, we have vc(G) ≤ n -2 (starting with V (G)
and removing any vertex from each connected component of G yields a vertex cover), thus G is connected. Suppose by contradiction that G is not a complete graph. Then, we have three vertices x, y and z in G such that xy and yz are edges of G, but xz is not. Then, V (G) \ {x, z} is a vertex cover of G, a contradiction.

This completes the proof.

In some graphs, any distance-edge-monitoring set is a vertex cover.

Observation 13. If, for every vertex x of a graph G, M (x) consists exactly of the sets of edges incident with x, then a set M is a distance-edge-monitoring set of G if and only if it is a vertex cover of G.

Note that Observation 13 does not provide a characterization of graphs with dem(G) = vc(G). For example, as seen in Theorem 10, for the grid G a,2 , we have dem(G a,2 ) = vc(G a,2 ) = a, but for any vertex x of G a,2 , M (x) consists of the whole row and column of G a,2 .

Let K a,b be the complete bipartite graph with parts of sizes a and b, and let H d denote the hypercube of dimension d. Both K a,b and H d satisfy Condition (ii) of Lemma 8. In a connected bipartite graph, the smallest vertex cover consists of the smallest of the two parts. Thus, by Observation 13, we obtain the following. 

Connection to feedback edge set number

A feedback edge set of a graph G is a set of edges such that removing them from G leaves a forest. The smallest size of a feedback edge set of G is denoted by fes(G) (it is sometimes called the cyclomatic number of G).

The following folklore lemma uses the terminology dened in Section 2 (a proof can be found for example in Section 5.3.1 of [START_REF] Epstein | The (weighted) metric dimension of graphs: hard and easy cases[END_REF] or Section 4.1 of [START_REF] Kellerhals | Parameterized complexity of geodetic set[END_REF]). Lemma 15 ([11,[START_REF] Kellerhals | Parameterized complexity of geodetic set[END_REF]). Let G be a graph with fes(G) = k ≥ 2. The base graph of G has at most 2k -2 core vertices, that are joined by at most 3k -3 edge-disjoint core paths.

In other words, Lemma 15 says that the base graph of a graph G with fes(G) = k ≥ 2 can be obtained from a multigraph H of order at most 2k -2 and size 3k -3 by subdividing its edges an arbitrary number of times.

Theorem 9 states that for any tree G (that is, a graph with feedback edge set number 0), we have dem(G) ≤ fes(G) + 1. We now show the same bound for graphs G with fes(G) ≤ 2.

Theorem 16. If fes(G) ≤ 2, then dem(G) ≤ fes(G) + 1. Moreover, if fes(G) ≤ 1, then equality holds.
Proof. Let k = fes(G). If k = 0, G is a tree and we are done by Lemma 6.

Assume next that k = 1, that is, G is a connected unicyclic graph. Since G is not a tree, we have dem(G) ≥ 2.

Let C be the unique cycle of G and let x be a vertex of C. If C has even length, M (x) ∩ E(C) consists of all edges of C except the two that are incident to the antipodal vertex of x in C. Thus, for any two non-adjacent vertices x and y of C, (M (x) ∪ M (y)) ∩ E(C) = E(C). By Lemma 3, all other edges of G are monitored and thus {x, y} is distance-edge-monitoring.

If C has odd length, M (x)∩E(C) consists of all edges of C except the one that connects the two vertices that are farthest from x. Thus, for any two vertices x and y of C, (M (x) ∪ M (y)) ∩ E(C) = E(C) and again {x, y} is distance-edge-monitoring.

Assume nally that k = 2 and let G b be the base graph of G. By Lemma 15, G b contains at most two core vertices joined by at most three core paths. By Lemma 3, any non-empty distanceedge-monitoring set of G b is also one of G, since all edges of G not present in G b are bridges.

If one of the core paths of G b is a core cycle, then in fact G b must have two core cycles, with either one or two core vertices. Then, select one vertex from each core cycle that is farthest from the core vertex on this cycle. One can check that these two vertices form a distance-edge-monitoring set.

Otherwise, G b consists of two core vertices x, y joined by three parallel core paths. If x, y are not adjacent, then {x, y} forms a distance-edge-monitoring set of G b . Otherwise, the edge xy is one of the three core paths. Then, one may select x and a middle vertices of each of the two core paths of length at least 2. This forms a distance-edge-monitoring set and completes the proof.

We will now give a weaker (but similar) bound for any value of fes(G). This improves on our previous bound from [START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF]. Theorem 17. Let G be a graph with

fes(G) = k. If k ≥ 3, then dem(G) ≤ 2k -2.
Proof. Let G b be the base graph of G. By Lemma 15, G b contains at most 2k -2 core vertices, that are joined by at most 3k -3 core paths. By Lemma 3, any non-empty distance-edge-monitoring set of G b is also one of G, since all edges of G not present in G b are bridges. Thus, it is sucient to construct a distance-edge-monitoring set M of G b of size at most 2k -2.

A rst candidate would be to select the set C of all core vertices of G b . However, this might not be a distance-edge-monitoring set, indeed for any odd-length core cycle of G b , its middle edge is not monitored. Similarly, if G b contains two distinct core vertices c 1 , c 2 that are joined by a core path P of odd length at least 3 and by another core path of length 1 (an edge), then the middle edge of P is not monitored. (Note that every other edge e is monitored, indeed there is one endpoint x of e such that the unique shortest path from x to its closest core vertex goes through e.) We call these core paths, problematic core paths. Let P be the set of problematic core paths. In what follows, we will start from C as a solution set and adjust it to handle problematic core paths.

To this end, we build a subgraph G b of G b , by iteratively selecting a new core path P of P, and by removing the inner-vertices and edges of P from G b , unless we decrease the number of core vertices of the graph by more than 1. When there is no such candidate core path left in P, we stop the process and obtain the graph G b . Let p be the number of core paths of P that we have removed from G b in this process, and let k = fes(G b ).

First, we show that k = k -p. First, to see that k ≥ k -p, we show that k ≤ k + p. Observe that one can obtain a feedback edge set of G b from one of G b by additionally selecting one edge of each of the p core paths that were deleted from G b to obtain G b , which shows that k ≤ k + p, as claimed. Second, to see that k ≤ k -p, consider any feedback edge set F of G b , and note that it necessarily contains one edge of each core cycle of G b . Moreover, for every pair c 1 , c 2 of distinct core vertices of G b joined by p(c 1 , c 2 ) ≥ 2 core paths, it contains an edge of all of them, except possibly one. In fact we may assume that F is chosen so that it contains an edge of all of them that have length at least 2. Thus, every problematic core path of G b has an edge in F . Removing these p edges from F , we obtain the desired feedback edge set of G b of size k -p.

Let C be the set of core vertices of G b . Since at each step of the procedure used for building G b , we decrease the number of core vertices by at most 1, G b has at least |C| -p core vertices. Thus, since k = k -p and applying Lemma 15 to G b , we have:

|C| ≤ |C | + p ≤ 2k -2 + p = 2(k -p) -2 + p = 2k -p -2
We now build our distance-edge-monitoring set M as follows. First, we let M = C. Moreover, for each probematic core path P that was deleted to obtain G b , we add one arbitrary inner-vertex of P to M . At this point, M monitors all edges, except those of the problematic paths of G b that were not deleted when constructing G b . Observe that in G b , each such core path P joins two distinct adjacent core vertices c 1 , c 2 of G b , both having degree exactly 3 in G b . (Moreover, since k ≥ 3, c 1 and c 2 are joined only by two core paths in G b .) We select an arbitrary core vertex among c 1 and c 2 (say c 1 ), remove it from M , and replace it with the neighbour of c 1 on P . We do this for every such remaining problematic core path. Again, since k ≥ 3, now every problematic core path conatains a vertex of M .

It is clear that M has size at most 2k -2. We now show that M is distance-edge-monitoring. To do so, consider an edge e of G b , which lies on some core path P . If P is not a problematic path or e is not the middle edge of P , then similarly as for the set C, there is an endpoint x of e whose unique shortest path to one of the core vertices c of P (or the neighbour of c, if c was removed from M ) goes through e, and so e is monitored by c or its neighbour. For the remainder, assume that P is problematic and that e is the middle edge of P . If P was among the p paths from which we added an extra vertex x to M , then x monitors e. Otherwise, we have removed one of the core vertices of P , and replaced it with its neighbour on P . Then, this neighbour monitors e. This completes the proof.

We do not believe that the bound of Theorem 

Graphs G with dem(G) = 2

In this section, we characterize connected graphs G with dem(G) = 2.

For two vertices u, v of a graph G, we denote by B i,j the set of vertices at distance i of u and distance j of v in G.

Observation 18. Let G be a graph, and let u, v be two vertices in G. Let B i,j be the set of vertices at distance i of u and distance j of v in G. Then, |i -j| ≤ d(u, v).

Observation 19. Let G be a graph, and let u, v be two vertices in G. Let x ∈ B i,j , and let y ∈ B i ,j be a neighbor of x. Then, i ∈ {i -1, i, i + 1} and j ∈ {j -1, j, j + 1}.

We are now ready to state our characterization in the next theorem. An example of a graph G with dem(G) = 2 following the characterization is given in Figure 1.

Theorem 20. Let G be a connected graph with at least one cycle, and let G be the base graph of G. Then, dem(G) = 2 if and only if there are two vertices u, v in G such that all of the following conditions (I) (IV) hold in G .

(I) Every B i,j is an independent set.

(II) Every vertex x in B i,j has at most one neighbor in each of the four sets

B i-1,j ∪ B i-1,j-1 , B i-1,j ∪ B i-1,j+1 , B i,j-1 ∪ B i-1,j-1 and B i,j-1 ∪ B i+1,j-1 .
(III) There is no 4-vertex path zxyz with z

∈ B i-1,a , z ∈ B a ,j , x ∈ B i,j , y ∈ B i-1,j+1 , a ∈ {j -1, j + 1}, a ∈ {i -2, i}.
(IV) x ∈ B i,j has neighbors in at most two sets among B i-1,j+1 , B i-1,j-1 , B i+1,j-1 .

Proof. ⇒ Let us assume dem(G) = 2, hence dem(G ) = 2 according to Observation 4. Let {u, v} be a distance-edge-monitoring set of G . We will show that the properties (I) -(IV) hold.

(I) Assume that B i,j is not an independent set. Let e = xy be an edge such that x, y ∈ B i,j . Then, the distance from x to u is i and the distance from y to u is i, hence e is not monitored by u, according to Lemma 5. Likewise, e is not monitored by v, a contradiction.

(II) Let x ∈ B i,j .

(i) Assume x has two neighbors y, y ∈ B i-1,j ∪ B i-1,j-1 . Assume rst that x has two neighbors y, y such that either both y, y ∈ B i-1,j , both y, y ∈ B i-1,j-1 , or y ∈ B i-1,j , y ∈ B i-1,j-1 . Let e = xy. Then, the distance from y to u and the distance from y to u are both i -1, hence e is not monitored by u, according to Lemma 5. The distance from y to v and the distance from x to v are also the same, hence e is not monitored by v, according to Lemma 5. This is a contradiction.

(ii) Assume x has two neighbors y, y ∈ B i-1,j ∪ B i-1,j+1 . If both y, y ∈ B i-1,j we are done by Case (i). Thus, assume that y ∈ B i-1,j ∪ B i-1,j+1 and y ∈ B i-1,j+1 , and let e = xy. If y, y ∈ B i-1,j+1 , as in Case (i), the ordered pair of distances from y to u and v and the ordered pair of distances from y to u and v are the same, and by Lemma 5 e is not monitored. If y ∈ B i-1,j , y ∈ B i-1,j+1 , the same argument works to show that u does not monitor e. Moreover, the distances from x to v and from y to v are both j, and by Lemma 5 v also does not monitor e. This is a contradiction.

(iii) The cases where x has two neighbors in B i,j-1 ∪ B i-1,j-1 or in B i,j-1 ∪ B i+1,j-1 are completely symmetric to Cases (i) and (ii).

(III) Assume there is a path zxyz with z

∈ B i-1,a , z ∈ B a ,j , x ∈ B i,j , y ∈ B i-1,j+1 , a ∈ {j -1, j + 1}, a ∈ {i -2, i},
and let e = xy, then the distance from u to z is i -1, and the distance from u to y is i -1, hence by Lemma 5 e is not monitored by u. The distance from v to z is j, and the distance from v to x is j, hence e is also not monitored by v according to Lemma 5, a contradiction.

(IV) Let us assume by contradiction that x ∈ B i,j has three neighbors y, y , z such that y ∈ B i-1,j-1 , y ∈ B i+1,j-1 , and z ∈ B i-1,j+1 , and let e = xy. The distance from z to u is i -1, and the distance from y to u is i -1, hence e is not monitored by u. The distance from y to v is j -1, and the distance from y to v is j -1, hence e is not monitored by v, according to Lemma 5, a contradiction.

⇐ Let us assume that there are two vertices u, v in G such that all of the conditions (I) -(IV) hold in G . We will show that {u, v} is a distance-edge-monitoring set in G , and hence dem(G) = 2 according to Observation 4. Let e = xy be an edge in G such that x ∈ B i,j . According to condition (I), y / ∈ B i,j . We will distinguish three cases with respect to y. All the other cases are symmetric to these three main cases.

Case(a): y ∈ B i-1,j-1 . (The case y ∈ B i+1,j+1 is symmetric.) By contradiction, assume e is not monitored. Then, there is a path P i of length i from x to u not using e, and there is a path P j of length j from x to v not using e. Let z be the neighbor of x in P i . Then, z belongs to B i-1,a . Let z be the neighbor of x in P j . Then, z belongs to B a ,j-1 . According to Observation 19 and condition (II), a = j + 1 and a = i + 1. Hence, x has neighbors in all three sets B i-1,j+1 , B i-1,j-1 , B i+1,j-1 , in contradiction to condition (IV).

Case(b): y ∈ B i,j-1 . (The cases y ∈ B i-1,j , B i+1,j or B i,j+1 are symmetric.) By contradiction, assume e is not monitored. Then, there is a path P j of length j from x to v not using e. Let z be the neighbor of x in P j . Then, z belongs to B a ,j-1 . As a ∈ {i -1, i, i + 1}, this contradicts condition (II). by M , which includes all (original) edges of G. Let e = uv be an edge incident with the vertex u of K 1 such that v / ∈ M . We claim that there is a vertex x of M with d G (v, x) ≥ 3. Indeed, since G has radius at least 4, there is a vertex at distance 4 of v in G. Consider a neighbour of that vertex that is itself at distance 3 of v in G. Since M is a vertex cover, one of these two vertices is in M , which proves the existence of x. Now, we know that d G K1 (v, x) = 2, and the only path of length 2 from v to x goes through e. Thus e ∈ M (x). This shows that all edges are monitored by M , and completes the proof.

Corollary 22. Distance-Edge-Monitoring Set is NP-complete, even for graphs obtained from a planar subcubic graph by attaching a universal vertex.

Proof. It is known (see [START_REF] Garey | The rectilinear Steiner tree problem is NP-complete[END_REF]) that Vertex Cover is NP-complete for planar subcubic graphs with radius at least 4 (for the latter condition, note that a subcubic graph of radius at most 3 has constant order). Theorem 21 provides a polynomial reduction from such instances, and this completes the proof.

Approximation algorithm

Given a hypergraph H = (X, S) with vertex set X and egde set S, a set cover of H is a subset C ⊆ S of edges such that each vertex of X belongs to at least one edge of C. We will provide reductions for Min Distance-Edge-Monitoring Set to and from Set Cover and Min Set Cover.

Set Cover

Instance: A hypergraph H = (X, S), an integer k. Question: Is there a set cover C ⊆ S of size at most k?

Min Set Cover

Instance: A hypergraph H = (X, S). Task: Build a smallest possible set cover of H.

It is known that Min Set Cover is approximable in polynomial time within a factor of ln(|X| + 1) [START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF], but, unless P=NP, not within a factor of (1 -) ln |X| (for every positive ) [START_REF] Dinur | Analytical approach to parallel repetition[END_REF]. Moreover, Set Cover is W [START_REF] Bampas | Network verication via routing table queries[END_REF]-hard (when parameterized by k) and not solvable in time |X| o(k) |H| O (1) unless FPT=W [START_REF] Ausiello | Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties[END_REF] Proof. Let G be a graph and consider the following hypergraph H = (X, S) with X = E(G) and such that S contains, for each vertex x of G, the set S x = {e ∈ X | e ∈ M (x)}. Now, it is not dicult to see that there is a one-to-one correspondence between set covers of H and distanceedge-monitoring sets of G, where we associate to each vertex x of a distance-edge-monitoring set of G, the set S x in a set cover of H. Thus, the result follows from the ln(|X| + 1)-approximation algorithm for Min Set Cover from [START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF].

Approximation and parameterized hardness

Theorem 24. Even for graphs G that are (a) of diameter 4, (b) bipartite and of diameter 6, or (c) bipartite and of maximum degree 3, Min Distance-Edge-Monitoring Set is not approximable within a factor of (1 -) ln |E(G)| in polynomial time, unless P = N P . Moreover, for such instances, Distance-Edge-Monitoring Set cannot be solved in time |G| o(k) , unless FPT=W [START_REF] Ausiello | Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties[END_REF], and it is W [START_REF] Bampas | Network verication via routing table queries[END_REF]-hard for parameter k.

Proof. For an instance (H, k) of Set Cover, we will construct in polynomial time instances (G, k + 2) or (G, k + 1) of Distance-Edge-Monitoring Set so that H has a set cover of size k if and only if G has a distance-edge-monitoring set of size at most k + 2 or k + 1.

In our rst reduction, the obtained instance has diameter 4, while in our second reduction, the obtained instance is bipartite and has diameter 6, and in our third reduction, the graph G is bipartite and has maximum degree 3. The three constructions are similar.

The statement will follow from the hardness of approximating Min Set Cover proved in [START_REF] Dinur | Analytical approach to parallel repetition[END_REF], the parameterized hardness of Set Cover (parameterized by solution size), and the lower bound on its running time [START_REF] Chen | Tight lower bounds for certain parameterized NP-hard problems[END_REF].

First of all, we point out that we may assume that in an instance (H = (X, S), k) of Set Cover, there is no vertex of X that belongs to a unique set of S. Indeed, otherwise, we are forced to take S in any set cover of H; thus, by removing S and all vertices in S, we obtain an equivalent instance (H , k -1). We can iterate until the instance satises this property.

(1) We now describe the rst reduction, in which the obtained instance has diameter 4. Let (H, k) = ((X, S), k) be an instance of Set Cover, where

X = {x 1 , x 2 , . . . , x |X| }, S = {C 1 , C 2 , . . . , C |S| } and C i = {c i,j | x j ∈ C i }. Construct the following instance (G, k + 2) = ((V, E), k + 2) of Distance-Edge-Monitoring Set, where V = V 1 ∪ V 2 ∪ . . . ∪ V 5 ∪ V 1 ∪ V 2 ∪ V 3 , E = E 1 ∪ E 2 ∪ E 3 ∪ E 4 ∪ E 1 ∪ E 2 ∪ E 3 ∪ E 4 and V 1 = {u 1 , u 2 , u 3 }, V 2 = {v i | 1 ≤ i ≤ |S|}, V 3 = S, V 4 = {c i,j | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }, V 5 = X, V 1 = {u 1 , u 2 , u 3 }, V 2 = {c i,j | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }, V 3 = {w j | 1 ≤ j ≤ |X|}, E 1 = {(u 1 , u 2 ), (u 1 , u 3 ), (u 2 , u 1 ), (u 3 , u 1 )}, E 2 = {(u 1 , v i ), (v i , C i ) | 1 ≤ i ≤ |S|}, E 3 = {(C i , c i,j ) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }, E 4 = {(c i,j , x j ) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }, E 1 = {(u 1 , u 2 ), (u 2 , u 3 ), (u 3 , u 1 )}, E 2 = {(u 1 , c i,j ), (c i,j , c i,j ) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }, E 3 = {(u 1 , w j ), (w j , x j ) | 1 ≤ j ≤ |X|}, E 4 = {(u 1 , v i ) | 1 ≤ i ≤ |S|}.
An example is given in Figure 2. Notice that the purpose of the vertices in V 1 , V 2 , V 3 is only to reduce the diameter. A simpler reduction without these vertices, and with an additional edge joining u 2 and u 3 would also function.

To see that G has diameter 4, observe that every vertex of G has a path of length at most 2 to the vertex u 1 .

Let C be a set cover of H of size k. Dene M = C ∪ {u 1 , u 2 }. Then, by Lemma 5, u 1 monitors (in particular) the edges (u 1 , u 2 ), (u 1 , u 3 ), (u 1 , u 3 ), and all the edges in E 2 ∪ E 3 . Similarly, u 2 monitors the edges (u 1 , u 2 ), (u 2 , u 3 ), (u 3 , u 1 ), (u 2 , u 1 ) and all the edges in E 2 ∪ E 3 ∪ E 4 . It thus remains to show that all edges of E 4 are monitored. Notice that among those edges, vertex C i of S monitors exactly all edges c j1,j2 with x j2 ∈ C i . Thus, if e = (c i,j , x j ), there is i such that x j ∈ C i and C i ∈ C, and e is monitored by C i (either i = i and the only shortest path from x j to C i contains e, or i = i and the only shortest path from c i,j to C i contains e). Hence, M is a distance-edge-monitoring set of G of size at most k + 2.

Conversely, let M be a distance-edge-monitoring set of G of size at most k + 2. In order to monitor the edge (u 2 , u 3 ), either u 2 ∈ M or u 3 ∈ M . In order to monitor the edges (u 1 , u 3 ) and (u 1 , u 2 ), there must be a vertex of M in {u 1 , u 2 , u 3 }. We may replace 

M ∩ {u 1 , u 2 , u 3 } by u 1 v 1 v 2 v 3 C 1 C 2 C 3 c 1,1 c 1,2 c 3,1 c 2,2 c 2,3 c 2,4 c 3,3 c 3,4 x 1 x 2 x 3 x 4 u 1 u 2 u 3 u 1 u 2 u 3 . . .
({x 1 , x 2 , x 3 , x 4 }, {C 1 = {x 1 , x 2 }, C 2 = {x 2 , x 3 , x 4 }, C 3 = {x 1 , x 3 , x 4 }}).
Vertices and edges of V i and E i for i = 2, 3 are only suggested.

and M ∩ {u 2 , u 3 } by u 2 , as u 1 monitors the same edges as {u 1 , u 2 , u 3 } (among those not already monitored by u 2 ) and u 2 monitors the same edges as {u 2 , u 3 } (among those not already monitored by u 1 ). As seen in the previous paragraph, all edges of E 1 , E 2 , E 3 , E 1 , E 2 , E 3 and E 4 are monitored by {u 1 , u 2 }. However, no edge of E 4 is monitored by any vertex of V 1 ∪ V 1 . Thus, all remaining vertices of M are needed precisely to monitor the edges of E 4 . If v i ∈ M , let M = M \ {v i } ∪ {C i }, and the set of monitored edges does not decrease. If c i,j ∈ M , let M = M \ {c i,j } ∪ {C i }, and the set of monitored edges does not decrease. If x j ∈ M , let M = M \ {x j } ∪ {C i0 } where i 0 = min{i | x j ∈ C i }, and the set of monitored edges does not decrease. If c i,j ∈ M , let M = M \ {c i,j } ∪ {C i }, and the set of monitored edges does not decrease. If w j ∈ M , let M = M \ {w j } ∪ {C i0 } where i 0 = min{i | x j ∈ C i }, and the set of monitored edges does not decrease. Iterating this process, we nally obtain a distance-edge-monitoring set

M of G with |M ∩ V 1 | = 1, |M ∩ V 1 | ≥ 1, |M ∩ V 3 | ≤ k, M ∩ (V 2 ∪ V 4 ∪ V 5 ∪ V 2 ∪ V 3 ) = ∅. Let C = M ∩ V 3 .
If C is not a set cover of H, then there is x j ∈ X that is not covered by C. Recall that we assumed that each vertex of X belongs to at least two edges of S. Then, according to Lemma 5, any edge (c i,j , x j ) is not monitored by any of the vertices in

M = (M ∩ V 1 ) ∪ (M ∩ V 1 ) ∪ C, a contradiction.
Hence, C is a set cover of H of size at most k.

(2) We now describe the second reduction, in which the obtained instance is bipartite and has diameter 6. Let (H, k) = ((X, S), k) be an instance of Set Cover, where

X = {x 1 , x 2 , . . . , x |X| }, S = {C 1 , C 2 , . . . , C |S| } and C i = {c i,j | x j ∈ C i }. Construct the following instance (G, k + 2) = ((V, E), k+2) of Distance-Edge-Monitoring Set, where V = V 1 ∪V 2 ∪. . .∪V 5 ∪V 1 ∪V 2 ∪V 3 ∪V , E = E 1 ∪ E 2 ∪ E 3 ∪ E 4 ∪ E 1 ∪ E 2 ∪ E 3 ∪ E and V 1 = {u 1 , u 2 , u 3 , u 4 }, V 2 = {v i | 1 ≤ i ≤ |S|}, V 3 = S, V 4 = {c i,j | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }, V 5 = X, V 1 = {u 1 , u 2 , u 3 , u 4 }, V 2 = {v i | 1 ≤ i ≤ |S|}, V 3 = {w j | 1 ≤ j ≤ |X|}, V = {u 1 }, E 1 = {(u 1 , u 2
), (u 2 , u 3 ), (u 3 , u 4 ), (u 4 , u 1 )},

E 2 = {(u 1 , v i ), (v i , C i ) | 1 ≤ i ≤ |S|}, E 3 = {(C i , c i,j ) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }, E 4 = {(c i,j , x j ) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }, E 1 = {(u 1 , u 2 ), (u 2 , u 3 ), (u 3 , u 4 ), (u 4 , u 1 )}, E 2 = {(u 1 , v i ), (v i , C i ) | 1 ≤ i ≤ |S|}, E 3 = {(u 1 , w j ), (w j , x j ) | 1 ≤ j ≤ |X|}, E = {(u 1 , u 1 ), (u 1 , u 1 )}.
The reduction is depicted in Figure 3. Let C be a set cover of H of size k. Dene M = C ∪ {u 3 , u 3 }. Then, by Lemma 5, u 3 monitors the edges (u 2 , u 3 ), (u 3 , u 4 ), (u 1 , u 1 ), (u 2 , u 1 ), (u 4 , u 1 ) and all the edges in E 2 ∪ E 3 , and u 3 monitors the edges (u 2 , u 3 ), (u 3 , u 4 ), (u 1 , u 1 ), (u 2 , u 1 ), (u 4 , u 1 ) and all the edges in E 2 ∪ E 3 ∪ E 4 . If e = (c i,j , x j ), there is i such that x j ∈ C i and C i ∈ C, and e is monitored by C i (either i = i and the only shortest path from x j to C i contains e, or i = i and the only shortest path from c i,j to C i contains e). Hence, M is a distance-edge-monitoring set of G of size at most k + 2.

v 1 v 2 v 3 C 1 C 2 C 3 c 1,1 c 1,2 c 3,1 c 2,2 c 2,3 c 2,4 c 3,3 c 3,4 x 1 x 2 x 3 x 4 u 1 u 2 u 3 u 4 u 1 u 1 u 2 u 3 u 4 . . .
Let M be a distance-edge-monitoring set of G of size at most k + 2. In order to monitor the edge (u 2 , u 3 ), either u 2 ∈ M or u 3 ∈ M . If v i ∈ M , let M = M \ {v i } ∪ {C i }, and the set of monitored edges does not decrease. If c i,j ∈ M , let M = M \{c i,j }∪{C i }, and the set of monitored edges does not decrease. If x j ∈ M , let M = M \ {x j } ∪ {C i0 } where i 0 = min{i | x j ∈ C i }, and the set of monitored edges does not decrease. In order to monitor the edge (u 2 , u 3 ), either u 2 ∈ M or u 3 ∈ M . If v i ∈ M , let M = M \ {v i } ∪ {C i }, and the set of monitored edges does not decrease. If w j ∈ M , let M = M \ {w j } ∪ {C i0 } where i 0 = min{i | x j ∈ C i }, and the set of monitored edges does not decrease. If u 1 ∈ M , let M = M \ {u 1 } ∪ {u 3 }, and the set of monitored edges does not decrease. Iterating this process, we nally obtain a distance-edge-monitoring set M of G with

|M ∩V 1 | ≥ 1, |M ∩V 1 | ≥ 1, |M ∩V 3 | ≤ k, M ∩(V 2 ∪V 4 ∪V 5 ∪V 2 ∪V 3 ∪V ) = ∅. Let C = M ∩V 3 . If C is
not a set cover of H, then there is x j ∈ X that is not covered by C. Without loss of generality, assume that each vertex of X belongs to at least two edges of C. Then, according to Lemma 5, any edge (c i,j , x j ) is not monitored by any of the vertices in M

= (M ∩ V 1 ) ∪ (M ∩ V 1 ) ∪ C, a contradiction. Hence, C is a set cover of H of size at most k.
(3) We now describe the third reduction, in which the obtained instance is bipartite and has maximum degree 3. Let (H, k) = ((X, S), k) be an instance of Set Cover, where

X = {x 1 , x 2 , . . . , x |X| }, S = {C 1 , C 2 , . . . , C |S| } and C i = {c i,j | x j ∈ C i }. Let D = log 2 max{|X|, |S|} .
Let B(r, {r 1 , r 2 , . . . , r }, d) denote a binary tree with root r and leaves r 1 , r 2 , . . . , r at distance d ≥ log 2 from r. Let P (r, s, ) denote the path of length with endpoints r and s. Let

C i = {c i,j | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }. Let X j = {c i,j | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, x j ∈ C i }. Let B = B(u, {v 1 , v 2 , . . . , v |S| }, D). For 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, let P i = P (v i , C i , D), B(C i ) = B(C i , C i , D), and B(x j ) = B(x j , X j , D). Construct the following instance (G, k+1) = ((V, E), k+1) of Distance-Edge-Monitoring Set, where V = V 1 ∪ V 2 ∪ . . . ∪ V 8 , E = E 1 ∪ E 2 ∪ . . . ∪ E 5 and V 1 = {u 1 , u 2 , u 3 , u 4 }, V 2 = V (B), V 3 = ∪ 1≤i≤|S| V (P i ), V 4 = S, V 5 = ∪ 1≤i≤|S|,1≤j≤|X|,xj ∈Ci V (B(C i )), V 6 = ∪ 1≤i≤|S|,1≤j≤|X|,xj ∈Ci C i , V 7 = ∪ 1≤j≤|X| V (B(x j )), V 8 = X, E 1 = {(u 1 , u 2 ), (u 2 , u 3 ), (u 3 , u 4 ), (u 4 , u 1 ), (u 1 , u)}, E 2 = E(B), E 3 = ∪ 1≤i≤|S| E(P i ), E 4 = ∪ 1≤i≤|S|,1≤j≤|X|,xj ∈Ci E(B(C i )), E 5 = ∪ 1≤j≤|X| E(B(x j )).
The reduction is depicted in Figure 4. Let C be a set cover of H of size k. Dene M = C ∪ {u 2 }. Then, by Lemma 5, u 2 monitors the edges (u 1 , u 2 ), (u 2 , u 3 ), (u 1 , u) and all the edges in E 2 ∪ E 3 ∪ E 4 , and any vertex in C monitors the edges (u 1 , u 4 ), (u 1 , u 2 ). If e ∈ E(B(x j )), there is i such that x j ∈ C i and C i ∈ C, and e is monitored by C i (either i = i and the only shortest path from x j to C i contains e, or i = i and the only shortest path from c i,j to C i contains e). Hence, M is a distance-edge-monitoring set of G of size at most k + 1.

Let M be a distance-edge-monitoring set of G of size at most k + 1. In order to monitor the edge (u 2 , u 3 ), either u 2 ∈ M or u 3 ∈ M . If v ∈ (M ∩ V (B)), descend to the leftmost leaf v i in B with v as its ancestor, and let M = M \ {v i } ∪ {C i }. Then, the set of monitored edges does not decrease. If v ∈ (M ∩ V (P i )), let M = M \ {v i } ∪ {C i }, and the set of monitored edges does not decrease. If v ∈ (M ∩ V (B(C i ))), let M = M \ {v} ∪ {C i }, and the set of monitored edges does not decrease. If v ∈ (M ∩ V (B(x j ))), let M = M \ {x j } ∪ {C i0 } where i 0 = min{i | x j ∈ C i }, and the set of monitored edges does not decrease. Iterating this process, we nally obtain a distance-edge- 

u 1 u v 1 v 2 v 3 C 1 C 2 C 3 c 1,1 c 1,2 c 3,1 c 2,2 c 2,3 c 2,4 c 3,3 c 3,4 x 1 x 2 x 3 x 4 u 2 u 3 u 4
({x 1 , x 2 , x 3 , x 4 }, {C 1 = {x 1 , x 2 }, C 2 = {x 2 , x 3 , x 4 }, C 3 = {x 1 , x 3 , x 4 }}), thus D = log 2 max{3, 4} = 2. monitoring set M of G with |M ∩ V 1 | ≥ 1, |M ∩ V 4 | ≤ k, M ∩ (V 2 ∪ V 3 ∪ V 5 ∪ V 6 ∪ V 7 ∪ V 8 ) = ∅. Let C = M ∩ V 4 .
If C is not a set cover of H, then there is x j ∈ X that is not covered by C. Without loss of generality, assume that each vertex of X belongs to at least two edges of C. Then, according to Lemma 5, any edge (v, x j ) is not monitored by any of the vertices in M = (M ∩ V 1 ) ∪ C, a contradiction. Hence, C is a set cover of H of size at most k.

Concluding remarks and questions

We have introduced a new graph parameter useful in the area of network monitoring. We conclude the papers with some remarks for future research directions.

Structural graph parameters

We have related the parameter dem to other standard graph parameters by giving lower and upper bounds. The diagram in Figure 5 shows the relations between these parameters. It would be interesting to improve them. In particular, is it true that dem(G) ≤ fes(G) + 1? As we have seen, this bound would be tight. Moreover, is the bound dem(G) ≥ ω(G)/2 from Theorem 11 tight?

Other structural graph parameters that have not been considered here. A feedback vertex set of a graph G is a set of vertices such that removing them from G leaves a forest. The smallest size of a feedback vertex set of G is denoted by fvs(G). It is not dicult to show that for any graph G, fvs(G) ≤ vc(G) and fvs(G) ≤ fes(G). However, we cannot hope to bound dem(G) by a function of fvs(G), as we did in Theorems 12 and 17 for vc(G) and fes(G). Indeed, consider the example of a path P a of order a ≥ 9 to which we add a universal vertex. This graph P a K 1 has radius at least 4, thus, by Theorem 21, we have dem(P a K 1 ) = vc(P a ) = a/2 , while we have fvs(P a K 1 ) = 1. Similarly, the pathwidth of P a K 1 is 2. Nevertheless, we do not know whether we can upper-bound dem(G) by a function of the bandwidth or the treedepth of G. 

Further complexity questions

Strenghtening the denition

It is also reasonable to require to be able to simultaneously detect multiple edge failures in a network. In that case, we could propose the following strengthening of distance-edge-monitoring sets, based on extending Proposition 2. For a graph G and a set E of edges of G, we denote by G -E the graph obtained by removing all edges of E from G.

Denition 25. For a set E of edges and a set M of vertices of a graph G, we let P (M, E) be the set of pairs (x, y) with x a vertex of M and y a vertex of V (G) such that d G (x, y) = d G-E (x, y).

For a graph G, a distance-edge-monitoring set M of G is called a strong distance-edgemonitoring set of G if for any two distinct subsets E 1 and E 2 of edges of G, we have P (M, E 1 ) = P (M, E 2 ). We denote by sdem(G) the smallest size of a strong distance-edge-monitoring set of G.

However, it turns out that the concept of strong distance edge-monitoring sets is in fact equivalent to the one of a vertex cover! Proposition 26. A set M of vertices of a graph G is strong distance-edge-monitoring if and only if it is a vertex cover of G.

Proof. First, assume that M is a vertex cover. For an edge uv (assume without loss of generality that u ∈ M ), we have (u, v) ∈ P (M, E) if and only if uv ∈ E. For two distinct sets E 1 , E 2 of edges of G, we have an edge e = uv in the symmetric dierence E 1 E 2 and thus one of the pairs (u, v) or (v, u) belongs to exactly one of P (M, E 1 ) and P (M, E 2 ). This implies that M is a strong distance-edge-monitoring set.

Conversely, let M be a strong distance-edge-monitoring set of G. Assume for a contradiction that it is not a vertex cover of G, so, there is an edge uv with {u, v} ∩ M = ∅. Let E be the set of edges that are incident with u or with v (or both), and E = E \ {uv}. Then, for any two vertices x, y with x / ∈ {u, v}, we have d G-E (x, y) = d G-E (x, y). In particular, this is true when x ∈ M . Thus, we have P (M, E) = P (M, E ), a contradiction. Nevertheless, it could remain interesting to study an intermediate concept, where we wish to monitor all sets of edges of size at most a given constant. This has been done for example in the context of the metric dimension in [START_REF] Laihonen | The metric dimension for resolving several objects[END_REF].

  Let G a,b denote the grid of dimension a × b. By Theorem 9, we have dem(G 1,a ) = 1. We can compute all other values. Theorem 10. For any integers a, b ≥ 2, we have dem(G a,b ) = max{a, b}.

Corollary 14 .

 14 We have dem(K a,b ) = vc(K a,b ) = min{a, b}, and dem(H d ) = vc(H d ) = 2 d-1 .

  17 is tight. There are examples of graphs G where dem(G) = fes(G) + 1, for example this is the case for the grid G a,2 : by Theorem 10, when a ≥ 2 we have dem(G a,2 ) = a, and fes(G a,2 ) = a -1. Note that G a,b for a, b ≥ 2 provides examples of a family of graphs where for increasing a, b the dierence between fes(G a,b ) and dem(G a,b ) is unbounded by a constant. Indeed, by Theorem 10, we have dem(G a,b ) = max{a, b}, but fes(G a,b ) is linear in the order ab.

  [START_REF] Chen | Tight lower bounds for certain parameterized NP-hard problems[END_REF].Theorem 23. Min Distance-Edge-Monitoring Set is approximable within a factor of ln(|E(G)| + 1) in polynomial time.

Figure 2 :

 2 Figure 2: First reduction from Set Cover to Distance-Edge-Monitoring Set from the proof of Theorem 24 applied to the hypergraph({x 1 , x 2 , x 3 , x 4 }, {C 1 = {x 1 , x 2 }, C 2 = {x 2 , x 3 , x 4 }, C 3 = {x 1 , x 3 , x4}}). Vertices and edges of V i and E i for i = 2, 3 are only suggested.

Figure 3 :

 3 Figure 3: Second reduction from Set Cover to Distance-Edge-Monitoring Set from the proof of Theorem 24 applied to the hypergraph({x 1 , x 2 , x 3 , x 4 }, {C 1 = {x 1 , x 2 }, C 2 = {x 2 , x 3 , x 4 }, C 3 = {x 1 , x 3 , x4}}). Vertices and edges of V i and E i for i = 2, 3 are only suggested.

Figure 4 :

 4 Figure 4: Third reduction from Set Cover to Distance-Edge-Monitoring Set from the proof of Theorem 24 applied to the hypergraph({x 1 , x 2 , x 3 , x 4 }, {C 1 = {x 1 , x 2 }, C 2 = {x 2 , x 3 , x 4 }, C 3 = {x 1 , x 3 , x 4 }}), thus D = log 2 max{3, 4} = 2.

  It would also be interesting to determine graph classes where Distance-Edge-Monitoring Set has a polynomial-time (or parameterized) exact or constant-factor approximation algorithm. For example, what happens for planar graphs, chordal graphs or interval graphs?

Figure 5 :

 5 Figure 5: Relations between some structural parameters and dem. Arcs between parameters indicate that the bottom parameter is upper-bounded by a function of the top parameter.

This is an improvement over the results from the conference version[START_REF] Foucaud | Monitoring the edges of a graph using distances[END_REF], where we proved dem(G) ≤ 5 fes(G)-5.
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Case(c): y ∈ B i-1,j+1 . (The case y ∈ B i+1,j-1 is symmetric.) By contradiction, assume e is not monitored. Then, there is a path of length i from x to u avoiding y (let z be the neighbor of x on this path). Similarly, there is a path of length j + 1 from y to v avoiding x (let z be the neighbor of y on this path). Thus, there is a 4-vertex path zxyz with z ∈ B i-1,a , z ∈ B a ,j , a ∈ {j -1, j, j + 1}, a ∈ {i -2, i -1, i}. According to condition (II), a = j and a = i -1. However, the other cases (a ∈ {j -1, j + 1} and a ∈ {i -2, i}) contradict condition (III). 

Complexity

We now study the algorithmic complexity of nding an optimal distance-edge-monitoring set. A c-approximation algorithm for a given optimization problem is an algorithm that returns a solution whose size is always at most c times the optimum. We refer to the books [START_REF] Ausiello | Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties[END_REF][START_REF] Hromkovi£ | Algorithmics for Hard Problems -Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics, Second Edition[END_REF] for more details. For a decision problem Π and for some parameter p of the instance, an algorithm for Π is said to be xed parameter tractable (fpt for short) if it runs in time f (p)n c , where f is a computable function, n is the input size, and c is a constant. In this paper, we will always consider the solution size k as the parameter. The class FPT contains the parameterized decisions problems solvable by an fpt algorithm. The classes W[i] (with i ≥ 1) denote complexity classes with parameterized decision problems that are believed not to be fpt. We refer to the books [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF][START_REF] Niedermeier | Invitation to xed-parameter algorithms[END_REF] for more details.

NP-hardness

We will now use the connection to vertex covers hinted in Section 3 to derive an NP-hardness result. For two graphs G, H, G H denotes the graph obtained from disjoint copies of G and H with all possible edges between V (G) and V (H). We denote by K 1 the graph on one single vertex.

Theorem 21. For any graph

Proof. We denote by u the vertex from K 1 . By Theorem 12, we have dem(G K 1 ) ≤ vc(G K 1 ) ≤ vc(G) + 1 since u together with any vertex cover of G is a vertex cover of G K 1 .

To see that vc(G) ≤ dem(G K 1 ), assume that we have a distance-edge-monitoring set M of G K 1 , and let vw be any edge of G. There exists a vertex x in M such that vw ∈ M (x). Then, we must have x ∈ {v, w}, indeed, if not, then vw would be part of a unique shortest path of length 2 from x to some vertex y, which is not possible since the path from x to y going through u is another path of length 2. Now, assume that G has radius at least 4: it remains to prove that dem(G K 1 ) ≤ vc(G). Let M be a vertex cover of G. By Lemma 7, all edges incident with a vertex of M are monitored