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THE LIMITS OF MIN-MAX OPTIMIZATION ALGORITHMS:
CONVERGENCE TO SPURIOUS NON-CRITICAL SETS

YA-PING HSIEH*, PANAYOTIS MERTIKOPOULOS®# AND VOLKAN CEVHER*

ABsTrACT. Compared to minimization problems, the min-max landscape in machine
learning applications is considerably more convoluted because of the existence of cycles
and similar phenomena. Such oscillatory behaviors are well-understood in the convex-
concave regime, and many algorithms are known to overcome them. In this paper, we
go beyond the convex-concave setting and we characterize the convergence properties of
a wide class of zeroth-, first-, and (scalable) second-order methods in non-convex/non-
concave problems. In particular, we show that these state-of-the-art min-max optimization
algorithms may converge with arbitrarily high probability to attractors that are in no way
min-max optimal or even stationary. Spurious convergence phenomena of this type can
arise even in two-dimensional problems, a fact which corroborates the empirical evidence
surrounding the formidable difficulty of training GANSs.

1. INTRODUCTION

Consider a min-max optimization — or saddle-point — problem of the form

i oz, SP
min max &(z, y) (SP)

where X, ) are subsets of a Euclidean space and ®: X x J — R may be non-convex,/non-
concave. Given an algorithm for solving (SP), the following fundamental questions arise:

When does the algorithm converge? Where does the algorithm converge to? (%)

The goal of this paper is to provide concrete answers to (*) and to study their practical
implications for a wide array of existing methods.

Min-max problems of this type have found widespread applications in machine learning
in the context of generative adversarial networks (GANSs) [32], robust reinforcement learning
[72], and other models of adversarial training [51]. In this broad setting, it has become
empirically clear that the joint training of two neural networks (NNs) with competing
objectives is fundamentally more difficult than training a single NN of similar size and
architecture. The latter task boils down to successfully finding a (good) local minimum
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of a non-convex function, so it is instructive to revisit (x) in the context of (non-convex)
minimization problems.

In this case, much of the theory on stochastic gradient descent (SGD) methods — the “gold
standard” for deep NN training — can be informally summed up as follows:

(1) Bounded trajectories of SGD always converge to a set of critical points [12, 49, 50].
(2) The limits of SGD do not contain saddle points or other spurious solutions [15, 29, 68].

At first glance, these positive results might raise high expectations for solving (SP). Un-
fortunately, one can easily find counterexamples with very simple bilinear games of the
form ®(z,y) = 2T Ay: naively applying stochastic gradient descent/ascent (SGDA) methods
in this case leads to recurrent orbits that do not contain any critical point of ®. Such a
phenomenon has no counterpart in non-convex minimization, and is fundamentally tied to
the min-max structure of (SP).

The failure of SGDA in bilinear games has been studied extensively [1, 4, 30, 31, 46, 56, 59,
69, 77, 81, 82|, leading to more sophisticated schemes such as stochastic extra-gradient (SEG)
methods and their variants [19, 25, 30, 36, 57]. Meanwhile, to bypass such globally oscillatory
issues, another thread of research [2, 24, 34, 37, 47, 53, 54, 57, 60, 66, 74] has shifted its
attention to local analysis. Essentially, these works either analyze the algorithmic behaviors
only “sufficiently close” to critical points, or impose stringent assumptions on ® (such as
“coherence” [57] or the existence of solutions to a Minty variational inequality [47]) to ensure
the equivalence between global and local convergence.

Although these studies have certainly led to fruitful results, the realm beyond bilinear
games and (locally) idealized objectives remains somewhat unexplored (with a few exceptions
that we discuss in detail below). In particular, a convergence theory for general non-
convex/non-concave problems is still lacking.

Our contributions. In this paper, we aim to bridge this gap by providing precise answers to
(%) for a wide range of min-max optimization algorithms that can be seen as generalized
Robbins—Monro (RM) schemes [76]. Mirrorring the minimization perspective, we prove that,
for any such algorithm A:

(1) Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.

(2) Trajectories of A may converge with arbitrarily high probability to spurious attractors
that contain no critical point of ®.

The most critical implication of our theory is that one can reduce the long-term behavior
of a training algorithm to its associated ICT sets, a notion deeply rooted in the study of
dynamical systems [6, 8, 9, 14, 23] that formalizes the idea of “discrete limits of continuous
flows”; cf. Section 4. As an example, in minimization problems, one can prove that the ICT
sets of SGD consist solely of components of critical points; on the other hand, we show that
ICT sets in min-max optimization can exhibit drastically more complicated structures, even
when X = Y = R. In particular, we establish the following negative results:

e An ICT set may contain (almost) globally attracting limit cycles, and the algorithms
designed to eliminate periodic orbits in bilinear games cannot escape them. This
observation corroborates the persistence of non-convergent behaviors in GAN training,
and suggests that bilinear games may be insufficient as models for such applications.

e There exist unstable critical points whose neighborhood contains an (almost) globally
stable ICT set. Therefore, in sharp contrast to minimization problems, “avoiding
unstable critical points” does not imply “escaping unstable critical points” in min-max
problems.
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e There exist stable min-max points whose basin of attraction is “shielded” by an
unstable ICT set. As a result, existing algorithms are repelled from a desirable
solution with high probability, even if initialized arbitrarily close to it.

Finally, we provide numerical illustrations of the above, which further show that com-
mon practical tweaks (such as averaging or adaptive algorithms) also fail to address these
problematic cases.

Further related work. To our knowledge, the convergence to non-critical sets in (SP) has
only been systematically studied in a few settings. Besides the bilinear games alluded to
above, other instances include the “almost bilinear games” [1] and deterministic gradient
descent/ascent (GDA) applied to “hidden bilinear games” [28]. In contrast to these works,
our framework does not impose any structural assumption and requires only mild regularity
of @, and our results apply to many existing methods beyond (S)GDA; cf. Section 3. The
generality of our approach is made possible by foundational results in dynamical systems
[6, 8], which have not been exploited before in the context of min-max optimization, and
have only recently been applied to learning in games with the aim of showing convergence to
(local) Nash equilibria [9, 10, 13, 16, 17, 22, 53, 55, 70, 71].

Upon completion of our paper (two weeks prior to the actual submission date), we
discovered a preprint by Letcher [45] whose motivation is similar to our own. The focus of [45]
is on providing counterexamples that rule out the convergence of deterministic “reasonable”
and “global” algorithms. There are two major distinctions that make our approaches
complementary: [45] focuses on the impossibility of desirable convergence guarantees in
a purely deterministc setting; in contrast, our paper focuses squarely on the occurrence
of undesirable convergence phenomena with probability 1 in stochastic algorithms. Taken
together, the work [45] and our own paint a fairly complete picture of the fundamental limits
of min-max optimization algorithms.

2. SETUP AND PRELIMINARIES

We focus on general problems of the form (SP) with X = R4, ) = R% and ® assumed
C'. To ease notation, we will denote z = (z,y), Z = X x Y and d = dx + dy. In addition,
we will write

Vi(z) = (Va(z,9), Vy(2,9)) = (=V0(2,9), V, 2(2,y)) (1)
for the (min-max) gradient field of ®, and we will assume that V is Lipschitz. In some
cases we will also require V' to be C' and we will write J(z) for its Jacobian; this additional
assumption will be stated explicitly whenever invoked.

A solution of (SP) is a tuple z* = (z*,y*) with ®(z*,y) < ®(z*,y*) < &(z,y*) for all
x € X,y € Y; likewise, a local solution of (SP) is a tuple (x*, y*) that satisfies this inequality
locally. Finally, a state z* with V(2*) = 0 is said to be a critical (or stationary) point of
®. When V is C*, any local solution is a stable critical point [37], i.e., V2®(z*,y*) = 0 and
V2o (z*,y*) < 0.

From an algorithmic standpoint, we will focus exclusively on the black-box optimization
paradigm [64] with stochastic first-order oracle (SFO) feedback; algorithms with a more
complicated feedback structure (such as a best-response oracle [27, 37, 61]) or based on mixed-
strategy sampling [26, 35] are not considered in this work. In detail, when called at z = (z,y)
with random seed w € §, an SFO returns a random vector V(z;w) = (Vz(z;w), Vy(z;w)) of
the form

V(z;w) =V (z) + U(z;w) (SFO)
where the error term U(z;w) captures all sources of uncertainty in the model (e.g., the
selection of a minibatch in GAN training models, system state observations in reinforcement
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learning, etc.). Regarding this error term, we will assume throughout that it is zero-mean
and sub-Gaussian:
2
E[U(zw)] =0 and P(JU(zw)| > t) < 2e" 27 (2)

for some o > 0 and all z € Z. The sub-Gaussian tail assumption is standard in the literature
[38, 63-65], and it can be further relaxed with little loss of generality to finite variance
E[|U(z;w)||?] < 2. To streamline our discussion, we will present our results in the sub-
Gaussian regime and we will rely on a series of remarks to explain any modifications required
for different assumptions on U.

3. CORE ALGORITHMIC FRAMEWORK

3.1. The Robbins—Monro template. Much of our analysis will focus on iterative algorithms
that can be cast in the abstract Robbins—Monro framework of stochastic approximation [76]:

Znt1 = Zn + WV (Zn) + W] (RM)
where:
(1) Z, = (X,,Y,) € Z denotes the state of the algorithm at each stage n =1,2,...
(2) W, is a generalized error term (described in detail below).
(3) v, is the step-size (a hyperparameter, typically of the form v, oc 1/n?, p > 0).

In the above, the error term W, is generated after Z,; thus, by default, W, is not adapted
to the history (natural filtration) F,, := H(Z1,...,Z,) of Z,. For concision, we will write

Vi =V (Zn) + Wi (3)

so V,, can be seen as a noisy estimate of V(Z,,). In more detail, to differentiate between
“random” (zero-mean) and “systematic” (non-zero-mean) errors in V,,, it will be convenient
to further decompose the error process W, as

where b, = E[W,, | F,,] represents the systematic component of the error and U, = W,, — b,
captures the random, zero-mean part. In view of all this, we will consider the following
descriptors for W,,:

a) Bias: B, = ||bx]l (5a)
E[|Un|1%) (5b)

b) Variance: o2
The precise behavior of B,, and o2 will be examined on a case-by-case basis below.

3.2. Specific algorithms. In the rest of this section, we discuss how a wide range of algorithms
used in the literature can be seen as special instances of the general template (RM) above.

v Algorithm 1 (Stochastic gradient descent/ascent). The basic SGDA algorithm — also
known as the Arrow—Hurwicz method [3] — queries an SFO and proceeds as:
Zn+1 = Zn + T V(Zn§ Wn)a (SGDA)

where w, € Q (n=1,2,...) is an independent and identically distributed (i.i.d.) sequence
of oracle seeds. As such, (SGDA) admits a straightforward RM representation by taking
W, =U, =U(Z,;w,) and b, = 0. A



THE SPURIOUS LIMITS OF MIN-MAX OPTIMIZATION ALGORITHMS 5

v Algorithm 2 (Alternating stochastic gradient descent/ascent). A common variant of SGDA,
is to alternate the updates of the min/max variables, resulting in the alternating stochastic
gradient descent/ascent (alt-SGDA) method:

" (alt-SGDA)
Yor1=Yn + 7 Vy(Xn—Ha Yo Wn) =Y, + 'Y?L[Vy(Xn+1v Yn) + Uy,n]

where w,,w;t (n =1,2,...) are sequences of i.i.d. random seeds, Uy, = U, (X, Yn;wn),
and Uy, = Uy (Xpn+41, Yn;w;). The RM representation of (alt-SGDA) is obtained by taking
Zn = (X’qun)a bn = (Oa Vy(XnJrhYn) - Vy<Xn7Yn))7 and Un = (Ua:;ru Uy;n) A

v Algorithm 3 (Stochastic extra-gradient). Going beyond (SGDA), the (stochastic) extra-

gradient algorithm exploits the following principle [38, 41, 62]: given a “base” state Z,, the

algorithm queries the oracle at Z,, to generate a leading state Z; and then updates Z,

with oracle information from Z;. Assuming SFO feedback as above, this process may be
described as follows:

ZVJLr = Zn + v V(Zn;wn),

Zni1 = Zn+ v V(ZT;01).

To recast (SEG) in the Robbins—Monro framework, simply take W,, = V(Z;w;l) — V(Z,),
ie., U, =U(Zwr) and b, =V (Z,]) -V (Z,). A

(SEG)

v Algorithm 4 (Optimistic gradient / Popov’s extra-gradient). Compared to (SGDA), the
scheme (SEG) involves two oracle queries per iteration, which is considerably more costly.
An alternative iterative method with a single oracle query per iteration was proposed by
Popov [73]:

Z,: =Zn + Tn V(Z+ ’Wn—1)7

n—1»
Zn+1 =Zp+n V(Ziawn)

Its Robbins-Monro representation is obtained by setting W,, = V(Z;w,) — V(Z,), i.e.,
U, =U(Z};wy,) and b, =V(Z}) -V (Z,).

Popov’s extra-gradient has been rediscovered several times and is more widely known as
the optimistic gradient (OG) method in the machine learning literature [20, 25, 36, 75]. In
unconstrained min-max optimization, (OG/PEG) turns out to be equivalent to a number of
other existing methods, including “extrapolation from the past” [30], reflected gradient [52],
and the “prediction method” of [80]. A

(0G/PEG)

v Algorithm 5 (Kiefer—Wolfowitz). When first-order feedback is unavailable, a popular
alternative is to obtain gradient information of ® via zeroth-order observations [48|. This
idea can be traced back to the seminal work of Kiefer and Wolfowitz [39] and the subsequent
development of the simultaneous perturbation stochastic approximation (SPSA) method by
Spall [78]. In our setting, this leads to the recursion:

Vi = 2(d/6,) ®(Zy, + Onwn) wp,

SPSA
Zn+1 = Zn + ’YnVn ( )

where J, \, 0 is a vanishing “sampling radius” parameter, w, is drawn uniformly at random
from the composite basis 2 = Ex UEy of Z = & x Y, and the “+” sign is equal to
—1 if wy, € Ex and +1 if w, € &y. Viewed this way, the interpretation of (SPSA) as a
Robbins—Monro method is immediate; furthermore, a straightforward calculation (that we
defer to the supplement) shows that the sequence of gradient estimators V,, in (SPSA) has
B, = O(5,) and 02 = O(1/42). A
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Figure 1: Comparison of different RM schemes for bilinear games ®(z,y) = zy,
z,y € R. From left to right: (a) gradient descent/ascent; (b) the mean dynamics
(MD); (¢) extra-gradient.

Further examples that can be cast in the general framework (RM) include the negative
momentum method [31], generalized OG schemes [59], and centripetal acceleration [69]; the
analysis is similar and we omit the details. Certain scalable second-order methods can also
be viewed as Robbins—Monro schemes, but the driving vector field V' is no longer the gradient
field of ®; we discuss this in Example 5.3 and the supplement.

4. CONVERGENCE ANALYSIS

4.1. Continuous vs. discrete time. The main idea of our approach will be to treat (RM) as
a noisy discretization of the mean dynamics

() = V(=(1). (MD)

This is motivated by the fact that 2(¢) can be seen as the continuous-time limit of the finite
difference quotient (Z,,11 — Zp)/vn: in this way, if the error term W,, in (RM) is sufficiently
well-behaved, it is plausible to expect that the iterates of (RM) and the solutions of (MD)
eventually come together. This approach has proved very fruitful when the mean dynamics
(MD) comprise a gradient system, i.e., V. = —V f for some (possibly non-convex) f: Z — R.
In this case (and modulo mild assumptions), the systems (RM) and (MD) both converge to
the critical set of f, see e.g., [11, 12, 42, 43, 49].

On the other hand, the min-max landscape is considerably more involved. The most
widely known illustration is given by the bilinear objective ®(z,y) = zy: in this case (see
Fig. 1), the trajectories (MD) comprise periodic orbits of perfect circles centered at the
origin (the unique critical point of ®). However, the behavior of different RM schemes can
vary wildly, even in the absence of noise (o = 0): trajectories of (SGDA) spiral outwards,
each converging to an (initialization-dependent) periodic orbit; instead, trajectories of (SEG)
spiral inwards, eventually converging to the solution z* = (0, 0).

This particular difference between gradient and extra-gradient schemes has been well-
documented in the literature, cf. [25, 30, 57]. More pertinent to our theory, it also raises
several key questions:

(1) What is the precise link between RM methods and the mean dynamics (MD)?
(2) When can (MD) accurately predict the long-run behavior of an RM method?

The rest of this section is devoted to providing precise answers to these questions.

4.2. Stochastic approximation. We begin by introducing a measure of “closeness” between
the iterates of (RM) and the solution orbits of (MD). To do so, let 7, = Y ;'_, v denote the
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“effective time” that has elapsed at the n-th iteration of (RM), and define the continuous-time
interpolation Z(t) of Z,, as

t—1n

Z(t) = Z’n + (Zn—i-l - Zn) (6)

Tn+1 — Tn
for all ¢t € [T, Tn41], n > 1. To compare Z(t) to the solution orbits of (MD), we will further
consider the flow ©: Ry x Z — Z of (MD), which is simply the orbit of (MD) at time ¢ € R
with an initial condition z(0) = z € Z. We then have the following notion of “asymptotic
closeness” due to Benaim and Hirsch |7, 8]:

Definition 1. Z(t) is an asymptotic pseudotrajectory (APT) of (MD) if, for all T > 0, we
have:

limy o0 sUpgey < | Z(t + ) — O4(Z(1))] = 0. (7)

This comparison criterion is due to Benaim and Hirsch [8] and it plays a central role in
our analysis. In words, it simply posits that Z(t) eventually tracks the flow of (MD) with
arbitrary accuracy over windows of arbitrary length; as a result, if Z,, is an APT of (MD),
it is reasonable to expect its behavior to be closely correlated to that of (MD).

Our first result below makes this link precise. To state it, we will make the following
assumptions:

lim,,—, o By =0, (A1)
ZZO:1 Va0 < 00, (A2)
both assumed to hold with probability 1. Under these blanket requirements, we have:

Theorem 1. Suppose that (RM) is run with a step-size policy v, such that ) ~vn = 00,
lim,, v, = 0, and Assumptions (A1)—(A2) hold. Then, with probability 1, one of the following
holds: a) Z,, is an APT of (MD); or b) Z,, is unbounded (and hence, non-convergent).

A key challenge in proving Theorem 1 is that Assumptions (Al) and (A2) allow for
very general error processes W, in (RM), including cases where W,, is non-zero-mean
(b, # 0) and/or unbounded, either with positive probability or in all its moments (e.g.,
sup,, E[||W,]|9] = oo for all ¢ > 2). Because of this, earlier foundational results on asymptotic
pseudotrajectories [6, 8] do not apply, and we need to employ a series of direct (sub)martingale
convergence arguments to control the quadratic variation of Z,,. The precise argument relies
on a pathwise version of the Burkholder-Davis—Gundy (BDG) maximal inequality [33], but
the details are fairly involved so we defer them to the supplement.

4.3. Applications and examples. Applying Theorem 1 requires verifying Assumptions (A1)
and (A2) for the algorithmic framework of Section 3. However, even though the noise U(z;w)
in (SFO) is assumed zero-mean and sub-Gaussian, this does not imply that the generalized
error term W,, = U,, + b,, in Algorithms 1-5 enjoys the same guarantees. For example, the
RM representation of Algorithms 2—4 has non-zero bias, while Algorithm 5 exhibits both
non-zero bias and unbounded variance (the latter behaving as O(1/2) with 6, — 0 as
n — 00).

In the following proposition we prove that, for a wide range of parameters, Algorithms 1-5
indeed generate asymptotic pseudotrajectories of (MD).

Proposition 1. Let Z,, be a sequence generated by any of the Algorithms 1-5. Assume further
that:
a) For first-order methods (Algorithms 1-4), the algorithm is run with SFO feedback
satisfying (2) and a step-size 7y, such that A/n < ~, < B/(logn)'*¢ for some A, B, >
0.
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b) For zeroth-order methods (Algorithm 5), the algorithm is run with parameters v, and
8n such that lim,, (v, + 6,) = 0, Y., v = 00, and Y., Y2/02 < oo (e.g., o = 1/n,
6 = 1/n1/3).
Then, with probability 1, one of the following holds: a) Z, is an APT of (MD); or b) Z, is
unbounded.

Remark 4.1. We note that the requirements for (SFO) are closely linked to the assumptions
for 7,: for instance, one can remove the sub-Gaussian tail and impose only that U(z;w) in

(SFO) is bounded in L? for some ¢ > 2, and the conclusion of Proposition 1 still holds as
14q/2

long as y . vn < 0.

We conclude this discussion with a remark on the boundedness clause for Z,, in Theorem 1
and Proposition 1. Clearly, if Z, is unbounded, it cannot converge to a solution of (SP),
so we need not go further in examining the failure of (RM) as a solution method. Still, for
completeness, we provide in the supplement a coercivity condition for & which guarantees
that Z,, is bounded with probability 1.

4.4. Convergence analysis. To proceed, it is important to recall that critical points alone
cannot capture the broad spectrum of algorithmic behaviors when (MD) is not a gradient
system: already in Fig. 1 we see a critical point surrounded by an ensemble of periodic orbits.
To account for this considerably richer landscape, we will need some more notions from the
theory of dynamical systems:

Definition 2. Let S be a nonempty compact subset of Z. We then say that:
a) S is invariant if ©4(S) C S for all t > 0.

b) S is attracting if it is invariant and there exists a compact neighborhood K of S such
that lim;_, o dist(©4(2),S) = 0 for all z € K.

¢) S is internally chain-transitive (ICT) if it is invariant and O|s admits no attractors
other than S.

Heuristically, ICT sets are characterized by the property that any two points in such a set
may be joined by a piecewise continuous chain of arbitrarily long segments of orbits of (MD)
broken by arbitrarily small jump discontinuities. As such, they account for a wide range
of invariant sets of (MD), ranging from stationary points and periodic orbits (cf. Fig. 1),
to homoclinic loops (trajectories that join a unstable critical point to itself), limit cycles
(isolated periodic orbits), and many others.

Our next result shows that, with probability 1, any limit point of (RM) lies in an ICT set
of ®:

Theorem 2. Suppose that (RM) is run with a step-size sequence 7y, such that ) ~vn = 00,
lim,, v, = 0. If Assumptions (A1) and (A2) hold, then, with probability 1, we have: a) Z,
converges to an ICT set of ®; or b) Z, is unbounded (and hence, non-convergent).

Corollary 1. Let Z,, be a sequence generated by any of the Algorithms 1-5 with parameters
as in Proposition 1. If Z, is bounded, then, with probability 1, it converges to an ICT set of
.

The proof of Theorem 2 builds on a series of deep results in [8]; see the supplement.
In plain terms, the theorem asserts that any trajectory of (RM) is either unbounded or
eventually converges to an ICT set, which is “infinitely close” to the long-term orbits of
the mean dynamics (MD). In particular, it rules out any other type of asymptotic behavior
(convergent or non-convergent).
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In gradient systems — i.e., when V = —V f for some f: Z — R — the only ICT sets of
(MD) are connected sets of critical points of f (for a detailed statement and proof, see the
supplement). As a result, we can effortlessly conclude that any RM scheme exhibits the same
asymptotic behavior in minimization problems: they converge to connected components of
critical points of f.

At the other end of the spectrum, in the bilinear objective ®(x,y) = xy, we show in
the supplement that any tuple (z,y) € R? belongs to an ICT set of ®. The most crucial
implication of this observation is that although there exist many non-critical convergent sets
in bilinear games, none of these can be an attractor: for any bounded region S, there always
exists z ¢ S such that, no matter how close z is to S, the mean dynamics (MD) initialized
at z will stay at a positive distance from S.

Importantly, in the full space of min-max problems, the two settings described above are
both outliers: mixing a gradient system with a bilinear component can give rise to isolated
periodic attractors (limit cycles) and other forms of attracting ICT sets that cannot be
observed in either gradient systems or bilinear games. Indeed, our final result in this section
shows that, while (SEG) and/or (OG/PEG) might be capable of eliminating periodic orbits
in bilinear games [4, 25, 30, 46, 57|, these methods fail to escape spurious (i.e., non-critical)
attractors arising in generic non-convex,/non-concave objectives (see also Example 5.1 for a
visual illustration). The formal statement is as follows:

Theorem 3. Let S be an attractor of (MD) and fix some confidence level o > 0. If ~,, is
small enough and Assumptions (Al) and (A2) hold, there exists a neighborhood U of S,
independent of o, such that P(Z, converges to S|Z1 €U)>1— a.

Corollary 2. Let Z,, be a sequence generated by any of the Algorithms 1-5 with sufficiently
small 7y, satisfying the conditions of Proposition 1. Then P(Z,, converges to S|Zy € U) >
1—-oa.

As we show in the next section, Corollary 2 can have catastrophic implications for the
convergence of min-max optimization algorithms.

5. SPURIOUS ATTRACTORS: ILLUSTRATIONS AND EXAMPLES

We now provide concrete examples of attracting ICT sets consisting entirely of non-
critical points. For illustration purposes, we focus on the simple case X = )Y = R with
polynomial objectives; of course, all examples below can be suitably generalized to higher
dimensions. Despite their rudimentary character, these examples already reveal many
unexpected phenomena that are unknown in the context of non-convex minimization (or
convex-concave saddle-point problems).

v Example 5.1 (Almost bilinear % bilinear, instability % escape). Consider an arbitrarily
small perturbation of a bilinear game:

(I)(xa y) =xy + 5¢(y)7 (8)
where ¢ > 0 and ¢(y) = %yQ — iy‘l. This problem admits an unstable critical point at the
origin; further, using a general criterion provided in the supplement, one can prove, for
€ small enough, the existence of an attracting ICT set S in a neighborhood of the circle
{z :||z]|* = 4/3}. Thus, any of the RM schemes of Section 3 gets trapped by S; see Fig. 2(a)
for an illustration for (SEG).

This example brings two issues of existing studies to light. First, it shows that “almost
bilinear games” can still trap many methods for solving exact bilinear games. Second, in
contrast to minimization problems, the region around an unstable critical point can in fact
be fully stable. Because of this, care needs to be taken when interpreting algorithms that
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Figure 2: Spurious limits of min-max optimization algorithms. From left to right:
(a) (SEQG) for (8) with £ = 0.01; (b) “forsaken solutions” of (SEG); (c) “forsaken
solutions” of symplectic gradient adjustment (SGA). The red curves present
trajectories with different initialization; non-critical ICT sets are depicted in white;
the blue curves represent an time-averaged sample orbit.

are characterized as “locally avoiding unstable critical points”, since they might be incapable
of escaping their neighborhoods. A

v Example 5.2 (“Forsaken” min-max points). Suppose we apply Algorithms 1-5 to the
objective

®(z,y) = x(y — 0.5) + o(x) — d(y) (9)
where ¢(z) = 122 — $2* + £25. This problem has a desirable min-max solution at (z*,y*) =
(0,0.5). However, we prove in the supplement that there exist two spurious limit cycles that
do not contain any critical point of ®. Worse, the limit cycle closer to (z*,y*) is unstable
and repels any trajectory that comes close to the solution; see Fig. 2(b) for an illustration for
(SEG). Solutions that are “shielded” by spurious limit cycles in this way are unlikely to be
visited by existing algorithms; to the best of our knowledge, no research has been conducted
to tackle such problematic cases. A

v Example 5.3 (Second-order methods). Thanks to the efficient implementation of Hessian-
gradient multiplications [67], a popular second-order method for min-max optimization in
machine learning is the Hamiltonian descent method [1]. The idea is simply to run SGD on
f=1Ive|?*/2, giving

Zny1 = Zn — W (Zn)VO(Z,). (HD)

As a (discretized) gradient system, our theory in Section 4 shows that (HD) does not possess
ICT sets other than critical points. However, a serious issue of (HD) is that it ignores the sign
of gradients, i.e., it does not distinguish between minimization and maximization. For this
reason, it has mostly been used as a gradient penalty scheme by mixing (HD) (or its variants)
with (SGDA), giving rise to a number of other second-order methods such as symplectic
gradient adjustment (SGA) [5] and consensus optimization (ConO) [58]. As in Section 3,
one can cast these algorithms as RM schemes with V(Z,) replaced by (I — AJ(Z,))V(Z,),
where A is the regularization parameter. The analysis can then proceed as in Section 4 by
replacing (MD) with the appropriate continuous system.

Fig. 2(c) shows the spurious convergence of SGA with A = 0.2 applied to (9). The ICT
sets of SGA are only slightly different from Algorithms 1-5 and, in a certain precise sense,
are perturbations thereof (so they suffer the same symptoms); see the supplement for more
algorithms and details. A
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(b) Adaptive algorithms for (9).

We conclude with two remarks of a practical nature. First, Fig. 2 shows that the common
tweak of averaging the iterates can force the trajectories to halt at non-critical points, and
this convergence is by no means min-max optimal. To our knowledge, this provides the
first explicit instances where training can get stuck even with non-vanishing gradients, a
phenomenon often observed in training GANs.

Second, in Figs. 3a—3b, we report the behaviors of popular adaptive algorithms in training
GANSs, including Adam [40] and its extra-gradient variant [30], both with hyperparameters
set to the default values in PyTorch. The result reveals a worrisome trend: while both Adam
and ExtraAdam are able to somewhat mitigate the cycling of (8), this nonetheless comes at
the price of converging to the unstable critical point (0,0) (which is in fact a local max-min,
the opposite of a desirable solution). On the other hand, as all RM schemes, both adaptive
methods fail to reach the “forsaken” solutions in Example 5.2.

Finally, we stress that the purpose of examining these practical tweaks is not to prove
that they will always fail (we have not performed extensive hyperparameter search). Rather,
our aim is to point out that they cannot consistently serve as off-the-shelf solutions to the
pathological ICT sets, and thus warrant a novel approach in studying min-max optimization
problems.

APPENDIX A. ASYMPTOTIC PSEUDOTRAJECTORIES

In this appendix, we discuss how the algorithms discussed in Section 3 fit within the
general stochastic approximation framework of Section 4.2. Specifically, we prove the general
conditions of Theorem 1 and Proposition 1 which guarantee that Algorithms 1-5 generate
asymptotic pseudotrajectories of the mean dynamics (MD).

A.1. Generalities and preliminaries. Before doing so, we will require some background
material on asymptotic pseudotrajectories. Following Benaim and Hirsch [8] and Benaim
[6], we first recall the definition of the “effective time” 7,, = Y_}'_ | % as the time that has
elapsed at the n-th iteration of the discrete-time process Z,,; recall also the definition (6) of
the continuous-time interpolation Z(t) of Z,, as

t—1n

Z(t) = Zn + (Zn1— Zn) (6)

7-nJrl — Tn

We will further require the “continuous-to-discrete” correspondence

M(t)=sup{n>1:t>7,} (A1)
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which measures the number of iterations required for the effective time 7, of the process to
reach the timestamp ¢; for future use, we also define the quantity

M, =M, (T)=M(r, +T). (A.2)

Finally, given an arbitrary sequence A,,, we will denote its piecewise constant interpolation
as

A(t)= A, forallté€ [r,,Thi1], n > 1. (A.3)

Using this notation, the (affinely) interpolated process Z(t) can be expressed in integral form
as

Z(t) = Z(0) + /O V(Z(s)) + W(s)] ds (A.4)

where W,, denotes the generalized error term of (RM).
With all this in hand, Benaim [6, Prop. 4.1] provides the following general condition for
Z(t) to be an APT of the mean dynamics (7):

Proposition A.1. Suppose that Z(t) is bounded and satisfies the general condition
tlim At;T)=0 forallT >0, (A.5)

where

ft+h W(s) dsH. (A.6)

A(t;T) = SUpoghgT’ ¢

Then, Z(t) is an APT of (MD).
A.2. Proof of Theorem 1. Our proof of Theorem 1 revolves around the direct verification of

the requirement (A.5) of Proposition A.1 via the use of maximal inequalities and martingale
limit theory.! For convenience, we restate the theorem below in full:

Theorem 1. Suppose that (RM) is run with a step-size policy v, such that ), ~vn = 00,
lim,, v, = 0, and Assumptions (A1)—(A2) hold. Then, with probability 1, one of the following
holds: a) Z, is an APT of (MD); or b) Z, is unbounded (and hence, non-convergent).

Proof. Our proof relies on the Burkholder-Davis—Gundy (BDG) inequality [18, 33] which
bounds the maximal value of a martingale S,, via its quadratic variation as

o E lZ(Sk — Sp-1)?

k=1

S]El:knllax |Sk|2:| S OQE

> (Sk - sk_l)Q] : (BDG)

k=1
where c2,Cy > 0 are universal constants. As such, applying (BDG) to the martingale
Sm =Y pe,, 7Us (after an appropriate shift of the starting time), we get

> wUi

2

My,
E| sup < GE|D 47Ukl
M, Tn+T
= (s Z Vol = Cz/ 72 (s)52(s) ds, (A7)
k=n Tn
where M,, = M,,(T) = M (7, + T) is defined as in (A.2). Now, mimicking (A.6), let
t+h7
Ao(t;T) = sup U(s) ds||. (A.8)
0<h<T||Jt

1Benaim [6] provides a set of sufficient conditions for (A.5) to hold when Z(t) is generated by a RM
scheme with B, = 0 and sup,, on, < co; however, our setting requires a more general treatment.
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so our previous bound shows that
t+T
E[Ao(t;T)?] < Cg/ 72 (5)72(s) ds. (A.9)
t

We will proceed to show that lim;_, o, Ag(¢;T") = 0 for all T > 0 by considering the sequence
of intervals [kT, (k 4+ 1)T] and using the Borel-Cantelli lemma to show that Ay (kT;T) — 0
as k — oo. Indeed, we have

Z]E[AO(kT; T)% < Cy /000 72 (5)72(s) ds = Cy Z Y202 < oo (A.10)

k=1
with the last step following from Assumption (A2). Then, if we consider the event & (g) =
{Ay(kET;T) > e}, Chebysev’s inequality gives

> e E[Ao (KT T)?
> P(&k(e)) < 21 Bl g( 1)) < 00, (A.11)
k=1 €
and hence, by the Borel-Cantelli lemma, we get
P(limsup&(s)) =0. (A.12)
k—o0

This shows that, with probability 1, we have Ag(kT;T) < ¢ for all but a finite number of
k; put differently, the event &£(g) = {A¢(kT; T) occurs infinitely often} = N, Ur—,, €k ()
has P(€(g)) = 0. Therefore, as a union of probability zero events, we have

P(liknigf Ao(KT;T) > o) = IP(U 5(1/n)> < ;P(S(l/n)) =0, (A.13)

n=1
ie., Ag(kT;T) — 0 with probability 1.
Thus, going back to the requirements of Proposition A.1, we get

KT+h KT+h B
A(KT;T) = sup / W (t)dt|| = sup / [U(t)+ b(t)] dt
0<h<T||JkT 0<h<T||JrT
KT+h

< Ao(kT;T) + sup / B(t) dt.

0<h<T JrkT
< ; B
< Ao(KT:T) + T max BT + h). (A.14)

Given that limg_,o, By = 0, the above shows that A(kT;T) — 0 as k — co. Moreover, for
all t € [T, (k 4+ 1)T], we have A(t;T) < 2A(KT;T) + A((k+ 1)T;T) so A(t;T) — 0 with
probability 1. With T > 0 arbitrary, we conclude that (A.5) holds with probability 1, and
our claim follows from Proposition A.1. [ ]

To proceed, it will be convenient to consider a stronger version of Assumption (A2):

P(|Un]| > | Fp) < 267302 (A2))

for some 0 > 0 and alln=1,2,..., ¢t > 0. Some of the RM schemes presented in Section 3
will verify this stronger criterion; see Appendix A.3 below.

Under this assumption, we obtain the following generalization of a criterion due to Benaim
and Hirsch [8]:

Proposition A.2. Suppose that (RM) is run with a step-size policy v, such that A/n < v, <
B/(logn)** for some B,e > 0. If Assumptions (A1) and (A2') hold, then, with probability
1, a) Z, is an APT of (MD); or b) Z, is unbounded (and hence, non-convergent).
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Proof. As in the proof of Theorem 1, our approach will hinge on the proviso (A.5) of
Proposition A.1 and, in particular, controlling the quantity Ag(¢;7T) defined in (A.8). We
proceed step-by-step:

Step 1: A union bound for the tails of sup, -, <y |3, %Ukll- Up to a multiplicative
constant that depends only on the dimension of the problem, we can assume without loss of
generality that ||-|| is the sup-norm ||z|| = max;|z;|. In this case, we have ||z|| > ¢ if and only
if there exists a basis vector e; of RY such that (z,e;) >t or (z,e;) < —t. We thus get the
union bound
P sup
n<m<Mp

Z’YkUk

k=n

d m
> t> < Z ( sup Z(’kak,ei> > t)
L
¥

n<m<M,
su Uk, >t]. A.15

" k=n
n k n

In view of this, we will focus below on the tail probability P(sup,,<,,<r, > pep (V%Uk, 2)) for
arbitrary z € R%.

Step 2: Exponential tail concentration. By standard arguments, Assumption (A2') is equiv-
alent to asking that
Elexp((z, Up)) | Fn] < exp(a?]2]|?/2). (A.16)

With this reformulation in mind, consider the process

Qn(z) = €Xp <Z<Za7kUk> - % 272||z||2> . (A17)

k=1 k=1

Then, by construction

n 9 n
El@-() | 7] = leXp (Z 2. wUk) - C;sznzn?) H
k=1 k=1

~ Qs B [exp({arali) - T2 ) | 7] < Qunte), (a9

i.e., Q. (2) is a supermartingale relative to JF,,.? Moreover, we have:

P( sup Z<kak,z>>a>=P< sup mez)’exp@zwz||z||2>>exp<a>>
k=n

n<m<M,, k=n n<m<M, Qn z
M,
Qm(2) 02 <X 5 o
=P su exn| 2= . > expla
<nSm§pM" Qn(2) Pl 3 I;%” I | > exp(a)
2 M,
< sup Q@(z) >exp< Z%||z||2>)

M,
E[ up Qm(z)]exp@ vZ|z2—a>

n<m<M, @n(z) =

o2 Un
< exp<2 S Rl - a) (A.19)
k=n

2Recall here that, by the definition of the filtration F,, Uy, is Fp41-measurable but not F,-measurable.
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where we used Markov’s inequality in the last Step and the fact that @Q,,(z) is a submartingale

in the penultimate one. Thus, letting ¥ = o2 Zk 72 ||z||? and taking z +— (t/X)e;, t + t2/%,
we get

]P’( sup Z(’kak,ei) > t) < exp( o ) (A.20)

nEm<Mn p 2, 2302
Step 3: Closing the gap. By assumption, Zk ” 2 < T2 < T/(logn)*t2?¢. Hence
2t2 2 1 24-2¢ 22 (log n)l+2e
() o) i
2> 5t Vi 2
Therefore
C}
< sup Z YUk > t) 2 (A.22)
n<m<M,, P

for some suitable constant C > 0. With notation as in the proof of Theorem 1, this implies

that
ZP (Ao(KT;T) < o) (Zk2> < 0. (A.23)

k=1
Thus, by applying the Borel-Cantelli lemma as in the proof of Theorem 1, we conclude
that Ag(kT;T) — 0 with probability 1. The rest of the arguments required to show that
lim; o0 A(t; T) = 0 for all T follow the lines of the proof of Theorem 1, so we omit them. B

A.3. Proof of Proposition 1. We are now in a position to prove that the generalized RM
schemes presented in Section 3 comprise asymptotic pseudotrajectories of the mean dynamics
(MD). For convenience, we state the relevant result below:

Proposition 1. Let Z,, be a sequence generated by any of the Algorithms 1-5. Assume further
that:
a) For first-order methods (Algorithms 1-4), the algorithm is run with SFO feedback
satisfying (2) and a step-size 7, such that A/n < v, < B/(logn)'*¢ for some A, B,e >
0.
b) For zeroth-order methods (Algorithm 5), the algorithm is run with parameters 7y, and
8n such that lim, (v, + 6,) = 0, Y., v = 00, and Y., 72/02 < oo (e.g., Yo = 1/n,
6 = 1/n/3).
Then, with probability 1, one of the following holds: a) Z, is an APT of (MD); or b) Z, is
unbounded.

Proof. We proceed method-by-method:

Algorithm 1: Stochastic gradient descent/ascent. For (SGDA), we have W,, = U,, = U(w,,)
and b, = 0, so Assumption (Al) is satisfied automatically (since B, = 0). Moreover,
under the stated assumptions for (SFO), U, is sub-Gaussian, so our claim follows from
Proposition A.2.

Algorithm 2: Alternating stochastic gradient descent/ascent. For (alt-SGDA), we have b,, =
(0, Vy(Xnt1,Yn) — Vy(Xn,Y2)), and U, = (Uppn,Uy,n). Under the stated assumptions for
(SFO), U, satisfies Assumption (A2'), so we are left to show that Assumption (A1) holds,
i.e., that b, — 0. To that end, since V is Lipschitz, we have

||an = HVy(Xn+17Yn) - Vy(XnaYn)H < LHXn-&-l - Xn”v (A-24)
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where L denotes the Lipschitz modulus of V. Hence, by the definition of (alt-SGDA), we get
[bnll < YLl Vy(Xn41, Ya) + Uyl < 1 LlVy (Xng1, Ya) | + 1 L[ Uy,nl (A.25)

If Z, is bounded, we also have sup,, ||V, (Xn+1,Y,)|| < 0o, so the first term above vanishes
as n — oo (recall that lim,, v, = 0). As for the second, we have
P(|U,|| > logn) < 2e~(oam?/(20%) — gy~ logn/(20%) (A.26)

In turn, this implies that > - P(||U,| > logn) < oo so, by the Borel-Cantelli lemma, we
have ||Uy,|| = O(logn) with probability 1. Hence, by our assumptions for the method’s

step-size, we get
logn 1
Ul < 3101 = 0 o) = () (A2

i.e., B, — 0 with probability 1. Our claim then follows from Proposition A.2.
Algorithm 3: Stochastic extra-gradient. For (SEG), we have U, = U(Z,;w;) and b, =

n

V(Z})—V(Z,), so Assumption (A2") holds by default. For Assumption (A1), arguing as in
the case of Algorithm 2 above, we have
1bnll = IV(Z7) = V(Zn)ll < LIZ] — Z||
= WlV(wn)ll = LV (Zy) + Ulwn) ||
< LIV (Zn)ll + LIV (wn)ll, (A.28)
Thus, by Proposition A.2, we conclude that Z, is an APT of (MD).
Algorithm 4: Optimistic gradient. For (OG/PEG), we have U,, = U(w;}) and b, = V(Z,]) —

V(Z,). so Assumption (A2') again holds by default. The bias term can then be bounded
exactly as in the case of Algorithm 3, so our APT claim follows again by Proposition A.2.

Algorithm 5: Simultaneous perturbation stochastic approximation. Because of the algo-
rithm’s different oracle structure (zeroth- vs. first-order feedback), the analysis of (SPSA) is
different. We begin with the algorithm’s bias term, given here by

by, = E[V,, | Fn] — V(Z,) (A.29)
with
Vi = 2(d/6,) ®(Zy, + Onwn) wn, (A.30)
denoting the method’s one-shot SPSA estimator. To bound it, let
Vi = E[Vip | Fy] (A.31)

denote the i-th component of V,, € R? after having averaged out the choice of the random
seed w,, (which, by default, is not F,,-measurable). We then have

d 1
where, as per our discussion in Section 3, the “+” sign is equal to —1 if ; € Ex and +1
if e; € £&y. Then, by the mean value theorem, there exists some Z,, in the line segment
[Zn — Opei, Zn + 5nei} such that
Since V is Lipschitz continuous, it follows that

|Ui,n - Vzn(Zn)| = |Vi,n(Zn) - VZ,n(Zn)| < L”Zn - ZnH = O(an) (A-34)
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since Z,, € [Zy —bnei, Zy+0ne;]. Finally, for the oracle’s variance, we have ||V, [|> = O(1/62)
by construction so, under the stated assumptions for 7, and §,,, Assumption (A2) is satisfied
and our claim follows from Theorem 1. ]

We conclude this appendix with a simple coercivity criterion which guarantees that the
iterates of an iterative method of the general form (RM) remain bounded:

Proposition A.3. Suppose that V' satisfies the coercivity condition
lim inf w < 0. (A3)
lzll>oo |2l
Then, under Assumptions (A1) and (A2), the sequence Z, generated by (RM) is bounded
(a.s.).
Corollary 3. Under Assumptions (A1)—-(A3), the iterates Z,, of (RM) comprise an APT of
(MD).
Proof. To begin, observe that, under Assumption (A3), the quadratic penalty function
E(z) =Y, 22/2 is a Lyapunov function for (MD) as ||z|| — oc. Indeed, by Assumption (A3),
there exists some R > 0 such that, whenever ||z|| > R, we have

dFE . K
= = (VE(2),2) = (VE(2), V(2)) < =5 [|II* (A.35)
where £ = — liminf| 00 (V(2), 2) /| 2]|* > 0. This shows that trajectories of (MD) cannot

escape to infinity so it is plausible to expect the same to hold for (RM).
Our proof of this fact follows a direct stabilization technique due to Kushner and Yin [43].
Specifically, going back to (RM), a simple expansion gives

1
E(Zn-‘rl) = E(Zn) + '7n<Vna Zn> + 57121‘“/71”2

< E(Zn) + 7V (Zn)s Zn) + 1{Wh, Zn) + '7721||VnH2 (A.36)
Hence, taking (conditional) expectations, we obtain:
E[E(Zn 1) | Ful < E(Zn) +9{V(Zn) + b, Zn) + v B[ Va|* | ). (A.37)

To proceed, note that, by Assumptions (A1) and (A2), we have

E [Z TlVEI Lz, 1<ry | < o0, (A.38)
n=1
while, otherwise
E[|[Vall?| Fu] < C(02 + (5/2)[| Za|?)  whenever || Z,| > R. (A.39)
Consider now the process
S, = E[Zan YllVall® Ly zei<ry ‘ fn] (A.40)
and let E,, = E(Z,,) + Sp,. By definition, E,, is non-negative; moreover, by (A.36), we get
KYn Cra
ElE; 11 — En| Fa] < *7||an|2 + =3 1Z )% (A.41)

Since 7, — 0, it follows that E,, is eventually a supermartingale: specifically, if no = sup{n :
Cvy, > k} (with the standard convention sup @ = —o0), we have E[E, 41 | F,] < E, for all

3In the above and throughout this proof, we assume that ||-|| is the ordinary Euclidean norm on R¢;
this assumption is only made for notational convenience and to avoid carrying around many multiplicative
constants.
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n > ng. Since E[E,,] < co, Doob’s submartingale convergence theorem subsequently implies
that F,, converges with probability 1 to some non-negative random variable F,. Since S,, — 0
with probability 1 (by Assumption (A2)), we conclude that || Z,|| = (2/k)E(Z,) = (2/k)Ex
(a.s.), and our claim follows. [ |

APPENDIX B. CONVERGENCE ANALYSIS

With all this preliminary work in hand, we are finally in a position to prove Theorems 2
and 3. The heavy lifting for the former is provided by the fact that, under the requirements
of Theorem 1 and/or Proposition 1, Z, is an APT of the mean dynamics (MD), so it inherits
its limit structure. The latter requires completely different techniques and involves a much
finer analysis of the process in hand.

B.1. Convergence to ICTs. We begin with Theorem 2, which we restate below for conve-
nience:

Theorem 2. Suppose that (RM) is run with a step-size sequence 7y, such that ) v, = 00,
lim,, v, = 0. If Assumptions (A1) and (A2) hold, then, with probability 1, we have: a) Z,
converges to an ICT set of ®; or b) Z, is unbounded (and hence, non-convergent).

Proof. We consider two cases. First, if Z,, is unbounded, there is nothing to show. Otherwise,
if Z,, is bounded, Theorem 2 shows that it is an APT of the mean dynamics (MD). Now,
let £ =,5ocl(Z(t,00)) be the limit set of Z(t), i.e., the set of limit points of convergent
sequences Z(tn) with lim, ¢, = co. Our claim then follows by the limit set theorem of
Benaim and Hirsch [8, Theorem 8.2]. ]

As we discussed in the main part of our paper, the ICT sets of ® may exhibit a wide
variety of structural properties (limit cycles, heteroclinic networks, etc.). As a complement
to this, we show below that, in gradient systems (V = —V f for some f: Z — R), ICT sets
can only be compoments of equilibria. Specifically, building on a general result by Benaim
[6], we have:

Proposition B.1. Suppose that V(z) = —Vf(z) for some C%-smooth potential function
f: Z — R with a compact critical set crit(f) = {z* : Vf(2*) = 0}. Then, every ICT set S
of (MD) is contained in crit(f); moreover, f is constant on S. In particular, any ICT set
of (MD) consists solely of critical points of f.

Proof. Under the stated conditions, the critical set Z* := crit(f) of f coincides with the set
of rest points of (MD). Moreover, by Sard’s theorem [44], f(Z*) has zero Lebesgue measure
and hence empty interior. Our claim then follows from Proposition 6.4 of Benaim [6]. ®

As another elementary illustration in addition to the gradient systems, one can show
that for bilinear games ®(x,y) = zy, the ICT sets are annular regions of the form {z :
r <|z|| £ R, 0 <r < R}. This can be easily seen by considering the widely known
Hamiltonian function H(x,y) = 22 + y?, which satisfies H = 0 provided (z,y) follows (MD).
An immediate consequence of this fact is that any point on R? lies in some ICT set of (MD),
which further implies that there is no bounded attracting region, i.e., attractors.

B.2. Convergence to attractors. We now proceed with the analysis of RM schemes in the
presence of an attractor; the relevant result is Theorem 3:

Theorem 3. Let S be an attractor of (MD) and fiz some confidence level o > 0. If 7, is
small enough and Assumptions (Al) and (A2) hold, there exists a neighborhood U of S,
independent of o, such that P(Z, converges to S|Z1 €U)>1— a.
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Because of the generality of our assumptions, the proof of Theorem 3 requires a range of
completely different arguments and techniques. We illustrate the main steps of our technical
trajectory below:

(1) The first crucial component of our proof is to establish an energy function for (RM)
in a neighborhood of §. To do this, we rely on Conley’s decomposition theorem
(the so-called “fundamental theorem of dynamical systems”) which states that the
mean dynamics (MD) are “gradient-like” in a neighborhood of an attractor, i.e., they
admit a (local) Lyapunov function.

(2) Because of the noise in (RM), the evolution of E along the trajectories of (RM)
could present signifcant jumps: in particular, a single “bad” realization of the noise
could carry Z,, out of the basin of attraction of S, possibly never to return. A major
difficulty here is that the driving vector field V' is not assumed bounded, so it is not
straightforward to establish proper control over the error terms of (RM). However,
we show that, with high probability (and, in particular, with probability at least
1 — ), the aggregation of these errors remains controllably small; this is the most
technically challenging part of our argument and it unfolds in a series of lemmas
below.

(3) Conditioning on the above, we will show that, with probability at least 1 — v, the
value of the trajectory’s energy cannot grow more than a token threshold ¢; as a
result, if (RM) is initialized close to S, it will remain in a neighborhood thereof for
all n (again, with probability at least 1 — «).

(4) Thanks to this “stochastic Lyapunov stability” result, we can regain control of the
variance of the process and use martingale limit and maximal inequality arguments
to show that Z, converges to S.

In the rest of this section, we make this roadmap precise via a series of technical lemmas
and intermediate results.

A local energy function for (RM). We begin by providing a suitable (local) energy function
for (MD). Indeed, since S is an attractor, there exists a compact neighborhood K of S, called
the fundamental neighborhood of S, and having the defining property that dist(0:(z),S) — 0
as t — oo uniformly in z € K. Since all trajectories of (MD) that start in K converge to S,
there are no other non-trivial invariant sets in IC except S. As a result, with I compact,
Conley’s decomposition theorem for dynamical systems [23] shows that there exists a smooth
Lyapunov — or “energy” — function E: K — R such that (i) E(z) > 0 with equality if and
only if z € S; and (ii) E(z) = (VE(2),V(2)) <0 for all z € K\ S (implying in particular
that F(O(z)) is strictly decreasing in ¢ whenever z € I\ S).

In the discrete-time context of (RM), the energy E, = E(Z,) of Z, may fail to be
decreasing (strictly or otherwise). However, a simple Taylor expansion with Lagrange
remainder yields the basic energy bound

Ent1 < En +1{VE(Z4),V(Z3)) + Yk + ¥nton + 7207, (B.1)
where the error terms &,, ¢, and 6,, are defined as
& =(VE(Z,),U,) (B.2a)
Un = Byl VE(Zn)|| + v 5B;, (B.2b)
0y = BIIV(Zn) + Un|? (B.2¢)

with S denoting the strong smoothness modulus of E over the compact set K. Clearly, each
of these error terms can be positive, so F,, may fail to be decreasing; we discuss how these
errors can be controlled below.
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Error control. We begin by encoding the aggregation of the error terms in (B.1) as

My, = s (B.3a)
k=1
and
S =Y [tk +1707] (B.3b)
k=1
Since E[¢, | F,] = 0, we have E[M, |F,] = M,_1, so M, is a martingale; likewise,

E[S, | Fn] > Sn—1, so Sy, is a submartingale. Interestingly, even though M,, appears more
“balanced” as an error (because &, is zero-mean), it is more difficult to control because the
variance of its increments is

Ellynénl* | Ful = v EINVE(Z,), Un)* | Ful, (B4)

so the jumps of M,, can become arbitrarily big if Z,, escapes K (which is the event we are
trying to discount in the first place). On that account, we will instead bound the total error
increments by conditioning everything on the event that Z,, remains within C.

To make this precise, consider the “mean square” error process

R, =M} +S, (B.5)

and the indicator events
En=E(K)={Z,eKforall k=1,2,...,n} (B.6)
Hp =Hn(e) ={Rp <cforall k=1,2,...,n}, (B.7)

with the convention & = Hy = 2. Moving forward, with significant hindsight, we will choose
€ small enough so that

{z€ Z:E(z) <2 ++e} CK. (B.8)
and we will assume that Z; is initialized in a neighborhood U C K such that
UC{zeZ:E(z)<¢e} (B.9)

We then have the following estimates:

Lemma B.1. Suppose that Z; € U and Assumptions (A1) and (A2) hold. Then
(1) Eni1 €&, and Hps1 € Hy-
(2) Hn—l C 5n-

(8) Consider the “bad realization” event

Hy=Hpn1 \Hpn=Hpn_1N{R, > ¢}
={Ry<e fork=1,2,...,n—1 and R, > ¢}, (B.10)

and let ]:Bn = R, 1y, _, denote the cumulative error subject to the noise being “small”
until time n. Then:

E[Ry] < E[Rn-1] + %GBy + 11[26G% + (26 + G*)op + BBY) — e P(Ho1), (B
where G? = SUPze)c{||VE(Z)||2 +[V(2)II’} and, by convention, Ho = 9, Ry =0.

Proof. The first claim is obvious. For the second, we proceed inductively:

(1) For the base case n = 1, we have & = {Z, € K} D {Z; € U} = Q (recall that Z; is
initialized in & C K). Since Hy = €2, our claim follows.
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(2) Inductively, suppose that H,_; C &, for some n > 1. To show that H,, C Ent1,
suppose that R, < e forall k =1,2,...,n. Since H,, C H,,_1, this implies that &, also
occurs, i.e., Z, € K for all k =1,2,...,n; as such, it suffices to show that 7,11 € .

To do so, given that Z, € U C K for all k =1,2,...n, the bound (B.1) gives

Eri1 < Ep 4 o + Ynthn + 7202, forallk=1,2,...n, (B.12)
and hence, after telescoping over k =1,2,...,n, we get
Ent1 <Ei4+ M, + S, <Ei+ Ry + R, <e+Vete=2+ e (B.13)

We conclude that E(Z,41) < 2e 4+ /€, i.e., Z,41 € K, as required for the induction.
For our third claim, note first that
Ry = (M1 +7m€n)? + Sne1 + mthn + 7205
= R+ 2mEn M1 + 1280 + Yntn + 7205, (B.14)
so, after taking expectations:

]E[Rn | -Fn] =Ry—1 +2M,—17n E[fn | Fn] + E[%ngg + Yn¥n + 729721 |]:n} >R, (B.15)

i.e., R, is a submartingale. To proceed, let R, =R, 1y, , so

R, =Ry 11y, , +(Ry— Rp-1) 1y, _,
=Ry1ly, , —Roaly | +H(Re— Rpo1) L, o,
=R+ Ry~ Roo1) 1y, , —Roaly (B.16)
where we used the fact that H,,—1 = H,—2 \’;Q,hl so Ly, , =1y, ,—15 . Then, (B.14)
yields

Ry = Ry1 = 2My—17nén + Va4 Yt + 120 (B.17)
SO
E[(Ry — Rn—1) 1y, ] = 2E[vn My 10 13, ] (B.18a)
+ENAER Ty, ] (B.18b)
+ E[(yntn +7202) 1a,,_, ] (B.18¢)

However, since H,,—1 and M,,_; are both F,,-measurable, we have the following estimates:

(1) For the noise term in (B.18a), we have:
E[Mp 180 U3y, ] = E[My 1 13y, El&n [ Fu]] = 0. (B.19)
(2) The term (B.18b) is where the reduction to H,,_1 kicks in; indeed:
Elgn Uat,_] = Elly, , E[(VE(Z,), Un)* | Full

<E[ly,  IVEZ)PE[|U.LI? | Fnll {by Cauchy-Schwarz}
< E[le, [VE(Zn)|?E[|Unl? | Ful] {because Hy—1 C €}
< G202, {by Bq. (5b)}

where G? = sup_c {[VE(2)[* + [V (2)]*}.
(3) Finally, for the term (B.18c), we have:

[0, 13,_,] < 2BE[|V(Za)|* Le, +Ua|’] < 28(G* + 07), (B.20)
where we used the fact that 14, , < 1g < 1. Likewise,



22 Y. P. HSIEH, P. MERTIKOPOULOS, AND V. CEVHER

Thus, putting together all of the above, we obtain:
E[(Rn — Ru—1) 13,_,] <GBy + 72 [28G” + (28 + G*)os, + BBL). (B.22)

Going back to (B.16), we have R,_; > ¢ if ’;’:Ln_l occurs, so the last term becomes

ERn-11s |>cE[ly ] =cP(Hu1). (B.23)

Our claim then follows by combining Egs. (B.16), (B.20), (B.21) and (B.23). [ |

Containment probability. Lemma B.1 is the key to showing that Z,, remains close to S with
high probability: we formalize this in a final intermediate result below.

Proposition B.2. Fiz some confidence threshold o > 0. If (RM) is run with sufficiently
small vy, satisfying the conditions of Proposition 1, then

PHp|Z1eU)>1—a foralln=1,2,... (B.24)
i.e., Z remains within the basin of attraction K of S with probability at least 1 — a.

Proof. We begin by bounding the probability of the “bad realization” event H,, = Hy_1 \ Hon.
Indeed, if Z; € U, we have:
P(Hn) = P(Hn-1 \ Hn) = P(Hn-1 N {Ry > c})
o, X LR, >
(L3, -, x(Rn/e)]
[Rn]/e (B.25)

where, in the second-to-last line, we used the fact that R, > 0 (so 1(g, >} < Ry/e).
Telescoping (B.11) yields

E[R,] < E[Ro] + G Z Vi Br + Z%%Q% —€ Zp(ﬁkfl) (B.26)

k=1 k=1 k=1
where we set 02 = 28G? + (28 + G?)o? + BB2. Hence, combining (B.25) and (B.26) and
invoking Assumptions (A1) and (A2), we get > P(Hy) < L300 [veGBy +1i0i] <T/e
for some I' > 0. Now, by choosing v, sufficiently small, we can ensure that I'/e < «; therefore,

given that the events Hj are disjoint for all k =1,2,..., we get
IP’(U #k> => P(Hi) < a (B.27)
k=1 k=1
and hence:

P(H,) = P(ﬁ ﬂ;) >1-a, (B.28)

as claimed. m
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Convergence with high probability. We are finally in a position to prove the convergence of
generalized RM algorithms:

Proof of Theorem 3. By Proposition B.2, if Z,, is initialized within the neighborhood U
defined in (B.9), we have P(Z, € K| Z; € U) > 1 — « (note also that the neighborhood U is
independent of the required confidence level «). Since K is compact, if Z,, € K for all n, we
conclude by Theorem 1 that the continuous-time interpoloation Z(t) of Z,, is an APT of
(MD).

Now, if we write £ = (1,5, cl(Z(t,00)) for the limit set of Z(t), we have KN L # & by
the compactness of K and the fact that Z, € K for all n > 1; moreover, L is itself compact
as a closed subset of the compact set {©,(z) : 0 <t < T,z € K}. Since points in LN K
are a fortiori attracted to S under (MD) and £ is invariant under (MD), we conclude that
LNS # &. However, since L is internally chain-transitive (by Theorem 2) and internally
chain-transitive sets do not contain any proper attractors, we conclude that £ C S. This
shows that Z(t) — and, by consequence, Z,, — converges to S, as claimed. |

APPENDIX C. OMITTED PROOFS FOR SECTION 5

C.1. A general criterion for spurious ICT sets in almost bilinear games. We first provide
a generic criterion for the existence of spurious ICT sets in almost bilinear games (8); cf.
Lemma C.1. We then verify that the perturbation ¢(y) = %yz — iy‘l employed in Example 5.1
indeed satisfies the required conditions.

Lemma C.1. Let ¢(y) = >, axy® be an analytic function such that

k 21 1
2 : 2k I | —
= .1
k (lgkkh i % 0 (C )

has a solution with h > 0. Then, for small enough ¢, there is an ICT set of mean dynamics
(MD) with objective ®(x,y) = xy + c¢(y) such that it does not contain any critical point.

Proof. Recall the mean dynamics (MD):
2(t) = V(2(¥)).
In the case of ®(x,y) = zy + eé(y), (MD) reads:

{iz‘y . (C.2)

y=z+ed'(y)
The most important tool of the proof is the Abelian integral [21]:

I(h) = —?{gi)'dx (AT)

Yh

where h > 0 is a parameter and 7, is a family of ovals defined as in (2.3) of [21].
Suppose ¢(y) = ary”, so that ¢'(y) = kary*~. We choose v, = {z : ||z|| = h}. Then,
using the polar coordinate representation, we get

Hm:ffwm

0 if £ is odd,
= kak . k (03)

2hF 12, 2 if k is even.
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Since contour integrals are linear in the integrands, when ¢(y) = Y, axy* in (AI), we have

k .
21— 1
I(h) = 4> agkh® ]| T
k i=1

Therefore, I(h) = 0 if and only if (C.1) holds. By Theorem 2.4 in [21], the solution h*
of I(h*) = 0 then implies the existence of a limit cycle in a neighborhood of the oval
v = {z:||z]| = h*}. [ |

Finally, it is easy to verify that for ¢(y) = %yQ — iy‘*, the condition (C.1) is satisfied

with h* = %, thus implying the existence of a spurious ICT set near the neighborhood of

{22 2l = /43,

C.2. Proof of spurious ICT sets in Example 5.2. We show the existence of two spurious ICT
sets in Example 5.2.
The mean dynamics (MD) for (9) reads:

i=—(y—05)— 2z +223 —a°
. . C4
{yz§y+2y3y5 (C.4)
Define 72 := 22 + y2. Then straightforward calculations show that:
1d , b g
——r =zl
2 dt v
1 1
=—x(y—0.5) — 5;102 + 22 — 2% 4y — §y2 + 2yt —¢°
1
= 0.5z — 57“2 4+ 2rt — 0 4 3ay? 4 322yt — 4a?y?
1
= 0.5z — 57“2 +2rt — 0 4+ 2%y (3r? — 4). (C.5)

Substituting the value r? = % into (C.5), we get

1d , 14 16 64
~ o2 .49 . 222
sqr VTt gty oo
14
—0.5.’E+277
>0

since |z| < \/g on{r>0:r?= %}, whence 7 > 0 on {r > 0:7? = %} Likewise, one can
check that 7 < 0 on {r > 0 : 72 = 2}, and that there is no stationary point in the region
S:={r>0:% <r? <2} By the Poincaré-Bendixson theorem [79], there exists at least a
limit cycle in S.

Finally, it is easy to see that (z*,y*) = (0,0.5) is a stable critical point of (9). Since
the region § is trapping, Poincaré’s index theorem then dictates that there exists at least
another unstable limit cycle inside S, establishing the claim.

C.3. Second-order methods in Example 5.3 as perturbations. In this section, we discuss
how to cast existing second-order methods as an RM scheme with different driving vector
fields, and show that their ICT sets are similar to the first-order methods under practical
settings.

We will showcase on the consensus optimization (ConO):

Zni1 = Zn+ I =N (Z)V(Z,) (ConO)
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Figure 4: ConO with A = 0.2 applied to (9).

where A > 0 is the regularization parameter. Recalling the efficient implementation scheme
of Hessian-gradient multiplication [67], we make the following assumption on the stochastic
second-order oracles (SSO): when called at z = (x,y) with random seed w’ € €, an SSO
returns a random vector JV(z;w’) of the form

WNV(zw) = J(2)V(2) + U (z;0) (SSO)
where U’(2;w’) is assumed to be unbiased and sub-Gaussian as in (2). With these assumptions,
one can then proceed exactly as in Appendix A.3 for the (SGDA) and (alt-SGDA) cases to

show that ConO, and its alternating version, give rise to asymptotic pseudotrajectories of
the continuous-time dynamics:

A(t) = <I - )\J(z(t))> V(x(t).

Similarly, one can show (under appropriate assumptions of the oracles) the continuous-time
dynamics of symplectic gradient adjustment (SGA) is

At = (I Y (J(z(t)) —2J(Z(t))T>> V).

As explained in Example 5.3, it is undesirable to set a large number of A, since then we
are essentially treating min max and max min as the same problem. However, if A is small,
then by continuity, any stable (unstable) ICT set of (MD) remains stable (unstable) under
perturbations [79]. We therefore expect the ICT sets of various second-order algorithms in
Example 5.3 be to similar to that of first-order RM schemes.

C.4. Further comparisons. This section includes further comparison of the ICT sets of various
algorithms, and show that these existing methods all suffer from the spurious convergence
depicted in Section 5.

First, Fig. 4 demonstrates that the spurious ICT sets of ConO for (9) is similar to that of
SGA; cf. Fig. 2(c).

Second, we have included yet another second-order method, the Competitive Gradient
Descent (CGD) [77], in Fig. 5(a). For ease of comparison, we run (OG/PEG) with the same
initialization in Fig. 5(b). As is evident from the figure, both algorithms perform similarly
and converge straight to the spurious ICT set.

Finally, we report the bahvior of various algorithms applied to the “almost bilinear game”
(8). In this case, all algorithms fail to escape the spurious ICT set, with the sole exception of
ConO. Intriguingly, ConO converges to the unstable critical point. A plausible explanation
of this phenomenon is provided by [1], where it is shown that the Hamiltonian descent (HD)
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Figure 5: Spurious limits of min-max optimization algorithms from the same
initialization. From left to right: (a) CGA for (9); (b) (OG/PEG) for (9); (c)
Algorithms for (8).

converges to critical points for any almost bilinear game. Therefore, it is not surprising that
ConO, being a mixture of SGDA and HD, also enjoys similar guarantees. Such a convergence
is nonetheless highly undesirable in our example, echoing the concern that gradient penalty
schemes cannot distinguish (local) min max from max min.
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