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Compared to minimization problems, the min-max landscape in machine learning applications is considerably more convoluted because of the existence of cycles and similar phenomena. Such oscillatory behaviors are well-understood in the convexconcave regime, and many algorithms are known to overcome them. In this paper, we go beyond the convex-concave setting and we characterize the convergence properties of a wide class of zeroth-, first-, and (scalable) second-order methods in non-convex/nonconcave problems. In particular, we show that these state-of-the-art min-max optimization algorithms may converge with arbitrarily high probability to attractors that are in no way min-max optimal or even stationary. Spurious convergence phenomena of this type can arise even in two-dimensional problems, a fact which corroborates the empirical evidence surrounding the formidable difficulty of training GANs.

Introduction

Consider a min-max optimization -or saddle-point -problem of the form

min x∈X max y∈Y Φ(x, y) (SP)
where X , Y are subsets of a Euclidean space and Φ : X × Y → R may be non-convex/nonconcave. Given an algorithm for solving (SP), the following fundamental questions arise:

When does the algorithm converge? Where does the algorithm converge to?

( )

The goal of this paper is to provide concrete answers to ( ) and to study their practical implications for a wide array of existing methods.

Min-max problems of this type have found widespread applications in machine learning in the context of generative adversarial networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF], robust reinforcement learning [START_REF] Pinto | Robust adversarial reinforcement learning[END_REF], and other models of adversarial training [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF]. In this broad setting, it has become empirically clear that the joint training of two neural networks (NNs) with competing objectives is fundamentally more difficult than training a single NN of similar size and architecture. The latter task boils down to successfully finding a (good) local minimum of a non-convex function, so it is instructive to revisit ( ) in the context of (non-convex) minimization problems.

In this case, much of the theory on stochastic gradient descent (SGD) methods -the "gold standard" for deep NN training -can be informally summed up as follows:

(1) Bounded trajectories of SGD always converge to a set of critical points [START_REF] Bertsekas | Gradient convergence in gradient methods with errors[END_REF][START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF][START_REF] Ljung | System Identification Theory for the User[END_REF].

(2) The limits of SGD do not contain saddle points or other spurious solutions [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges ?[END_REF][START_REF] Ge | Escaping from saddle points -Online stochastic gradient for tensor decomposition[END_REF][START_REF] Pemantle | Nonconvergence to unstable points in urn models and stochastic aproximations[END_REF].

At first glance, these positive results might raise high expectations for solving (SP). Unfortunately, one can easily find counterexamples with very simple bilinear games of the form Φ(x, y) = x Ay: naïvely applying stochastic gradient descent/ascent (SGDA) methods in this case leads to recurrent orbits that do not contain any critical point of Φ. Such a phenomenon has no counterpart in non-convex minimization, and is fundamentally tied to the min-max structure of (SP).

The failure of SGDA in bilinear games has been studied extensively [START_REF] Abernethy | Last-iterate convergence rates for min-max optimization[END_REF][START_REF] Waïss Azizian | A tight and unified analysis of extragradient for a whole spectrum of differentiable games[END_REF][START_REF] Gauthier Gidel | A variational inequality perspective on generative adversarial networks[END_REF][START_REF] Gauthier Gidel | Negative momentum for improved game dynamics[END_REF][START_REF] Liang | Interaction matters: A note on non-asymptotic local convergence of generative adversarial networks[END_REF][START_REF] Mertikopoulos | Cycles in adversarial regularized learning[END_REF][START_REF] Mokhtari | A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach[END_REF][START_REF] Peng | Training gans with centripetal acceleration[END_REF][START_REF] Schäfer | Competitive gradient descent[END_REF][START_REF] Yadav | Stabilizing adversarial nets with prediction methods[END_REF][START_REF] Zhang | Convergence of gradient methods on bilinear zero-sum games[END_REF], leading to more sophisticated schemes such as stochastic extra-gradient (SEG) methods and their variants [START_REF] Chavdarova | Reducing noise in GAN training with variance reduced extragradient[END_REF][START_REF] Daskalakis | Training GANs with optimism[END_REF][START_REF] Gauthier Gidel | A variational inequality perspective on generative adversarial networks[END_REF][START_REF] Hsieh | On the convergence of single-call stochastic extra-gradient methods[END_REF][START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF]. Meanwhile, to bypass such globally oscillatory issues, another thread of research [START_REF] Adolphs | Local saddle point optimization: A curvature exploitation approach[END_REF][START_REF] Daskalakis | The limit points of (optimistic) gradient descent in min-max optimization[END_REF][START_REF] Heusel | Gans trained by a two time-scale update rule converge to a local nash equilibrium[END_REF][START_REF] Jin | What is local optimality in nonconvex-nonconcave minimax optimization[END_REF][START_REF] Liu | Towards better understanding of adaptive gradient algorithms in generative adversarial nets[END_REF][START_REF] Mazumdar | On gradient-based learning in continuous games[END_REF][START_REF] Eric V Mazumdar | On finding local nash equilibria (and only local nash equilibria) in zero-sum games[END_REF][START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF][START_REF] Nagarajan | Gradient descent gan optimization is locally stable[END_REF][START_REF] Maher Nouiehed | Solving a class of non-convex min-max games using iterative first order methods[END_REF][START_REF] Raghunathan | Game theoretic optimization via gradient-based nikaido-isoda function[END_REF] has shifted its attention to local analysis. Essentially, these works either analyze the algorithmic behaviors only "sufficiently close" to critical points, or impose stringent assumptions on Φ (such as "coherence" [START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF] or the existence of solutions to a Minty variational inequality [START_REF] Liu | Towards better understanding of adaptive gradient algorithms in generative adversarial nets[END_REF]) to ensure the equivalence between global and local convergence.

Although these studies have certainly led to fruitful results, the realm beyond bilinear games and (locally) idealized objectives remains somewhat unexplored (with a few exceptions that we discuss in detail below). In particular, a convergence theory for general nonconvex/non-concave problems is still lacking.

Our contributions. In this paper, we aim to bridge this gap by providing precise answers to ( ) for a wide range of min-max optimization algorithms that can be seen as generalized Robbins-Monro (RM) schemes [START_REF] Robbins | A stochastic approximation method[END_REF]. Mirrorring the minimization perspective, we prove that, for any such algorithm A:

(1) Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.

(2) Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no critical point of Φ.

The most critical implication of our theory is that one can reduce the long-term behavior of a training algorithm to its associated ICT sets, a notion deeply rooted in the study of dynamical systems [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF][START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF][START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF][START_REF] Bowen | Omega limit sets of Axiom A diffeomorphisms[END_REF][START_REF] Cameron | Isolated Invariant Set and the Morse Index[END_REF] that formalizes the idea of "discrete limits of continuous flows"; cf. Section 4. As an example, in minimization problems, one can prove that the ICT sets of SGD consist solely of components of critical points; on the other hand, we show that ICT sets in min-max optimization can exhibit drastically more complicated structures, even when X = Y = R. In particular, we establish the following negative results:

• An ICT set may contain (almost) globally attracting limit cycles, and the algorithms designed to eliminate periodic orbits in bilinear games cannot escape them. This observation corroborates the persistence of non-convergent behaviors in GAN training, and suggests that bilinear games may be insufficient as models for such applications.

• There exist unstable critical points whose neighborhood contains an (almost) globally stable ICT set. Therefore, in sharp contrast to minimization problems, "avoiding unstable critical points" does not imply "escaping unstable critical points" in min-max problems.

• There exist stable min-max points whose basin of attraction is "shielded" by an unstable ICT set. As a result, existing algorithms are repelled from a desirable solution with high probability, even if initialized arbitrarily close to it. Finally, we provide numerical illustrations of the above, which further show that common practical tweaks (such as averaging or adaptive algorithms) also fail to address these problematic cases.

Further related work. To our knowledge, the convergence to non-critical sets in (SP) has only been systematically studied in a few settings. Besides the bilinear games alluded to above, other instances include the "almost bilinear games" [START_REF] Abernethy | Last-iterate convergence rates for min-max optimization[END_REF] and deterministic gradient descent/ascent (GDA) applied to "hidden bilinear games" [START_REF] Flokas | Poincaré recurrence, cycles and spurious equilibria in gradient-descent-ascent for non-convex non-concave zero-sum games[END_REF]. In contrast to these works, our framework does not impose any structural assumption and requires only mild regularity of Φ, and our results apply to many existing methods beyond (S)GDA; cf. Section 3. The generality of our approach is made possible by foundational results in dynamical systems [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF][START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF], which have not been exploited before in the context of min-max optimization, and have only recently been applied to learning in games with the aim of showing convergence to (local) Nash equilibria [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF][START_REF] Benaïm | Stochastic approximations and differential inclusions, part II: Applications[END_REF][START_REF] Bervoets | Learning with minimal information in continuous games[END_REF][START_REF] Bravo | On the robustness of learning in games with stochastically perturbed payoff observations[END_REF][START_REF] Bravo | Bandit learning in concave N -person games[END_REF][START_REF] Cohen | Learning with bandit feedback in potential games[END_REF][START_REF] Mazumdar | On gradient-based learning in continuous games[END_REF][START_REF] Mertikopoulos | Learning in games with continuous action sets and unknown payoff functions[END_REF][START_REF] Perkins | Asynchronous stochastic approximation with differential inclusions[END_REF][START_REF] Perkins | Mixed-strategy learning with continuous action sets[END_REF].

Upon completion of our paper (two weeks prior to the actual submission date), we discovered a preprint by Letcher [START_REF] Letcher | On the impossibility of global convergence in multi-loss optimization[END_REF] whose motivation is similar to our own. The focus of [START_REF] Letcher | On the impossibility of global convergence in multi-loss optimization[END_REF] is on providing counterexamples that rule out the convergence of deterministic "reasonable" and "global" algorithms. There are two major distinctions that make our approaches complementary: [START_REF] Letcher | On the impossibility of global convergence in multi-loss optimization[END_REF] focuses on the impossibility of desirable convergence guarantees in a purely deterministc setting; in contrast, our paper focuses squarely on the occurrence of undesirable convergence phenomena with probability 1 in stochastic algorithms. Taken together, the work [START_REF] Letcher | On the impossibility of global convergence in multi-loss optimization[END_REF] and our own paint a fairly complete picture of the fundamental limits of min-max optimization algorithms.

Setup and preliminaries

We focus on general problems of the form (SP) with X = R d X , Y = R d Y , and Φ assumed C 1 . To ease notation, we will denote z = (x, y), Z = X × Y and d = d X + d Y . In addition, we will write

V (z) ≡ (V x (x, y), V y (x, y)) := (-∇ x Φ(x, y), ∇ y Φ(x, y)) (1) 
for the (min-max) gradient field of Φ, and we will assume that V is Lipschitz. In some cases we will also require V to be C 1 and we will write J(z) for its Jacobian; this additional assumption will be stated explicitly whenever invoked.

A solution of (SP) is a tuple z * = (x * , y * ) with Φ(x * , y) ≤ Φ(x * , y * ) ≤ Φ(x, y * ) for all x ∈ X , y ∈ Y; likewise, a local solution of (SP) is a tuple (x * , y * ) that satisfies this inequality locally. Finally, a state z * with V (z * ) = 0 is said to be a critical (or stationary) point of Φ. When V is C 1 , any local solution is a stable critical point [START_REF] Jin | What is local optimality in nonconvex-nonconcave minimax optimization[END_REF], i.e., ∇ 2

x Φ(x * , y * ) 0 and ∇ 2 y Φ(x * , y * ) 0.

From an algorithmic standpoint, we will focus exclusively on the black-box optimization paradigm [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF] with stochastic first-order oracle (SFO) feedback; algorithms with a more complicated feedback structure (such as a best-response oracle [START_REF] Fiez | Convergence of learning dynamics in stackelberg games[END_REF][START_REF] Jin | What is local optimality in nonconvex-nonconcave minimax optimization[END_REF][START_REF] Naveiro | Gradient methods for solving stackelberg games[END_REF]) or based on mixedstrategy sampling [START_REF] Domingo-Enrich | A mean-field analysis of two-player zero-sum games[END_REF][START_REF] Hsieh | Finding mixed nash equilibria of generative adversarial networks[END_REF] are not considered in this work. In detail, when called at z = (x, y) with random seed ω ∈ Ω, an SFO returns a random vector V(z; ω)

≡ (V x (z; ω), V y (z; ω)) of the form V(z; ω) = V (z) + U(z; ω) (SFO)
where the error term U(z; ω) captures all sources of uncertainty in the model (e.g., the selection of a minibatch in GAN training models, system state observations in reinforcement learning, etc.). Regarding this error term, we will assume throughout that it is zero-mean and sub-Gaussian:

E[U(z; ω)] = 0 and P( U(z; ω) ≥ t) ≤ 2e -t 2 2σ 2 (2) 
for some σ > 0 and all z ∈ Z. The sub-Gaussian tail assumption is standard in the literature [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF][START_REF] Arkadi Semen Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF][START_REF] Nesterov | Primal-dual subgradient methods for convex problems[END_REF], and it can be further relaxed with little loss of generality to finite variance E[ U(z; ω) 2 ] ≤ σ 2 . To streamline our discussion, we will present our results in the sub-Gaussian regime and we will rely on a series of remarks to explain any modifications required for different assumptions on U.

Core algorithmic framework

3.1. The Robbins-Monro template. Much of our analysis will focus on iterative algorithms that can be cast in the abstract Robbins-Monro framework of stochastic approximation [START_REF] Robbins | A stochastic approximation method[END_REF]:

Z n+1 = Z n + γ n [V (Z n ) + W n ] (RM)
where:

(1) Z n = (X n , Y n ) ∈ Z denotes the state of the algorithm at each stage n = 1, 2, . . .

(2) W n is a generalized error term (described in detail below).

(3) γ n is the step-size (a hyperparameter, typically of the form γ n ∝ 1/n p , p ≥ 0).

In the above, the error term W n is generated after Z n ; thus, by default, W n is not adapted to the history (natural filtration)

F n := H(Z 1 , . . . , Z n ) of Z n .
For concision, we will write

V n = V (Z n ) + W n (3) 
so V n can be seen as a noisy estimate of V (Z n ). In more detail, to differentiate between "random" (zero-mean) and "systematic" (non-zero-mean) errors in V n , it will be convenient to further decompose the error process W n as

W n = U n + b n ( 4 
)
where

b n = E[W n | F n ]
represents the systematic component of the error and U n = W n -b n captures the random, zero-mean part. In view of all this, we will consider the following descriptors for W n : a) Bias:

B n = b n (5a) b) Variance: σ 2 n = E[ U n 2 ] (5b) 
The precise behavior of B n and σ 2 n will be examined on a case-by-case basis below.

3.2. Specific algorithms. In the rest of this section, we discuss how a wide range of algorithms used in the literature can be seen as special instances of the general template (RM) above.

Algorithm 1 (Stochastic gradient descent/ascent). The basic SGDA algorithm -also known as the Arrow-Hurwicz method [START_REF] Joseph Arrow | Studies in linear and non-linear programming[END_REF] -queries an SFO and proceeds as:

Z n+1 = Z n + γ n V(Z n ; ω n ), (SGDA)
where ω n ∈ Ω (n = 1, 2, . . . ) is an independent and identically distributed (i.i.d.) sequence of oracle seeds. As such, (SGDA) admits a straightforward RM representation by taking

W n = U n = U(Z n ; ω n ) and b n = 0.
Algorithm 2 (Alternating stochastic gradient descent/ascent). A common variant of SGDA, is to alternate the updates of the min/max variables, resulting in the alternating stochastic gradient descent/ascent (alt-SGDA) method:

X n+1 = X n + γ n V x (X n , Y n ; ω n ) = X n + γ n [V x (X n , Y n ) + U x,n ] Y n+1 = Y n + γ n V y (X n+1 , Y n ; ω + n ) = Y n + γ n [V y (X n+1 , Y n ) + U y,n ] (alt-SGDA)
where ω n , ω + n (n = 1, 2, . . . ) are sequences of i.i.d. random seeds, U x,n := U x (X n , Y n ; ω n ), and U y,n := U y (X n+1 , Y n ; ω + n ). The RM representation of (alt-SGDA) is obtained by taking

Z n = (X n , Y n ), b n = (0, V y (X n+1 , Y n ) -V y (X n , Y n )), and U n = (U x,n , U y,n ).
Algorithm 3 (Stochastic extra-gradient). Going beyond (SGDA), the (stochastic) extragradient algorithm exploits the following principle [START_REF] Juditsky | Solving variational inequalities with stochastic mirror-prox algorithm[END_REF][START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF][START_REF] Semen | Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF]: given a "base" state Z n , the algorithm queries the oracle at Z n to generate a leading state Z + n and then updates Z n with oracle information from Z + n . Assuming SFO feedback as above, this process may be described as follows:

Z + n = Z n + γ n V(Z n ; ω n ), Z n+1 = Z n + γ n V(Z + n ; ω + n ).
(SEG)

To recast (SEG) in the Robbins-Monro framework, simply take

W n = V(Z + n ; ω + n ) -V (Z n ), i.e., U n = U(Z + n ; ω + n ) and b n = V (Z + n ) -V (Z n ).
Algorithm 4 (Optimistic gradient / Popov's extra-gradient). Compared to (SGDA), the scheme (SEG) involves two oracle queries per iteration, which is considerably more costly. An alternative iterative method with a single oracle query per iteration was proposed by Popov [START_REF] Denisovich | A modification of the Arrow-Hurwicz method for search of saddle points[END_REF]:

Z + n = Z n + γ n V(Z + n-1 ; ω n-1 ), Z n+1 = Z n + γ n V(Z + n ; ω n ).
(OG/PEG) Its Robbins-Monro representation is obtained by setting

W n = V(Z + n ; ω n ) -V (Z n ), i.e., U n = U(Z + n ; ω n ) and b n = V (Z + n ) -V (Z n ).
Popov's extra-gradient has been rediscovered several times and is more widely known as the optimistic gradient (OG) method in the machine learning literature [START_REF] Chiang | Online optimization with gradual variations[END_REF][START_REF] Daskalakis | Training GANs with optimism[END_REF][START_REF] Hsieh | On the convergence of single-call stochastic extra-gradient methods[END_REF][START_REF] Rakhlin | Online learning with predictable sequences[END_REF]. In unconstrained min-max optimization, (OG/PEG) turns out to be equivalent to a number of other existing methods, including "extrapolation from the past" [START_REF] Gauthier Gidel | A variational inequality perspective on generative adversarial networks[END_REF], reflected gradient [START_REF] Malitsky | A forward-backward splitting method for monotone inclusions without cocoercivity[END_REF], and the "prediction method" of [START_REF] Yadav | Stabilizing adversarial nets with prediction methods[END_REF].

Algorithm 5 (Kiefer-Wolfowitz). When first-order feedback is unavailable, a popular alternative is to obtain gradient information of Φ via zeroth-order observations [START_REF] Liu | Min-max optimization without gradients: Convergence and applications to adversarial ml[END_REF]. This idea can be traced back to the seminal work of Kiefer and Wolfowitz [START_REF] Kiefer | Stochastic estimation of the maximum of a regression function[END_REF] and the subsequent development of the simultaneous perturbation stochastic approximation (SPSA) method by Spall [START_REF] Spall | Multivariate stochastic approximation using a simultaneous perturbation gradient approximation[END_REF]. In our setting, this leads to the recursion:

V n = ±(d/δ n ) Φ(Z n + δ n ω n ) ω n Z n+1 = Z n + γ n V n (SPSA)
where δ n 0 is a vanishing "sampling radius" parameter, ω n is drawn uniformly at random from the composite basis Ω = E X ∪ E Y of Z = X × Y, and the "±" sign is equal to -1 if ω n ∈ E X and +1 if ω n ∈ E Y . Viewed this way, the interpretation of (SPSA) as a Robbins-Monro method is immediate; furthermore, a straightforward calculation (that we defer to the supplement) shows that the sequence of gradient estimators V n in (SPSA) has Further examples that can be cast in the general framework (RM) include the negative momentum method [START_REF] Gauthier Gidel | Negative momentum for improved game dynamics[END_REF], generalized OG schemes [START_REF] Mokhtari | A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach[END_REF], and centripetal acceleration [START_REF] Peng | Training gans with centripetal acceleration[END_REF]; the analysis is similar and we omit the details. Certain scalable second-order methods can also be viewed as Robbins-Monro schemes, but the driving vector field V is no longer the gradient field of Φ; we discuss this in Example 5.3 and the supplement.

B n = O(δ n ) and σ 2 n = O(1/δ 2 n ).

Convergence analysis

4.1. Continuous vs. discrete time. The main idea of our approach will be to treat (RM) as a noisy discretization of the mean dynamics

ż(t) = V (z(t)).
(MD) This is motivated by the fact that ż(t) can be seen as the continuous-time limit of the finite difference quotient (Z n+1 -Z n )/γ n : in this way, if the error term W n in (RM) is sufficiently well-behaved, it is plausible to expect that the iterates of (RM) and the solutions of (MD) eventually come together. This approach has proved very fruitful when the mean dynamics (MD) comprise a gradient system, i.e., V = -∇f for some (possibly non-convex) f : Z → R.

In this case (and modulo mild assumptions), the systems (RM) and (MD) both converge to the critical set of f , see e.g., [START_REF] Benveniste | Adaptive Algorithms and Stochastic Approximations[END_REF][START_REF] Bertsekas | Gradient convergence in gradient methods with errors[END_REF][START_REF] Kushner | Stochastic Approximation Methods for Constrained and Unconstrained Systems[END_REF][START_REF] Kushner | Stochastic approximation algorithms and applications[END_REF][START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF].

On the other hand, the min-max landscape is considerably more involved. The most widely known illustration is given by the bilinear objective Φ(x, y) = xy: in this case (see Fig. 1), the trajectories (MD) comprise periodic orbits of perfect circles centered at the origin (the unique critical point of Φ). However, the behavior of different RM schemes can vary wildly, even in the absence of noise (σ = 0): trajectories of (SGDA) spiral outwards, each converging to an (initialization-dependent) periodic orbit; instead, trajectories of (SEG) spiral inwards, eventually converging to the solution z * = (0, 0).

This particular difference between gradient and extra-gradient schemes has been welldocumented in the literature, cf. [START_REF] Daskalakis | Training GANs with optimism[END_REF][START_REF] Gauthier Gidel | A variational inequality perspective on generative adversarial networks[END_REF][START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF]. More pertinent to our theory, it also raises several key questions:

(1) What is the precise link between RM methods and the mean dynamics (MD)?

(2) When can (MD) accurately predict the long-run behavior of an RM method? The rest of this section is devoted to providing precise answers to these questions.

Stochastic approximation.

We begin by introducing a measure of "closeness" between the iterates of (RM) and the solution orbits of (MD). To do so, let τ n = n k=1 γ k denote the "effective time" that has elapsed at the n-th iteration of (RM), and define the continuous-time interpolation Z(t) of Z n as

Z(t) = Z n + t -τ n τ n+1 -τ n (Z n+1 -Z n ) (6) 
for all t ∈ [τ n , τ n+1 ], n ≥ 1. To compare Z(t) to the solution orbits of (MD), we will further consider the flow Θ : R + × Z → Z of (MD), which is simply the orbit of (MD) at time t ∈ R + with an initial condition z(0) = z ∈ Z. We then have the following notion of "asymptotic closeness" due to Benaïm and Hirsch [START_REF] Benaïm | Dynamics of Morse-Smale urn processes[END_REF][START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF]:

Definition 1. Z(t)
is an asymptotic pseudotrajectory (APT) of (MD) if, for all T > 0, we have:

lim t→∞ sup 0≤h≤T Z(t + h) -Θ h (Z(t)) = 0. (7) 
This comparison criterion is due to Benaïm and Hirsch [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF] and it plays a central role in our analysis. In words, it simply posits that Z(t) eventually tracks the flow of (MD) with arbitrary accuracy over windows of arbitrary length; as a result, if Z n is an APT of (MD), it is reasonable to expect its behavior to be closely correlated to that of (MD).

Our first result below makes this link precise. To state it, we will make the following assumptions:

lim n→∞ B n = 0, (A1) ∞ n=1 γ 2 n σ 2 n < ∞, (A2) 
both assumed to hold with probability 1. Under these blanket requirements, we have:

Theorem 1. Suppose that (RM) is run with a step-size policy γ n such that n γ n = ∞, lim n γ n = 0, and Assumptions (A1)-(A2) hold. Then, with probability 1, one of the following holds: a) Z n is an APT of (MD); or b) Z n is unbounded (and hence, non-convergent).

A key challenge in proving Theorem 1 is that Assumptions (A1) and (A2) allow for very general error processes W n in (RM), including cases where W n is non-zero-mean (b n = 0) and/or unbounded, either with positive probability or in all its moments (e.g., sup n E[ W n q ] = ∞ for all q ≥ 2). Because of this, earlier foundational results on asymptotic pseudotrajectories [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF][START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF] do not apply, and we need to employ a series of direct (sub)martingale convergence arguments to control the quadratic variation of Z n . The precise argument relies on a pathwise version of the Burkholder-Davis-Gundy (BDG) maximal inequality [START_REF] Hall | Martingale Limit Theory and Its Application[END_REF], but the details are fairly involved so we defer them to the supplement.

Applications and examples.

Applying Theorem 1 requires verifying Assumptions (A1) and (A2) for the algorithmic framework of Section 3. However, even though the noise U(z; ω) in (SFO) is assumed zero-mean and sub-Gaussian, this does not imply that the generalized error term W n = U n + b n in Algorithms 1-5 enjoys the same guarantees. For example, the RM representation of Algorithms 2-4 has non-zero bias, while Algorithm 5 exhibits both non-zero bias and unbounded variance (the latter behaving as

O(1/δ 2 n ) with δ n → 0 as n → ∞).
In the following proposition we prove that, for a wide range of parameters, Algorithms 1-5 indeed generate asymptotic pseudotrajectories of (MD).

Proposition 1. Let Z n be a sequence generated by any of the Algorithms 1-5. Assume further that: a) For first-order methods (Algorithms 1-4), the algorithm is run with SFO feedback satisfying (2) and a step-size γ n such that A/n ≤ γ n ≤ B/(log n) 1+ε for some A, B, ε > 0.

b) For zeroth-order methods (Algorithm 5), the algorithm is run with parameters γ n and

δ n such that lim n (γ n + δ n ) = 0, n γ n = ∞, and n γ 2 n /δ 2 n < ∞ (e.g., γ n = 1/n, δ n = 1/n 1/3 ).
Then, with probability 1, one of the following holds: a) Z n is an APT of (MD); or b) Z n is unbounded.

Remark 4.1. We note that the requirements for (SFO) are closely linked to the assumptions for γ n : for instance, one can remove the sub-Gaussian tail and impose only that U(z; ω) in (SFO) is bounded in L q for some q ≥ 2, and the conclusion of Proposition 1 still holds as long as n γ 1+q/2 n < ∞.

We conclude this discussion with a remark on the boundedness clause for Z n in Theorem 1 and Proposition 1. Clearly, if Z n is unbounded, it cannot converge to a solution of (SP), so we need not go further in examining the failure of (RM) as a solution method. Still, for completeness, we provide in the supplement a coercivity condition for Φ which guarantees that Z n is bounded with probability 1.

Convergence analysis.

To proceed, it is important to recall that critical points alone cannot capture the broad spectrum of algorithmic behaviors when (MD) is not a gradient system: already in Fig. 1 we see a critical point surrounded by an ensemble of periodic orbits. To account for this considerably richer landscape, we will need some more notions from the theory of dynamical systems: Definition 2. Let S be a nonempty compact subset of Z. We then say that:

a) S is invariant if Θ t (S) ⊆ S for all t ≥ 0. b)
S is attracting if it is invariant and there exists a compact neighborhood K of S such that lim t→∞ dist(Θ t (z), S) = 0 for all z ∈ K. c) S is internally chain-transitive (ICT) if it is invariant and Θ| S admits no attractors other than S.

Heuristically, ICT sets are characterized by the property that any two points in such a set may be joined by a piecewise continuous chain of arbitrarily long segments of orbits of (MD) broken by arbitrarily small jump discontinuities. As such, they account for a wide range of invariant sets of (MD), ranging from stationary points and periodic orbits (cf. Fig. 1), to homoclinic loops (trajectories that join a unstable critical point to itself), limit cycles (isolated periodic orbits), and many others.

Our next result shows that, with probability 1, any limit point of (RM) lies in an ICT set of Φ: Theorem 2. Suppose that (RM) is run with a step-size sequence γ n such that n γ n = ∞, lim n γ n = 0. If Assumptions (A1) and (A2) hold, then, with probability 1, we have: a) Z n converges to an ICT set of Φ; or b) Z n is unbounded (and hence, non-convergent).

Corollary 1. Let Z n be a sequence generated by any of the Algorithms 1-5 with parameters as in Proposition 1. If Z n is bounded, then, with probability 1, it converges to an ICT set of Φ.

The proof of Theorem 2 builds on a series of deep results in [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF]; see the supplement. In plain terms, the theorem asserts that any trajectory of (RM) is either unbounded or eventually converges to an ICT set, which is "infinitely close" to the long-term orbits of the mean dynamics (MD). In particular, it rules out any other type of asymptotic behavior (convergent or non-convergent).

In gradient systems -i.e., when V = -∇f for some f : Z → R -the only ICT sets of (MD) are connected sets of critical points of f (for a detailed statement and proof, see the supplement). As a result, we can effortlessly conclude that any RM scheme exhibits the same asymptotic behavior in minimization problems: they converge to connected components of critical points of f .

At the other end of the spectrum, in the bilinear objective Φ(x, y) = xy, we show in the supplement that any tuple (x, y) ∈ R 2 belongs to an ICT set of Φ. The most crucial implication of this observation is that although there exist many non-critical convergent sets in bilinear games, none of these can be an attractor : for any bounded region S, there always exists z / ∈ S such that, no matter how close z is to S, the mean dynamics (MD) initialized at z will stay at a positive distance from S.

Importantly, in the full space of min-max problems, the two settings described above are both outliers: mixing a gradient system with a bilinear component can give rise to isolated periodic attractors (limit cycles) and other forms of attracting ICT sets that cannot be observed in either gradient systems or bilinear games. Indeed, our final result in this section shows that, while (SEG) and/or (OG/PEG) might be capable of eliminating periodic orbits in bilinear games [START_REF] Waïss Azizian | A tight and unified analysis of extragradient for a whole spectrum of differentiable games[END_REF][START_REF] Daskalakis | Training GANs with optimism[END_REF][START_REF] Gauthier Gidel | A variational inequality perspective on generative adversarial networks[END_REF][START_REF] Liang | Interaction matters: A note on non-asymptotic local convergence of generative adversarial networks[END_REF][START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF], these methods fail to escape spurious (i.e., non-critical) attractors arising in generic non-convex/non-concave objectives (see also Example 5.1 for a visual illustration). The formal statement is as follows: Theorem 3. Let S be an attractor of (MD) and fix some confidence level α > 0. If γ n is small enough and Assumptions (A1) and (A2) hold, there exists a neighborhood U of S, independent of α, such that

P(Z n converges to S | Z 1 ∈ U) ≥ 1 -α.
Corollary 2. Let Z n be a sequence generated by any of the Algorithms 1-5 with sufficiently small γ n satisfying the conditions of Proposition 1. Then P(Z n converges to

S | Z 1 ∈ U) ≥ 1 -α.
As we show in the next section, Corollary 2 can have catastrophic implications for the convergence of min-max optimization algorithms.

Spurious attractors: Illustrations and examples

We now provide concrete examples of attracting ICT sets consisting entirely of noncritical points. For illustration purposes, we focus on the simple case X = Y = R with polynomial objectives; of course, all examples below can be suitably generalized to higher dimensions. Despite their rudimentary character, these examples already reveal many unexpected phenomena that are unknown in the context of non-convex minimization (or convex-concave saddle-point problems).

Example 5.1 (Almost bilinear ≈ bilinear, instability ≈ escape). Consider an arbitrarily small perturbation of a bilinear game:

Φ(x, y) = xy + εφ(y), (8) 
where ε > 0 and φ(y) = 1 2 y 2 -1 4 y 4 . This problem admits an unstable critical point at the origin; further, using a general criterion provided in the supplement, one can prove, for ε small enough, the existence of an attracting ICT set S in a neighborhood of the circle {z : z 2 = 4/3}. Thus, any of the RM schemes of Section 3 gets trapped by S; see Fig. 2(a) for an illustration for (SEG).

This example brings two issues of existing studies to light. First, it shows that "almost bilinear games" can still trap many methods for solving exact bilinear games. Second, in contrast to minimization problems, the region around an unstable critical point can in fact be fully stable. Because of this, care needs to be taken when interpreting algorithms that are characterized as "locally avoiding unstable critical points", since they might be incapable of escaping their neighborhoods.

Example 5.2 ("Forsaken" min-max points). Suppose we apply Algorithms 1-5 to the objective

Φ(x, y) = x(y -0.5) + φ(x) -φ(y) (9) 
where

φ(z) = 1 4 z 2 -1 2 z 4 + 1 6 z 6
. This problem has a desirable min-max solution at (x * , y * ) = (0, 0.5). However, we prove in the supplement that there exist two spurious limit cycles that do not contain any critical point of Φ. Worse, the limit cycle closer to (x * , y * ) is unstable and repels any trajectory that comes close to the solution; see Fig. 2(b) for an illustration for (SEG). Solutions that are "shielded" by spurious limit cycles in this way are unlikely to be visited by existing algorithms; to the best of our knowledge, no research has been conducted to tackle such problematic cases.

Example 5.3 (Second-order methods). Thanks to the efficient implementation of Hessiangradient multiplications [START_REF] Barak | Fast exact multiplication by the hessian[END_REF], a popular second-order method for min-max optimization in machine learning is the Hamiltonian descent method [START_REF] Abernethy | Last-iterate convergence rates for min-max optimization[END_REF]. The idea is simply to run SGD on f = ∇Φ 2 /2, giving

Z n+1 = Z n -γ n J(Z n )∇Φ(Z n ). (HD)
As a (discretized) gradient system, our theory in Section 4 shows that (HD) does not possess ICT sets other than critical points. However, a serious issue of (HD) is that it ignores the sign of gradients, i.e., it does not distinguish between minimization and maximization. For this reason, it has mostly been used as a gradient penalty scheme by mixing (HD) (or its variants) with (SGDA), giving rise to a number of other second-order methods such as symplectic gradient adjustment (SGA) [START_REF] Balduzzi | The mechanics of n-player differentiable games[END_REF] and consensus optimization (ConO) [START_REF] Mescheder | The numerics of gans[END_REF]. As in Section 3, one can cast these algorithms as RM schemes with

V (Z n ) replaced by (I -λJ(Z n ))V (Z n ),
where λ is the regularization parameter. The analysis can then proceed as in Section 4 by replacing (MD) with the appropriate continuous system. Fig. 2(c) shows the spurious convergence of SGA with λ = 0.2 applied to [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]. The ICT sets of SGA are only slightly different from Algorithms 1-5 and, in a certain precise sense, are perturbations thereof (so they suffer the same symptoms); see the supplement for more algorithms and details. We conclude with two remarks of a practical nature. First, Fig. 2 shows that the common tweak of averaging the iterates can force the trajectories to halt at non-critical points, and this convergence is by no means min-max optimal. To our knowledge, this provides the first explicit instances where training can get stuck even with non-vanishing gradients, a phenomenon often observed in training GANs.

Second, in Figs. 3a-3b, we report the behaviors of popular adaptive algorithms in training GANs, including Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] and its extra-gradient variant [START_REF] Gauthier Gidel | A variational inequality perspective on generative adversarial networks[END_REF], both with hyperparameters set to the default values in PyTorch. The result reveals a worrisome trend: while both Adam and ExtraAdam are able to somewhat mitigate the cycling of (8), this nonetheless comes at the price of converging to the unstable critical point (0, 0) (which is in fact a local max-min, the opposite of a desirable solution). On the other hand, as all RM schemes, both adaptive methods fail to reach the "forsaken" solutions in Example 5.2.

Finally, we stress that the purpose of examining these practical tweaks is not to prove that they will always fail (we have not performed extensive hyperparameter search). Rather, our aim is to point out that they cannot consistently serve as off-the-shelf solutions to the pathological ICT sets, and thus warrant a novel approach in studying min-max optimization problems.

Appendix A. Asymptotic pseudotrajectories

In this appendix, we discuss how the algorithms discussed in Section 3 fit within the general stochastic approximation framework of Section 4.2. Specifically, we prove the general conditions of Theorem 1 and Proposition 1 which guarantee that Algorithms 1-5 generate asymptotic pseudotrajectories of the mean dynamics (MD).

A.1. Generalities and preliminaries. Before doing so, we will require some background material on asymptotic pseudotrajectories. Following Benaïm and Hirsch [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF] and Benaïm [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF], we first recall the definition of the "effective time" τ n = n k=1 γ k as the time that has elapsed at the n-th iteration of the discrete-time process Z n ; recall also the definition (6) of the continuous-time interpolation Z(t) of Z n as

Z(t) = Z n + t -τ n τ n+1 -τ n (Z n+1 -Z n ) (6) 
We will further require the "continuous-to-discrete" correspondence

M (t) = sup{n ≥ 1 : t ≥ τ n } (A.1)
which measures the number of iterations required for the effective time τ n of the process to reach the timestamp t; for future use, we also define the quantity

M n ≡ M n (T ) = M (τ n + T ). (A.2)
Finally, given an arbitrary sequence A n , we will denote its piecewise constant interpolation as

A(t) = A n for all t ∈ [τ n , τ n+1 ], n ≥ 1. (A.
3) Using this notation, the (affinely) interpolated process Z(t) can be expressed in integral form as

Z(t) = Z(0) + t 0 [V (Z(s)) + W (s)] ds (A.4)
where W n denotes the generalized error term of (RM). With all this in hand, Benaïm [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]Prop. 4.1] provides the following general condition for Z(t) to be an APT of the mean dynamics ( 7 Then, Z(t) is an APT of (MD).

A.2. Proof of Theorem 1. Our proof of Theorem 1 revolves around the direct verification of the requirement (A.5) of Proposition A.1 via the use of maximal inequalities and martingale limit theory. 1 For convenience, we restate the theorem below in full:

Theorem 1. Suppose that (RM) is run with a step-size policy γ n such that n γ n = ∞, lim n γ n = 0, and Assumptions (A1)-(A2) hold. Then, with probability 1, one of the following holds: a) Z n is an APT of (MD); or b) Z n is unbounded (and hence, non-convergent).

Proof. Our proof relies on the Burkholder-Davis-Gundy (BDG) inequality [START_REF] Donald | Distribution function inequalities for martingales[END_REF][START_REF] Hall | Martingale Limit Theory and Its Application[END_REF] which bounds the maximal value of a martingale S n via its quadratic variation as

c 2 E n k=1 (S k -S k-1 ) 2 ≤ E max k=1,...,n |S k | 2 ≤ C 2 E n k=1 (S k -S k-1 ) 2 , (BDG)
where c 2 , C 2 > 0 are universal constants. As such, applying (BDG) to the martingale S m = m k=n γ k U k (after an appropriate shift of the starting time), we get

E   sup n≤m≤Mn m k=n γ k U k 2   ≤ C 2 E Mn k=n γ 2 k U k 2 = C 2 Mn k=n γ 2 k σ 2 k = C 2 τn+T τn γ 2 (s)σ 2 (s) ds, (A.7)
where M n = M n (T ) = M (τ n + T ) is defined as in (A.2). Now, mimicking (A.6), let

∆ 0 (t; T ) = sup 0≤h≤T t+h t U (s) ds . (A.8)
1 Benaïm [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF] provides a set of sufficient conditions for (A.5) to hold when Z(t) is generated by a RM scheme with Bn = 0 and sup n σn < ∞; however, our setting requires a more general treatment.

so our previous bound shows that

E[∆ 0 (t; T ) 2 ] ≤ C 2 t+T t γ 2 (s)σ 2 (s) ds. (A.9)
We will proceed to show that lim t→∞ ∆ 0 (t; T ) = 0 for all T > 0 by considering the sequence of intervals [kT, (k + 1)T ] and using the Borel-Cantelli lemma to show that ∆ 0 (kT ; T ) → 0 as k → ∞. Indeed, we have

∞ k=1 E[∆ 0 (kT ; T ) 2 ] ≤ C 2 ∞ 0 γ 2 (s)σ 2 (s) ds = C 2 ∞ n=1 γ 2 n σ 2 n < ∞ (A.10)
with the last step following from Assumption (A2). Then, if we consider the event E k (ε) = {∆ 0 (kT ; T ) > ε}, Chebysev's inequality gives

∞ k=1 P(E k (ε)) ≤ ∞ k=1 E[∆ 0 (kT ; T ) 2 ] ε 2 < ∞, (A.11)
and hence, by the Borel-Cantelli lemma, we get

P lim sup k→∞ E k (ε) = 0. (A.12)
This shows that, with probability 1, we have ∆ 0 (kT ; T ) ≤ ε for all but a finite number of k; put differently, the event

E(ε) = {∆ 0 (kT ; T ) occurs infinitely often} = ∞ n=1 ∞ k=n E k (ε) has P(E(ε)) = 0.
Therefore, as a union of probability zero events, we have Given that lim k→∞ B k = 0, the above shows that ∆(kT ; T ) → 0 as k → ∞. Moreover, for all t ∈ [kT, (k + 1)T ], we have ∆(t; T ) ≤ 2∆(kT ; T ) + ∆((k + 1)T ; T ) so ∆(t; T ) → 0 with probability 1. With T > 0 arbitrary, we conclude that (A.5) holds with probability 1, and our claim follows from Proposition A.1.

P lim inf k→∞ ∆ 0 (kT ; T ) > 0 = P ∞ n=1 E(1/n) ≤ ∞ n=1 P(E(1/n)) = 0, (A.
To proceed, it will be convenient to consider a stronger version of Assumption (A2):

P( U n ≥ t | F n ) ≤ 2e -t 2 2σ 2 (A2 )
for some σ ≥ 0 and all n = 1, 2, . . . , t ≥ 0. Some of the RM schemes presented in Section 3 will verify this stronger criterion; see Appendix A.3 below. Under this assumption, we obtain the following generalization of a criterion due to Benaïm and Hirsch [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF]: Proposition A.2. Suppose that (RM) is run with a step-size policy γ n such that A/n ≤ γ n ≤ B/(log n) 1+ε for some B, ε > 0. If Assumptions (A1) and (A2 ) hold, then, with probability 1, a) Z n is an APT of (MD); or b) Z n is unbounded (and hence, non-convergent).

Proof. As in the proof of Theorem 1, our approach will hinge on the proviso (A.5) of Proposition A.1 and, in particular, controlling the quantity ∆ 0 (t; T ) defined in (A.8). We proceed step-by-step:

Step 1: A union bound for the tails of sup n≤m≤Mn m k=n γ k U k . Up to a multiplicative constant that depends only on the dimension of the problem, we can assume without loss of generality that • is the sup-norm z = max i |z i |. In this case, we have z ≥ t if and only if there exists a basis vector e i of R d such that z, e i ≥ t or z, e i ≤ -t. We thus get the union bound

P sup n≤m≤Mn m k=n γ k U k ≥ t ≤ d i=1 P sup n≤m≤Mn m k=n γ k U k , e i ≥ t + d i=1 P sup n≤m≤Mn m k=n γ k U k , -e i ≥ t . (A.15)
In view of this, we will focus below on the tail probability P(sup

n≤m≤Mn m k=n γ k U k , z ) for arbitrary z ∈ R d .
Step 2: Exponential tail concentration. By standard arguments, Assumption (A2 ) is equivalent to asking that

E[exp( z, U n ) | F n ] ≤ exp(σ 2 z 2 /2). (A.16)
With this reformulation in mind, consider the process

Q n (z) = exp n k=1 z, γ k U k - σ 2 2 n k=1 γ 2 k z 2 . (A.17)
Then, by construction

E[Q n (z) | F n ] = E exp n k=1 z, γ k U k - σ 2 2 n k=1 γ 2 k z 2 F n = Q n-1 (z) E exp z, γ n U n - σ 2 2 γ 2 n z 2 F n ≤ Q n-1 (z), (A.18)
i.e., Q n (z) is a supermartingale relative to F n . 2 Moreover, we have:

P sup n≤m≤Mn m k=n γ k U k , z ≥ α = P sup n≤m≤Mn Q m (z) Q n (z) exp σ 2 2 m k=n γ 2 k z 2 ≥ exp(α) = P sup n≤m≤Mn Q m (z) Q n (z) exp σ 2 2 Mn k=n γ 2 k z 2 ≥ exp(α) = P sup n≤m≤Mn Q m (z) Q n (z) ≥ exp α - σ 2 2 Mn k=n γ 2 k z 2 ≤ E sup n≤m≤Mn Q m (z) Q n (z) • exp σ 2 2 Mn k=n γ 2 k z 2 -α ≤ exp σ 2 2 Mn k=n γ 2 k z 2 -α (A.19)
2 Recall here that, by the definition of the filtration Fn, Un is F n+1 -measurable but not Fn-measurable.

where we used Markov's inequality in the last step and the fact that Q n (z) is a submartingale in the penultimate one. Thus, letting Σ = σ 2 Mn k=n γ 2 k z 2 and taking z ← (t/Σ)e i , t ← t 2 /Σ, we get

P sup n≤m≤Mn m k=n γ k U k , e i ≥ t ≤ exp - σ 2 t 2 2 Mn k=n γ 2 k . (A.20)
Step 3: Closing the gap. By assumption,

Mn k=n γ 2 n ≤ T γ 2 n ≤ T /(log n) 2+2ε . Hence exp - σ 2 t 2 2 Mn k=n γ 2 k ≤ exp - σ 2 2 (log n) 2+2ε T = n -σ 2 2 (log n) 1+2ε T . (A.21) Therefore P sup n≤m≤Mn m k=n γ k U k ≥ t ≤ C 2 n 2 (A.22)
for some suitable constant C 2 > 0. With notation as in the proof of Theorem 1, this implies that

∞ k=1 P(∆ 0 (kT ; T ) ≤ α) = O ∞ k=1 1 k 2 < ∞. (A.23)
Thus, by applying the Borel-Cantelli lemma as in the proof of Theorem 1, we conclude that ∆ 0 (kT ; T ) → 0 with probability 1. The rest of the arguments required to show that lim t→0 ∆(t; T ) = 0 for all T follow the lines of the proof of Theorem 1, so we omit them.

A.3. Proof of Proposition 1. We are now in a position to prove that the generalized RM schemes presented in Section 3 comprise asymptotic pseudotrajectories of the mean dynamics (MD). For convenience, we state the relevant result below:

Proposition 1. Let Z n be a sequence generated by any of the Algorithms 1-5. Assume further that: a) For first-order methods (Algorithms 1-4), the algorithm is run with SFO feedback satisfying (2) and a step-size γ n such that A/n ≤ γ n ≤ B/(log n) 1+ε for some A, B, ε > 0. b) For zeroth-order methods (Algorithm 5), the algorithm is run with parameters γ n and δ n such that lim n (γ n + δ n ) = 0, n γ n = ∞, and n γ 2 n /δ 2 n < ∞ (e.g., γ n = 1/n, δ n = 1/n 1/3 ). Then, with probability 1, one of the following holds: a) Z n is an APT of (MD); or b) Z n is unbounded.

Proof. We proceed method-by-method: Algorithm 1: Stochastic gradient descent/ascent. For (SGDA), we have W n = U n = U(ω n ) and b n = 0, so Assumption (A1) is satisfied automatically (since B n = 0). Moreover, under the stated assumptions for (SFO), U n is sub-Gaussian, so our claim follows from Proposition A.2.

Algorithm 2: Alternating stochastic gradient descent/ascent. For (alt-SGDA), we have b

n = (0, V y (X n+1 , Y n ) -V y (X n , Y n ))
, and U n = (U x,n , U y,n ). Under the stated assumptions for (SFO), U n satisfies Assumption (A2 ), so we are left to show that Assumption (A1) holds, i.e., that b n → 0. To that end, since V is Lipschitz, we have

b n = V y (X n+1 , Y n ) -V y (X n , Y n ) ≤ L X n+1 -X n , (A.24)
since Zn ∈ Z n -δ n e i , Z n + δ n e i . Finally, for the oracle's variance, we have V n 2 = O(1/δ 2 n ) by construction so, under the stated assumptions for γ n and δ n , Assumption (A2) is satisfied and our claim follows from Theorem 1.

We conclude this appendix with a simple coercivity criterion which guarantees that the iterates of an iterative method of the general form (RM) remain bounded:

Proposition A.3. Suppose that V satisfies the coercivity condition lim inf z →∞ V (z), z z 2 < 0. (A3)
Then, under Assumptions (A1) and (A2), the sequence Z n generated by (RM) is bounded (a.s.).

Corollary 3. Under Assumptions (A1)-(A3), the iterates Z n of (RM) comprise an APT of (MD).

Proof. To begin, observe that, under Assumption (A3), the quadratic penalty function E(z) = i z 2 i /2 is a Lyapunov function for (MD) as z → ∞. Indeed, by Assumption (A3), there exists some R > 0 such that, whenever z ≥ R, we have

dE dt = ∇E(z), ż = ∇E(z), V (z) ≤ - κ 2 z 2 (A.35) where κ = -lim inf z →∞ V (z), z / z 2 > 0.
3 This shows that trajectories of (MD) cannot escape to infinity so it is plausible to expect the same to hold for (RM). Our proof of this fact follows a direct stabilization technique due to Kushner and Yin [START_REF] Kushner | Stochastic approximation algorithms and applications[END_REF]. Specifically, going back to (RM), a simple expansion gives

E(Z n+1 ) = E(Z n ) + γ n V n , Z n + 1 2 γ 2 n V n 2 ≤ E(Z n ) + γ n V (Z n ), Z n + γ n W n , Z n + γ 2 n V n 2 (A.36)
Hence, taking (conditional) expectations, we obtain:

E[E(Z n+1 ) | F n ] ≤ E(Z n ) + γ n V (Z n ) + b n , Z n + γ 2 n E[ V n 2 | F n ]. (A.37)
To proceed, note that, by Assumptions (A1) and (A2), we have

E ∞ n=1 γ 2 n V 2 n 1 { Zn ≤R} < ∞, (A.38)
while, otherwise

E V n 2 F n ≤ C σ 2 n + (κ/2) Z n 2 whenever Z n ≥ R. (A.39)
Consider now the process

S n = E k≥n γ 2 k V n 2 1 { Z k ≤R} F n (A.40)
and let E n = E(Z n ) + S n . By definition, E n is non-negative; moreover, by (A.36), we get

E[E n+1 -E n | F n ] ≤ - κγ n 2 Z n 2 + Cγ 2 n 2 Z n 2 . (A.41)
Since γ n → 0, it follows that E n is eventually a supermartingale: specifically, if n 0 = sup{n : 3 In the above and throughout this proof, we assume that • is the ordinary Euclidean norm on R d ;

Cγ n > κ} (with the standard convention sup ∅ = -∞), we have E[E n+1 | F n ] ≤ E n for all
this assumption is only made for notational convenience and to avoid carrying around many multiplicative constants.

n ≥ n 0 . Since E[E n0 ] < ∞, Doob's submartingale convergence theorem subsequently implies that E n converges with probability 1 to some non-negative random variable E ∞ . Since S n → 0 with probability 1 (by Assumption (A2)), we conclude that

Z n = (2/κ)E(Z n ) → (2/κ)E ∞ (a.s.
), and our claim follows.

Appendix B. Convergence analysis

With all this preliminary work in hand, we are finally in a position to prove Theorems 2 and 3. The heavy lifting for the former is provided by the fact that, under the requirements of Theorem 1 and/or Proposition 1, Z n is an APT of the mean dynamics (MD), so it inherits its limit structure. The latter requires completely different techniques and involves a much finer analysis of the process in hand.

B.1. Convergence to ICTs. We begin with Theorem 2, which we restate below for convenience:

Theorem 2. Suppose that (RM) is run with a step-size sequence γ n such that n γ n = ∞, lim n γ n = 0. If Assumptions (A1) and (A2) hold, then, with probability 1, we have: a) Z n converges to an ICT set of Φ; or b) Z n is unbounded (and hence, non-convergent).

Proof. We consider two cases. First, if Z n is unbounded, there is nothing to show. Otherwise, if Z n is bounded, Theorem 2 shows that it is an APT of the mean dynamics (MD). Now, let L = t≥0 cl(Z(t, ∞)) be the limit set of Z(t), i.e., the set of limit points of convergent sequences Z(t n ) with lim n t n = ∞. Our claim then follows by the limit set theorem of Benaïm and Hirsch [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF]Theorem 8.2].

As we discussed in the main part of our paper, the ICT sets of Φ may exhibit a wide variety of structural properties (limit cycles, heteroclinic networks, etc.). As a complement to this, we show below that, in gradient systems (V = -∇f for some f : Z → R), ICT sets can only be compoments of equilibria. Specifically, building on a general result by Benaïm [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF], we have:

Proposition B.1. Suppose that V (z) = -∇f (z) for some C d -smooth potential function f : Z → R with a compact critical set crit(f ) = {z * : ∇f (z * ) = 0}. Then, every ICT set S of (MD) is contained in crit(f ); moreover, f is constant on S.
In particular, any ICT set of (MD) consists solely of critical points of f . Proof. Under the stated conditions, the critical set Z * := crit(f ) of f coincides with the set of rest points of (MD). Moreover, by Sard's theorem [START_REF] Lee | Introduction to Smooth Manifolds[END_REF], f (Z * ) has zero Lebesgue measure and hence empty interior. Our claim then follows from Proposition 6.4 of Benaïm [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF].

As another elementary illustration in addition to the gradient systems, one can show that for bilinear games Φ(x, y) = xy, the ICT sets are annular regions of the form {z : r ≤ z ≤ R, 0 ≤ r ≤ R}. This can be easily seen by considering the widely known Hamiltonian function H(x, y) = x 2 + y 2 , which satisfies Ḣ = 0 provided (x, y) follows (MD). An immediate consequence of this fact is that any point on R 2 lies in some ICT set of (MD), which further implies that there is no bounded attracting region, i.e., attractors. B.2. Convergence to attractors. We now proceed with the analysis of RM schemes in the presence of an attractor; the relevant result is Theorem 3: Theorem 3. Let S be an attractor of (MD) and fix some confidence level α > 0. If γ n is small enough and Assumptions (A1) and (A2) hold, there exists a neighborhood U of S, independent of α, such that P(Z n converges to S | Z 1 ∈ U) ≥ 1 -α.

Because of the generality of our assumptions, the proof of Theorem 3 requires a range of completely different arguments and techniques. We illustrate the main steps of our technical trajectory below:

(1) The first crucial component of our proof is to establish an energy function for (RM) in a neighborhood of S. To do this, we rely on Conley's decomposition theorem (the so-called "fundamental theorem of dynamical systems") which states that the mean dynamics (MD) are "gradient-like" in a neighborhood of an attractor, i.e., they admit a (local) Lyapunov function.

(2) Because of the noise in (RM), the evolution of E along the trajectories of (RM) could present signifcant jumps: in particular, a single "bad" realization of the noise could carry Z n out of the basin of attraction of S, possibly never to return. A major difficulty here is that the driving vector field V is not assumed bounded, so it is not straightforward to establish proper control over the error terms of (RM). However, we show that, with high probability (and, in particular, with probability at least 1 -α), the aggregation of these errors remains controllably small; this is the most technically challenging part of our argument and it unfolds in a series of lemmas below.

(3) Conditioning on the above, we will show that, with probability at least 1 -α, the value of the trajectory's energy cannot grow more than a token threshold ε; as a result, if (RM) is initialized close to S, it will remain in a neighborhood thereof for all n (again, with probability at least 1 -α). (4) Thanks to this "stochastic Lyapunov stability" result, we can regain control of the variance of the process and use martingale limit and maximal inequality arguments to show that Z n converges to S. In the rest of this section, we make this roadmap precise via a series of technical lemmas and intermediate results.

A local energy function for (RM). We begin by providing a suitable (local) energy function for (MD). Indeed, since S is an attractor, there exists a compact neighborhood K of S, called the fundamental neighborhood of S, and having the defining property that dist(Θ t (z), S) → 0 as t → ∞ uniformly in z ∈ K. Since all trajectories of (MD) that start in K converge to S, there are no other non-trivial invariant sets in K except S. As a result, with K compact, Conley's decomposition theorem for dynamical systems [START_REF] Cameron | Isolated Invariant Set and the Morse Index[END_REF] shows that there exists a smooth Lyapunov -or "energy" -function E : K → R such that (i) E(z) ≥ 0 with equality if and only if z ∈ S; and (ii) Ė(z) := ∇E(z), V (z) < 0 for all z ∈ K \ S (implying in particular that E(Θ t (z)) is strictly decreasing in t whenever z ∈ K \ S).

In the discrete-time context of (RM), the energy E n := E(Z n ) of Z n may fail to be decreasing (strictly or otherwise). However, a simple Taylor expansion with Lagrange remainder yields the basic energy bound

E n+1 ≤ E n + γ n ∇E(Z n ), V (Z n ) + γ n ξ n + γ n ψ n + γ 2 n θ 2 n , (B.1)
where the error terms ξ n , ψ n and θ n are defined as

ξ n = ∇E(Z n ), U n (B.2a) ψ n = B n ∇E(Z n ) + γ n βB 2 n (B.2b) θ 2 n = β V (Z n ) + U n 2 (B.2c)
with β denoting the strong smoothness modulus of E over the compact set K. Clearly, each of these error terms can be positive, so E n may fail to be decreasing; we discuss how these errors can be controlled below.

Error control. We begin by encoding the aggregation of the error terms in (B.1) as

M n = n k=1 γ k ξ k (B.3a)
and

S n = n k=1 [γ k ψ k + γ 2 k θ 2 k ] (B.3b) Since E[ξ n | F n ] = 0, we have E[M n | F n ] = M n-1 , so M n is a martingale; likewise, E[S n | F n ] ≥ S n-1
, so S n is a submartingale. Interestingly, even though M n appears more "balanced" as an error (because ξ n is zero-mean), it is more difficult to control because the variance of its increments is

E[|γ n ξ n | 2 | F n ] = γ 2 n E[| ∇E(Z n ), U n | 2 | F n ], (B.4)
so the jumps of M n can become arbitrarily big if Z n escapes K (which is the event we are trying to discount in the first place). On that account, we will instead bound the total error increments by conditioning everything on the event that Z n remains within K.

To make this precise, consider the "mean square" error process

R n = M 2 n + S n (B.5)
and the indicator events

E n ≡ E n (K) = {Z n ∈ K for all k = 1, 2, . . . , n} (B.6) 
H n ≡ H n (ε) = {R k ≤ ε for all k = 1, 2, . . . , n}, (B.7) 
with the convention E 0 = H 0 = Ω. Moving forward, with significant hindsight, we will choose ε small enough so that {z ∈ Z :

E(z) ≤ 2ε + √ ε} ⊆ K. (B.8)
and we will assume that Z 1 is initialized in a neighborhood U ⊆ K such that

U ⊆ {z ∈ Z : E(z) ≤ ε} (B.9)
We then have the following estimates:

Lemma B.1. Suppose that Z 1 ∈ U and Assumptions (A1) and (A2) hold. Then (1) E n+1 ⊆ E n and H n+1 ⊆ H n .

(

) H n-1 ⊆ E n . ( 2 
) Consider the "bad realization" event

Hn := H n-1 \ H n = H n-1 ∩ {R n > ε} = {R k ≤ ε for k = 1, 2, . . . , n -1 and R n > ε}, (B.10)
and let Rn = R n 1 Hn-1 denote the cumulative error subject to the noise being "small" until time n. Then:

E[ Rn ] ≤ E[ Rn-1 ] + γ n GB n + γ 2 n [2βG 2 + (2β + G 2 )σ 2 n + βB 2 n ] -ε P( Hn-1 ), (B.11)
where G 2 = sup z∈K { ∇E(z) 2 + V (z) 2 } and, by convention, H0 = ∅, R0 = 0.

Proof. The first claim is obvious. For the second, we proceed inductively:

(1) For the base case n = 1, we have

E 1 = {Z 1 ∈ K} ⊇ {Z 1 ∈ U } = Ω (recall that Z 1 is initialized in U ⊆ K).
Since H 0 = Ω, our claim follows.

(2) Inductively, suppose that H n-1 ⊆ E n for some n ≥ 1. To show that H n ⊆ E n+1 , suppose that R k ≤ ε for all k = 1, 2, . . . , n. Since H n ⊆ H n-1 , this implies that E n also occurs, i.e., Z k ∈ K for all k = 1, 2, . . . , n; as such, it suffices to show that Z n+1 ∈ K.

To do so, given that Z k ∈ U ⊆ K for all k = 1, 2, . . . n, the bound (B.1) gives

E k+1 ≤ E k + γ n ξ n + γ n ψ n + γ 2 n θ 2 n , for all k = 1, 2, . . . n, (B.12)
and hence, after telescoping over k = 1, 2, . . . , n, we get

E n+1 ≤ E 1 + M n + S n ≤ E 1 + R n + R n ≤ ε + √ ε + ε = 2ε + √ ε. (B.13)
We conclude that E(Z n+1 ) ≤ 2ε + √ ε, i.e., Z n+1 ∈ K, as required for the induction. For our third claim, note first that

R n = (M n-1 + γ n ξ n ) 2 + S n-1 + γ n ψ n + γ 2 n θ 2 n = R n-1 + 2γ n ξ n M n-1 + γ 2 n ξ 2 n + γ n ψ n + γ 2 n θ 2 n , (B.14)
so, after taking expectations:

E[R n | F n ] = R n-1 + 2M n-1 γ n E[ξ n | F n ] + E[γ 2 n ξ 2 n + γ n ψ n + γ 2 n θ 2 n | F n ] ≥ R n-1 (B.15) i.e., R n is a submartingale. To proceed, let Rn = R n 1 Hn-1 so Rn = R n-1 1 Hn-1 +(R n -R n-1 ) 1 Hn-1 = R n-1 1 Hn-2 -R n-1 1 Hn-1 +(R n -R n-1 ) 1 Hn-1 , = Rn-1 + (R n -R n-1 ) 1 Hn-1 -R n-1 1 Hn-1 , (B.16)
where we used the fact that

H n-1 = H n-2 \ Hn-1 so 1 Hn-1 = 1 Hn-2 -1 Hn-1 . Then, (B.14) yields R n -R n-1 = 2M n-1 γ n ξ n + γ 2 n ξ 2 n + γ n ψ n + γ 2 n θ 2 n (B.17) so E[(R n -R n-1 ) 1 Hn-1 ] = 2 E[γ n M n-1 ξ n 1 Hn-1 ] (B.18a) + E[γ 2 n ξ 2 n 1 Hn-1 ] (B.18b) + E[(γ n ψ n + γ 2 n θ 2 n ) 1 Hn-1 ] (B.18c)
However, since H n-1 and M n-1 are both F n -measurable, we have the following estimates:

(1) For the noise term in (B.18a), we have:

E[M n-1 ξ n 1 Hn-1 ] = E[M n-1 1 Hn-1 E[ξ n | F n ]] = 0. (B.19) (2) 
The term (B.18b) is where the reduction to H n-1 kicks in; indeed:

E[ξ 2 n 1 Hn-1 ] = E[1 Hn-1 E[| ∇E(Z n ), U n | 2 | F n ]] ≤ E[1 Hn-1 ∇E(Z n ) 2 E[ U n 2 | F n ]] {by Cauchy-Schwarz} ≤ E[1 En ∇E(Z n ) 2 E[ U n 2 | F n ]] {because Hn-1 ⊆ En} ≤ G 2 σ 2 n , {by Eq. (5b)} where G 2 = sup z∈K { ∇E(z) 2 + V (z) 2 }. ( 3 
) Finally, for the term (B.18c), we have:

E[θ 2 n 1 Hn-1 ] ≤ 2β E[ V (Z n ) 2 1 En + U n 2 ] ≤ 2β(G 2 + σ 2 n ), (B.20)
where we used the fact that 1 Hn-1 ≤ 1 En ≤ 1. Likewise,

E[ψ n 1 Hn-1 ] ≤ GB n + γ n βB 2 n . (B.21)
Thus, putting together all of the above, we obtain:

E[(R n -R n-1 ) 1 Hn-1 ] ≤ γ n GB n + γ 2 n [2βG 2 + (2β + G 2 )σ 2 n + βB 2 n ]. (B.22)
Going back to (B.16), we have R n-1 > ε if Hn-1 occurs, so the last term becomes i.e., Z remains within the basin of attraction K of S with probability at least 1 -α.

E[R n-1 1 Hn-1 ] ≥ ε E[1 Hn-1 ] = ε P(
Proof. We begin by bounding the probability of the "bad realization" event Hn = H n-1 \ H n . Indeed, if Z 1 ∈ U, we have:

P( Hn ) = P(H n-1 \ H n ) = P(H n-1 ∩ {R n > ε}) = E[1 Hn-1 × 1 {Rn>ε} ] ≤ E[1 Hn-1 ×(R n /ε)] = E[ Rn ]/ε (B.25)
where, in the second-to-last line, we used the fact that R n ≥ 0 (so

1 {Rn>ε} ≤ R n /ε). Telescoping (B.11) yields E[ Rn ] ≤ E[ R0 ] + G n k=1 γ k B k + n k=1 γ 2 k 2 k -ε n k=1 P( Hk-1 ) (B.26)
where we set 

P( Hk ) ≤ 1 ε n k=1 [γ k GB k + γ 2 k 2 k ] ≤ Γ/ε
for some Γ > 0. Now, by choosing γ n sufficiently small, we can ensure that Γ/ε < α; therefore, given that the events Hk are disjoint for all k = 1, 2, . . . , we get Since contour integrals are linear in the integrands, when φ(y) = k a k y k in (AI), we have

I(h) = 4π k a 2k kh 2k k i=1 2i -1 2i .
Therefore, I(h) = 0 if and only if (C.1) holds. By Theorem 2.4 in [START_REF] Christopher | Limit cycles of differential equations[END_REF], the solution h * of I(h * ) = 0 then implies the existence of a limit cycle in a neighborhood of the oval γ h * := {z : z = h * }.

Finally, it is easy to verify that for φ(y) = 3 on {r ≥ 0 : r 2 = 4 3 }, whence ṙ > 0 on {r ≥ 0 : r 2 = 4 3 }. Likewise, one can check that ṙ < 0 on {r ≥ 0 : r 2 = 2}, and that there is no stationary point in the region S := {r ≥ 0 : 4 3 ≤ r 2 ≤ 2}. By the Poincaré-Bendixson theorem [START_REF] Wiggins | Introduction to applied nonlinear dynamical systems and chaos[END_REF], there exists at least a limit cycle in S.

Finally, it is easy to see that (x * , y * ) = (0, 0.5) is a stable critical point of [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]. Since the region S is trapping, Poincaré's index theorem then dictates that there exists at least another unstable limit cycle inside S, establishing the claim. C.3. Second-order methods in Example 5.3 as perturbations. In this section, we discuss how to cast existing second-order methods as an RM scheme with different driving vector fields, and show that their ICT sets are similar to the first-order methods under practical settings.

We will showcase on the consensus optimization (ConO): where λ > 0 is the regularization parameter. Recalling the efficient implementation scheme of Hessian-gradient multiplication [START_REF] Barak | Fast exact multiplication by the hessian[END_REF], we make the following assumption on the stochastic second-order oracles (SSO): when called at z = (x, y) with random seed ω ∈ Ω, an SSO returns a random vector JV(z; ω ) of the form JV(z; ω ) = J(z)V (z) + U (z; ω ) (SSO)

Z n+1 = Z n + γ n (I -λJ(Z n ))V (Z n ) (ConO)
where U (z; ω ) is assumed to be unbiased and sub-Gaussian as in [START_REF] Adolphs | Local saddle point optimization: A curvature exploitation approach[END_REF]. With these assumptions, one can then proceed exactly as in Appendix A.3 for the (SGDA) and (alt-SGDA) cases to show that ConO, and its alternating version, give rise to asymptotic pseudotrajectories of the continuous-time dynamics: ż(t) = I -λJ(z(t)) V (z(t)).

Similarly, one can show (under appropriate assumptions of the oracles) the continuous-time dynamics of symplectic gradient adjustment (SGA) is ż(t) = I -λ J(z(t)) -J(z(t)) 2 V (z(t)).

As explained in Example 5.3, it is undesirable to set a large number of λ, since then we are essentially treating min max and max min as the same problem. However, if λ is small, then by continuity, any stable (unstable) ICT set of (MD) remains stable (unstable) under perturbations [START_REF] Wiggins | Introduction to applied nonlinear dynamical systems and chaos[END_REF]. We therefore expect the ICT sets of various second-order algorithms in Example 5.3 be to similar to that of first-order RM schemes. C.4. Further comparisons. This section includes further comparison of the ICT sets of various algorithms, and show that these existing methods all suffer from the spurious convergence depicted in Section 5.

First, Fig. 4 demonstrates that the spurious ICT sets of ConO for ( 9) is similar to that of SGA; cf. Fig. 2(c).

Second, we have included yet another second-order method, the Competitive Gradient Descent (CGD) [START_REF] Schäfer | Competitive gradient descent[END_REF], in Fig. 5(a). For ease of comparison, we run (OG/PEG) with the same initialization in Fig. 5(b). As is evident from the figure, both algorithms perform similarly and converge straight to the spurious ICT set.

Finally, we report the bahvior of various algorithms applied to the "almost bilinear game" [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF]. In this case, all algorithms fail to escape the spurious ICT set, with the sole exception of ConO. Intriguingly, ConO converges to the unstable critical point. A plausible explanation of this phenomenon is provided by [START_REF] Abernethy | Last-iterate convergence rates for min-max optimization[END_REF], where it is shown that the Hamiltonian descent (HD) converges to critical points for any almost bilinear game. Therefore, it is not surprising that ConO, being a mixture of SGDA and HD, also enjoys similar guarantees. Such a convergence is nonetheless highly undesirable in our example, echoing the concern that gradient penalty schemes cannot distinguish (local) min max from max min.
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 1 Figure 1: Comparison of different RM schemes for bilinear games Φ(x, y) = xy, x, y ∈ R. From left to right: (a) gradient descent/ascent; (b) the mean dynamics (MD); (c) extra-gradient.
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 2 Figure 2: Spurious limits of min-max optimization algorithms. From left to right: (a) (SEG) for (8) with ε = 0.01; (b) "forsaken solutions" of (SEG); (c) "forsaken solutions" of symplectic gradient adjustment (SGA). The red curves present trajectories with different initialization; non-critical ICT sets are depicted in white; the blue curves represent an time-averaged sample orbit.

  Adaptive algorithms for[START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF].

  Adaptive algorithms for[START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF].

  ): Proposition A.1. Suppose that Z(t) is bounded and satisfies the general condition lim t→∞ ∆(t; T ) = 0 for all T > 0, (A.5) where ∆(t; T ) = sup 0≤h≤T t+h t W (s) ds . (A.6)

  [START_REF] Bervoets | Learning with minimal information in continuous games[END_REF] i.e., ∆ 0 (kT ; T ) → 0 with probability 1.Thus, going back to the requirements of Proposition A.1, we get ∆(kT ; T ) = sup 0≤h≤T kT +h kT W (t) dt = sup 0≤h≤T kT +h kT [U (t) + b(t)] dt ≤ ∆ 0 (kT ; T ) + sup 0≤h≤T kT +h kT B(t) dt. ≤ ∆ 0 (kT ; T ) + T max 0≤h≤T B(kT + h). (A.14)
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 245422224262462422464 the condition (C.1) is satisfied with h * = 4 3 , thus implying the existence of a spurious ICT set near the neighborhood of {z : z = 4 3 }. C.2. Proof of spurious ICT sets in Example 5.2. We show the existence of two spurious ICT sets in Example 5.2.The mean dynamics (MD) for (9) reads:ẋ = -(y -0.5) -1 2 x + 2x 3 -x 5 ẏ = x -12 y + 2y 3 -y Then straightforward calculations show that:

Figure 4 :

 4 Figure 4: ConO with λ = 0.2 applied to (9).

Figure 5 :

 5 Figure 5: Spurious limits of min-max optimization algorithms from the same initialization. From left to right: (a) CGA for (9); (b) (OG/PEG) for (9); (c) Algorithms for (8).

  Containment probability. Lemma B.1 is the key to showing that Z n remains close to S with high probability: we formalize this in a final intermediate result below.

	Hn-1 ).	(B.23)
	Our claim then follows by combining Eqs. (B.16), (B.20), (B.21) and (B.23).	

Proposition B.2. Fix some confidence threshold α > 0. If (RM) is run with sufficiently small γ n satisfying the conditions of Proposition 1, then

P(H n | Z 1 ∈ U) ≥ 1 -α for all n = 1, 2, . . . (B.24)
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where L denotes the Lipschitz modulus of V . Hence, by the definition of (alt-SGDA), we get

If Z n is bounded, we also have sup n V y (X n+1 , Y n ) < ∞, so the first term above vanishes as n → ∞ (recall that lim n γ n = 0). As for the second, we have

In turn, this implies that ∞ n=1 P( U n ≥ log n) < ∞ so, by the Borel-Cantelli lemma, we have U n = O(log n) with probability 1. Hence, by our assumptions for the method's step-size, we get

i.e., B n → 0 with probability 1. Our claim then follows from Proposition A.2.

Algorithm 3: Stochastic extra-gradient. For (SEG), we have

, so Assumption (A2 ) holds by default. For Assumption (A1), arguing as in the case of Algorithm 2 above, we have

Thus, by Proposition A.2, we conclude that Z n is an APT of (MD).

Algorithm 4: Optimistic gradient. For (OG/PEG), we have

so Assumption (A2 ) again holds by default. The bias term can then be bounded exactly as in the case of Algorithm 3, so our APT claim follows again by Proposition A.2.

Algorithm 5: Simultaneous perturbation stochastic approximation. Because of the algorithm's different oracle structure (zeroth-vs. first-order feedback), the analysis of (SPSA) is different. We begin with the algorithm's bias term, given here by

denoting the method's one-shot SPSA estimator. To bound it, let

denote the i-th component of V n ∈ R d after having averaged out the choice of the random seed ω n (which, by default, is not F n -measurable). We then have

where, as per our discussion in Section 3, the "±" sign is equal to -1 if e i ∈ E X and +1 if e i ∈ E Y . Then, by the mean value theorem, there exists some Zn in the line segment Z n -δ n e i , Z n + δ n e i such that

Since V is Lipschitz continuous, it follows that

Convergence with high probability. We are finally in a position to prove the convergence of generalized RM algorithms:

Proof of Theorem 3. By Proposition B.2, if Z n is initialized within the neighborhood U defined in (B.9), we have P(Z n ∈ K | Z 1 ∈ U) ≥ 1 -α (note also that the neighborhood U is independent of the required confidence level α). Since K is compact, if Z n ∈ K for all n, we conclude by Theorem 1 that the continuous-time interpoloation Z(t) of Z n is an APT of (MD). Now, if we write L = t≥0 cl(Z(t, ∞)) for the limit set of Z(t), we have K ∩ L = ∅ by the compactness of K and the fact that Z n ∈ K for all n ≥ 1; moreover, L is itself compact as a closed subset of the compact set {Θ t (z) : 0 ≤ t ≤ T, z ∈ K}. Since points in L ∩ K are a fortiori attracted to S under (MD) and L is invariant under (MD), we conclude that L ∩ S = ∅. However, since L is internally chain-transitive (by Theorem 2) and internally chain-transitive sets do not contain any proper attractors, we conclude that L ⊆ S. This shows that Z(t) -and, by consequence, Z n -converges to S, as claimed. has a solution with h > 0. Then, for small enough ε, there is an ICT set of mean dynamics (MD) with objective Φ(x, y) = xy + εφ(y) such that it does not contain any critical point.

Proof. Recall the mean dynamics (MD):

In the case of Φ(x, y) = xy + εφ(y), (MD) reads:

The most important tool of the proof is the Abelian integral [START_REF] Christopher | Limit cycles of differential equations[END_REF]:

where h > 0 is a parameter and γ h is a family of ovals defined as in (2.3) of [START_REF] Christopher | Limit cycles of differential equations[END_REF]. Suppose φ(y) = a k y k , so that φ (y) = ka k y k-1 . We choose γ h = {z : z = h}. Then, using the polar coordinate representation, we get

if k is even. (C.3)