
HAL Id: hal-03043796
https://hal.science/hal-03043796

Submitted on 25 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dynamical Properties of Spin-Crossover Solids Within
the Kinetic Spin-1 BEG Model in the Presence of a

Time-Dependent Magnetic Field
Saliou Bolarinwa Ogou, Djidjoho Toussaint Oke, Félix Hontinfinde, Kamel

Boukheddaden

To cite this version:
Saliou Bolarinwa Ogou, Djidjoho Toussaint Oke, Félix Hontinfinde, Kamel Boukheddaden. Dynam-
ical Properties of Spin-Crossover Solids Within the Kinetic Spin-1 BEG Model in the Presence of
a Time-Dependent Magnetic Field. Advanced Theory and Simulations, 2019, 2 (5), pp.1800192.
�10.1002/adts.201800192�. �hal-03043796�

https://hal.science/hal-03043796
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Dynamical Properties of Spin-Crossover Solids 
Within the Kinetic Spin-1 BEG Model in the 
Presence of a Time-Dependent Magnetic Field

Saliou Bolarinwa Ogou, Djidjoho Toussaint Oke, Félix Hontinfinde, and Kamel Boukheddaden

Spin-crossover (SCO) and Prussian blue analogs (PBAs) materials are 

investigated in 2D with a three-state Blume–Emery–Griffiths (BEG) model 

where each spin interacts with its nearest neighbors (nn) and may be either 

in high-spin (HS) or low-spin (LS) state. The interactions through the 

system lattice are temperature-dependent to account for spin-phonon 

interactions. The system is also in contact with an oscillating magnetic field 

energy. The generated numerical results by the dynamic mean field theory 

(DMFT) study approach are consistent with those derived by kinetic 

Monte Carlo (KMC) simulations with Glauber dynamics and Arrhenius 

transition rates. First-order transitions with thermally induced hysteresis 

phenomena have been observed. Near the hysteresis loops, the model 

exhibits throughout relaxation curves, some fluctuations in the LS phase, 

strengthened by increasing temperature where this phenomenon becomes 

temperature- and magnetic field-dependent.

1. Introduction

Because of the needs for our companies in the field of the
treatment and storage of informations, transportation of art-
works or other valuable objects, evaluation of the degree of
alteration of materials after collisions,[1] the design of minia-
turized devices with fast response is a major stake. Switchable
molecular materials with thermodynamic bistability are one
of the solutions to this requirement. Among possible systems,
spin-crossover (SCO) materials with a central metal ion with the
property to switch between two different spin states, constitute
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serious and original candidates. Their lay-out leads interactions 
between the compo-nent molecules of materials, which cause the 

appearance of unique or multiple phys-ical properties 
(conduction, magnetism, pho tochromism,  non l inear 
op t i c s  . . . ) . [2–6] Furthermore, their molecular aspect makes 
them easily flexible chemically to optimize their properties or to 

combine them with other molecular systems to generate multi-
functional materials. Therefore, under the influence of various 
stimuli such as light, pressure, temperature, magnetic and elec-
tric fields, etc.,[7–10] phase transitions be-tween the low-spin (LS) 
diamagnetic state and the high-spin (HS) paramagnetic state are 

triggered.[7,9,10] The change of induced 

unit of memory can be reduced to a molecule, thus allowing to 

reach storage capacity more important than those of conven-
tional materials. The thermally induced spin transition leads to 

both electric and structural changes, often observed as a color 
and magnetic moment changes.[2,11,12] When the interactions 
between molecules are weak, the HS fraction changes smoothly 

with the temperature, whereas when it becomes strong, the 

system exhibits cooperative phenomena,[13–15] which manifest 
through the existence of first-order phase transitions accom-
panied with thermal hysteresis. An interesting example is that of 
the [Fe (NH 2tr z)3](NO 3)2, ( NH 2tr z = 4 − amino − 1, 2, 4 − 

tr iazole) which exhibits a spin transition with a hysteresis loop 

near the room temperature region.[16] Then, the change in HS 

fraction becomes sharper and sharper with increasing interac-
tion strength between molecules. Of course, the interaction in 

SCO solids is dominated by the variations of unit-cell volume 

and bond length, that are considerably larger in the HS state. 
These result, in addition to the larger electronic degeneracy, also 

in a larger phonon density for this state.[13,14,17] At the atomic 

scale and in the case of Fe (I I ), the SCO phenomenon is the 

result of the redistribution of the electrons between the bonding 

t2g and the antibonding eg orbitals. In the diamagnetic (σ = 0) LS 

state, only bonding orbitals are populated (t2
6
g eg

0), while in the 

param-agnetic (σ = 2) HS state, the electronic configuration 

becomes (t2
4
g eg

2 ). As demonstrated in several works,[13,14,18] the 

elastic in-teractions are at the hearth of the existence of 
cooperative effects in SCO materials and play a crucial role in the 

existence of the
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first-order transitions and the thermally induced hysteresis loops
observed experimentally.[13] Experimental results allow to estab-
lish that SCO transitions involve both electronic transformation
(spin and orbital) and structural modifications.[18–23]

From the theoretical point of view, many interesting works
have addressed static and dynamic properties of SCO materials.
Most of them are based on Ising-like models,[24–26] atom-phonon
coupling descriptions,[12,27–32] ormore recently on complex elastic
descriptions[13,23,33–36] or taking into account the volume change at
the transition. These models are solved analytically using mean-
field approaches or by Monte Carlo simulations[13,28,33] or using
molecular dynamics.[14,37]

In the present investigations, the SCO is described using the
Blume–Emery–Griffiths (BEG) model that allows to include not
only the interactions between the SCO sites but also to take into
account, possible magnetic interactions or magnetic field effect
in the high-spin state. In the past, several methods were used
to solve the Ising spin-1 model under an oscillating magnetic
field[38–44] ormixed spins kineticmodels,[45–47] which exhibited in-
teresting physical properties. In this work, we consider the BEG
model for SCO or PBAs[24–36] and crossover solids under oscillat-
ing magnetic field to describe their thermal and time-dependent
properties. As in our previous works,[48–50] the quadrupolar cou-
pling parameter K between SCO units is assumed to depend
linearly on the absolute temperature T in the form, K = αkBT ,
in order to take into account acoustic phonons origin of the in-
teractions between SCO units. The effective “ligand-field” en-
ergy D depends on the absolute temperature and contains the
combined effects of the ligand-field strength � and that of the
degeneracy ratio g between LS and HS states which result in
an entropic term, stabilizing the HS state at high temperature.
The model is solved in the framework of the DMFT approach.
One gets the motion equations of the order parameters m = 〈σ 〉

(magnetization) and nHS = 〈σ 2〉 (HS fraction), which describe
nonequilibrium properties of the system. On the other hand, dy-
namical properties of the model are computed by using KMC
simulations[48] with Glauber dynamics, where the time scale is
given with suitable Arrhenius transition rates.[49–51] The relax-
ation of HS fraction shows oscillating nonlinear shapes[33,52] ac-
companied by some fluctuations in the stationary state, in which
a residual HS fraction remains due to the effect of the magnetic
field. The obtained results of DMFT simulations are discussed
in relation with those by KMC calculations. Analysis of spatio-
temporal configurations have been performed to explain the spin
transition during the relaxation process.
The paper is organized as follows. Section 2 is devoted to

the presentation of the model and the description of the used
calculation methods: DMFT and KMC simulations. In Section
3, we present and discuss the obtained results. Section 4 con-
tains the conclusion and outlines some possible developments
of this work.

2. Hamiltonian Model

The Hamiltonian of spin-1 BEG model adapted for SCO materi-
als with magnetic interactions and applied magnetic field is writ-
ten as follows:

H = −J
∑

〈i, j 〉

σiσ j − K
∑

〈i, j 〉

σ 2
i σ 2

j + D
∑

i

σ 2
i − h(t)

∑

i

σi (1)

where σi = ±1, 0 are fictitious spin values located at site i of
the square lattice. The spins σi = ±1 describe the magnetic HS
spin state and σi = 0 is associated with the diamagnetic LS state.
According to the 2D character of the system, and to the square
symmetry of the lattice in which only nearest-neighbor (nn) in-
teractions are considered, the coordination number is z = 4.
Themagnetic interactions between themagnetic states, σi = ±1,
are taken into account through the exchange term J and the
quadrupolar interactions (between the SCO sites) are introduced
through K . Due to the elastic nature of the SCO transition,[33–37]

this K term that takes into account the phonon contribution
which also originates from the intra-molecular vibrations, lattice
distortion, and/or acoustic phonons, provides the elastic long-
range interactions between the SCO units, and is written here
as K = αkBT

[48–50] with the ratio γ = J /K taken as a tunable pa-
rameter. D = � − kBT ln(g ) is the effective ligand-field strength
and h is the energy associated with the application of an exter-
nal magnetic field. In the following, a radio frequency magnetic
field h(t) = h0 cos(ωt) is considered where ω is the oscillation
frequency.

2.1. Dynamic Mean-Field Theory (DMFT) Approach

Throughout the spin lattice, each spin site i feels the following
one-site Hamiltonian, Hi , in the mean field approximation

Hi = −zJmσi − zKnHSσ
2
i + Dσ 2

i − h(t)σi (2)

where m = 〈σi 〉 and nHS = 〈σ 2
i 〉 are considered as invariant by

translation over the lattice.
The associated mean-field free energy per site is given by

F (m, nHS, T ) = U − TS (3)

whereU and S are the internal energy and entropy per site of the
system, respectively, given by

U = −
z

2
J m2 −

z

2
Kn2HS + DnHS − h(t)m (4)

S = kBβ〈Hi 〉 + kB ln
∑

σ

e−βHi (5)

Here, β = 1
kBT

(T is the temperature) and 〈Hi 〉 = −zJm2 −

zKn2HS + DnHS − hm is the average value of Hi . After some sim-
ple calculations, the variational free energy is given by

F (m, nHS, T ) =
z

2
J m2 +

z

2
Kn2HS

− kBT ln
[

1+ 2eβ(zKnHS−D) coshβ(zJm+ h(t))
]

(6)

2



2.1.1. The Dynamic Choice

The dynamical properties of Hamiltonian 1 are investigated in
the frame of a microscopic master equation which governs the
time evolution of the probability P ({σi }, t) to occupy the spin con-
figuration {σ }[49–51,53] at time t . The flux of probability accounts
for transitions from the configuration {σ }i ⇄ {σ

′
}i with transi-

tion ratesW. Following theGlauber-type stochastic dynamics, the
master equation reads

∂P ({σ }, t)

∂t
= −

N
∑

i=1

Wi (σi → σ ′
i )P ({σ }i , σi , t)

+

N
∑

i=1

Wi (σ
′
i → σi )P ({σ } j , σ

′
i , t) (7)

whereWi (σi → σ ′
i ) is the transition rate of the i th spin from the

value σi to σ ′
i defined by

Wi (σi → σ ′
i ) =

1

3τ

e−βHi

∑

σi
e−βHi

(8)

τ stands for the Arrhenius time scale and 1
τ
denotes the effective

intramolecular frequency associated with the “spontaneous spin
reversals”[49–51]

1

τ
=

1

τ0
e−βEa0 (9)

where 1/τ0 is the “intrinsic” frequency spin-flip process between
HS and LS states, taken as constant and E a

0 denotes the in-
tramolecular vibronic energy barrier.
In the equilibrium state, the probabilities satisfy the detailed

balance condition

W(σi → σ ′
i )

W(σ ′
i → σi )

=
P ({σi }, σ

′
i , t)

P ({σi }, σi , t)
(10)

Thus, the probability per unit time is given by

Wi (σi → σ ′
i ) = Wi (σ

′
i ) =

1

3τ

e−βHi

1+ 2eβ(zKnHS−D) coshβ(zJm+ h)

(11)

Thus, these transition rates W, must fulfill the detailed bal-
ance condition.

2.1.2. The Motion Equations

The mean value of spin σk and σ 2
k , respectively, associated to the

magnetization and HS fraction calculations are

m =
∑

{σ }

σkP ({σi }, t) and nHS =
∑

{σ }

σ 2
k P ({σi }, t) (12)

and
∑

σ ′
k �=σk

Wk(σ
′
k) = 1

3τ
. After some calculations, one gets the

time evolution of the magnetization m and the fraction nHS in

the forms

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dm

dt
=

e−βEa0

3τ0

(

−m+
2 sinhβ(zJm+ h(t))

e−β(zKnHS−D) + 2 coshβ(zJm+ h(t))

)

dnHS

dt
=

e−βEa0

3τ0

(

−nHS +
2 coshβ(zJm+ h(t))

e−β(zKnHS−D) + 2 coshβ(zJm+ h(t))

)

(13)

These coupled nonlinear differential equations (13) are numer-
ically solved by using fourth order Adams–Moulton predictor-
corrector methods.[54–57] Thermal properties are got by integrat-
ing on [0, 2π ] in time. Then, the dynamic order parameters are
defined as the time-average magnetization m and nHS fraction
over a period of the oscillating magnetic field energy

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

m =
1

2π

∫ 2π

0

m(ξ )dξ

nHS =
1

2π

∫ 2π

0

nHS(ξ )dξ

(14)

where ξ = ωt . Here, ω becomes a simple parameter and we con-
sidered ξ as the control parameter in time. The method used
to solve the system equations (14) is that of Romberg[54–57] with
Richardson extrapolation to obtain thermodynamic quantities
such as: magnetization m, fraction nHS, and the magnetic sus-
ceptibility given by

χ =
nHS − m2

kBT
(15)

Within the system dynamics, Van Hove-like equations[58] give
the same system equations through the free energy per site. One
gets

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dm

dt
= −

1

3zJ τ

∂F

∂m
dnHS

dt
= −

1

3zJ τ

∂F

∂nHS

(16)

2.2. Kinetic Monte Carlo Simulations

Here, the n-fold algorithm developed by Boltz, Kalos, and
Lebowitz (BKL)[59] is used to investigate the model properties. In
the Monte Carlo simulations[60,61] procedure, an initial configu-
ration {σ } (of linear size L ) of the square system is chosen with
periodic boundary conditions. Then, the total number of possible
spin-flip processes that lead to another configuration {σ ′} is cal-
culated. Let us denote byW({σ } → {σ }′) the transition rate from
{σ } to {σ }′. For the Glauber spin-flip dynamics, W({σ } → {σ }′)
becomes

W({σ } → {σ }′) =
1

3τ (1+ eβ�E )
(17)

where �E = E ({σ }′)− E ({σ })[48] denotes the change in the sys-
tem energy associated to the spin-flipmove and 1

τ
is defined as in
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Equation (9). Then, one calculates the total evolution rate Q({σ })
of {σ } by considering all possible processes

Q({σ }) =

N
∑

a=1

Wa (18)

where a stands for a given possible spin-flip process. Two ran-
dom numbers 0 ≤ r1, r2 ≤ 1 are chosen to calculate the lifetime
t({σ }) = − ln(r1)/Q({σ }) of configuration {σ } and a random evo-
lution rate η({σ }) = r2Q({σ }). The first process a where the fol-
lowing condition

b
∑

a=1

Wa > η({σ }) (19)

is fulfilled is realized with probability 1. The total evolution time
t̄ is given by t̄ =

∑

{σ } t({σ }) where the sum runs over all spin
configurations generated up to the steady state. After a suitable
number nMC of Monte Carlo steps, stationary values of physical
quantities of interest are calculated. An adapted trapezoidal in-
tegration method is used after relaxation of physical quantities
in real time. Furthermore, 20− 25 independent runs are consid-
ered in the averaging procedure.

3. Results and Discussions

3.1. Thermal Equilibrium Properties of the System in Mean-Field
Approximation

First, in the stationary case, the system’s Hamiltonian is analyzed
without the external magnetic field (h0 = 0 K) and without mag-
netic exchange interaction (γ = 0) as well. In this case, themodel
is solved in the framework of mean-field theory (MFT). Then, the
system is reduced to two-dependent equations, solved numeri-
cally. By raising the temperature sequentially from 20 to 80 Kwith
step �T = 0.1 K, some thermal behaviors are got and displayed
in Figure 1 for selected values ofmodel parameters. Figure 1a dis-
plays the thermal behaviors of nHS fraction for specific values of
α. When α ≥ 1, first order transitions take place (see Figure 1b).
Then, the reduced equilibrium temperature is a decreasing func-
tion of α. Up to α = 1.05, the analytical expression of Teq/�

[48]

coincides with the one obtained by the DMFT approach and dis-
crepancy only appears beyond. Figure 1c shows the behavior of
the corresponding magnetic susceptibility with temperature and
Figure 1d depicts the α-dependence of the free energy per site for
selected values of�. The crossing point, F eq = 0, corresponds to
the onset of the first-order transition as already obtained in ref.
[49]. Figure 2 displays two-temperature dependencies of the free
energy. With increasing temperature, at each temperature (T ∗)
and equilibrium temperature Teq , the free energy is a decreas-
ing function. Up to Teq = T ∗, the transition is of first-order and
at high temperature, gradual spin-conversion occurs. For weak
free energy, the phase is of diamagnetic (LS phase), and between
Teq and Tc is of paramagnetic. The ferromagnetic phase prevails
when the free energy becomes higher than in other phases.

Figure 1. Some features of the model as functions of temperature T and
parameter α in mean-field approximation. a,c) Gradual and first-order
transitions are depicted for selected values of α and fixed other parame-
ters. The curves shift to the left when α increases and jumps appear in their
behaviors. b) The reduced equilibrium temperature Teq/� as function of
α obtained by two methods (see text). d) Equilibrium free energy as func-
tion of α. The point F

eq
α=1.05 = 0[49] is the onset of first-order transitions

for selected values of � (400, 450, and 500 K). nHS and m are solutions
at thermodynamic equilibrium, that is, corresponding to the minimum of
the free energy. Other parameters values are written in the panels.

Figure 2. Thermal behavior of the free energy per site through differ-
ent phase transitions. At low temperatures, free energy is obtained of
Teq = T ∗. Beyond that, values of the free energy are quite different and
paramagnetic phase is favored between them. Over T ∗, ferromagnetic
phase prevails. Under the equilibrium temperature, the phase is diamag-
netic (LS phase). Other values of used parameters are γ = 0., � = 400 K,
h0 = 0. K, and g = 100.

3.2. Nonequilibrium Properties of the System in the DMFT

3.2.1. Temperature-Dependent System and Phase Diagram

The effects of external magnetic field constraint on spin-
crossover compounds have been thoroughly studied in the
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Figure 3. Time-dependent behaviors of magnetization m and nHS frac-
tion for selected values of α and γ . a,b) For γ = 0, the effect of α shows
two-dependent temperature regimes: for weak interactions in contribution
of phonon, “aperiodic” regime appears and when these interactions are
strong enough, the regime is of “pseudo-periodic”. The same behaviors
are obtained at α = 0.5 and varying values of the parameter γ . Other val-
ues of model parameters considered are: T = 40 K, � = 400 K, g = 100,
and h0 = 150 K.

literature.[2,62,63] Static and pulsed fields have been considered.
In most cases, small effects are got and a high magnetic field
(30− 100 T) is required to obtain meaningful results.[64–66] At
so high field, it is not easy to measure experimentally the
magnetic properties and experiments with optical reflectivity de-
tection technique are often used.[62,63] To our knowledge, be-
sides pulsed time-dependent magnetic fields, experiments with
time-dependent sinusoidal fields are lacking in the literature.
Motivated by the aim to generate qualitative and quantitative pre-
dictions on this interesting case, a sinusoidal field with a high
amplitude h0 = 150 K is considered in the present work. The
individual spin-flip frequency is set to the value 1

3τ0
= 1s−1 and

the activation energy to E a
0 = 0 K. The relaxation of the mag-

netization m and the HS fraction nHS is obtained in time for
selected values of α and γ (see Figure 3). These results are nu-
merically obtained at fixed temperature (T = 40 K) and for ini-
tial conditions (±1, 0). Two regimes appear when increasing α

values (Figures 3a,b): “pseudo-periodic” for high values of α and
“aperiodic” for low α values. The same phenomena have been
observed for increasing γ (see Figures 3c,d). One can suspect
that in the model, γ and α play a leading role on the ampli-
tude of the oscillations obtained during the relaxation. Now, we
could notice that according to γ and α values, the system may
undergo a transition of the first-order, second-order, or grad-
ual spin-conversion.[48,49] A deep analysis of the relaxation in
the vicinity of the thermal hysteresis loop could help to know
about such a behavior of the model system. Thus, we display the
results in the next section where the relaxation is made near
the hysteresis loop at low temperatures. After that, the thermal
behaviors are obtained on m and nHS for some selected param-
eter values (Figure 4). First-order spin transitions characterized

Figure 4. Some thermal behaviors of the model as function of parame-
ter α. Gradual spin-conversion and first-order transition are depicted for
selected values of α and fixed other parameters. a) magnetization m, b)
fraction nHS, and c) magnetic susceptibility χ . The curves shift to the left
for low temperatures when α increases. d) The reduced equilibrium tem-
perature as function of α at fixed z. Other values of used parameters are:
γ = 0, � = 400 K, h0 = 150 K, and g = 100.

by jumps in m and nHS, occur at around 40 K when raising con-
sequently α values (see Figure 4a– c). Such a low transition tem-
perature range has been observed during the investigation of the
MnI I I [(pyr ol )3tr en] in the presence of a lowmagnetic field of the
order of 23 T.[67] The (pyr ol )3tr en is the trianionic Schiff base ob-
tained from the condensation of pyr oll e − 2− car boxaldehyde
with 2, 2′, 2′′tr is (ethylamino)amine . The reduced equilibrium
temperature Teq/� is a decreasing function of α as already ob-
tained in refs. [48,49] In Figure 5, the same tendencies are ob-
tained for varying values of γ at fixed values of α with, however,
a clear saturation of the net magnetization m at high tempera-
ture. Here, the HS units are considered to be created and interact
magnetically in the system. Phase boundaries are determined,
and the corresponding phase diagrams constructed (Figure 6).
The second-order phase boundaries are obtained when the total
lattice magnetization vanishes. At the first-order transition tem-
peratures, both m and nHS show discontinuities in their behav-
iors. Corresponding discontinuities are observed in the behavior
of themagnetic susceptibility χ . The positions of the TCP (tricrit-
ical point) differ slightly from those found by the corrected effec-
tive field theory (CEFT)[48] and by exact recursion relations on the
Bethe lattice (BL).[49] Positions of the TCP for varying values of�
indicate the existence of tricritical lines. BL approach, CEFT, and
DMFT methods yield similar temperature phase diagrams. But
by the DMFT approximation, at relatively low γ values (γ < γ T ),
two temperatures may exist: Teq and Tc with Teq < Tc . For this
range of temperatures, dia-para- and para-ferro-magnetic phase
transitions can be possible and the HS fraction reaches its satu-
rated value, nHS = 1. At the vicinity of the first-order transitions,
we displayed in Figure 7 the associated thermal hysteresis loops
for some selected values of model parameters. When raising the
temperature from 15 to 50 K with 0.1 temperature step, for fixed
γ = 0 and α = 3, the equilibrium temperature is about T1/2↑ =

35.80 K on the upward branch and T1/2↓ = 24.90 K on the
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Figure 5. Some thermal behaviors of the model as function of parameter γ . For γ �= 0, second- and first-order transitions occurred when increasing γ

values. a) Magnetization m, b) fraction nHS, and c) magnetic susceptibility χ . The curves shift to the left again for low temperatures when γ increases
as already obtained.[48,49] Other values of model parameters are considered: α = 0.5, � = 400 K, h0 = 150 K, and g = 100.

Figure 6. Thermal phase diagram of the model in (γ , Tc ) plane for se-
lected values of α. Three phases are found as in refs. [48,49]: dia-para-
and ferromagnetic phases. The triangle point is the tricritical point (TCP)
at γt . These values tend to be zero when the phonon contribution is im-
portant. Tricritical line is obtained for varying � values (dots line in d)).
Dashed lines correspond to critical temperatures Tc and continuous lines
are associated to equilibrium temperature Teq . Other values of model pa-
rameters are written in the panels.

backward branch (Figures 7a,b). When γ = 2 and α = 1, the
width of the hysteresis loop is slightly reduced (5.6 K in order)
but the whole cycle is shifted to relatively high temperatures, with
41.80 K and 36.2 K for the upward and backward transition tem-
peratures, respectively (see Figure 7c).

3.2.2. Isothermal Relaxation Near the Hysteresis Loops under
Oscillating Field

It is interesting to investigate the relaxation properties of the
system according to the model parameters. The method used is
based on kinetic Monte Carlo (KMC) simulations, using the BKL
algorithm which was described in the previous section. A sample
of L × L = 100× 100 lattice sites is considered and some of the
obtained results are compared with those by DMFT approach.
The relaxation processes take place from the HS metastable
state to the LS stable state at fixed temperature. The final data
are averaged over 25 independent simulation runs. As reported
in Figure 8 for both methods, one gets from the initial stage,
concave curves of the order parameters in real and arbitrary
time which somewhat coincide in the LS phase. For γ = 0 and
temperature set to T = 40 K, the system relaxes slowly by the
DMFTmethod compared to that of KMC simulations for varying
values of α. This can be related to an invariant space introduced
to calculate the mean value of spin s i at site i . The relaxation
tail presented some oscillations around 0 (see Figure 8a,c)
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Figure 7. Thermal hysteresis loops of fraction nHS and magnetization m at the vicinity of first-order transitions. a) and b) are in same captions: α = 3,
γ = 0, � = 400 K, g = 100, and h0 = 150 K. In panel c): α = 1 and γ = 2, the loop area is reduced and obtained at relatively high temperatures. The
red down arrow indicates the starting point of isothermal relaxation.

Figure 8. Compared results of isothermal relaxation curves from HS
metastable state to LS state and for the magnetization m by both calcu-
lation methods and for selected values of α and γ . Oscillations are visi-
ble in the LS phases and become important in magnitude with the KMC
method (red curves). Faster is the relaxation with KMC than by the DMFT
(black curves) approach where the system takes a long time accompa-
nied by some fluctuations from initial stage. a,b) γ = 0 and α = 0; 1. c,d)
α = 0.5 and γ = 0; 1. Other values considered for model parameters are:
T = 40 K, � = 400 K, h0 = 150 K, and g = 100.

for both order parameters. In other panels (Figure 8b,d), nHS

decreases in time with some undulations from initial stage
when the system reaches the LS phase. It is interesting to notice
that while the magnetization oscillation frequency is exactly
that of the applied field h(t) = h0 cos(ωt), the double frequency
is obtained for nHS as it clearly appears in Figure 8b,d. The
main reason of this frequency doubling has to be related to the
quadratic nature of nHS = 〈σ 2〉. Now for the validity limits of the
model, the relaxation curves are integrated in time by an adapted
trapezoidal method at each temperature and some KMC results
are compared to those obtained by DMFT (Figure 9). For gradual
transitions, all results are similar. Discrepancy appears for high
interaction strength, that is, in the first-order transition domain
(Figure 9a,b). The obtained results are averaged over 20
independent numerical experiences. The hysteresis loops are
consequently obtained for several values of α and γ (Figure 9c,d).
At γ = 0 and from α = 3 to α = 4, the equilibrium temperatures
Teq shift to low temperatures as already obtained in our previous
works.[48,50]

Let us examine the relaxation phenomena near the thermal
hysteresis loops of Figure 9c. The “intrinsic” frequency spin-
flip process between HS/LS states is 1

3τ0
= 102s−1 and the in-

tramolecular vibronic energy barrier E a
0 = 70 K. In Figure 10a,b,

we notice that the relaxation curves are sensitive to the tem-
perature in both calculation methods (e.g., T = 23.9 and T =

24 K). The oscillations appear near the loops’ area, except for
low-temperature from the loop (Figure 10a,b for KMC results).
Near the loop, fluctuations become important and the system
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Figure 9. Some thermal behaviors of the system as functions of model
parameters by both methods. Agreement results are observed in gradual
spin transition domains (low values of α or γ ). a,b) The results are totally
different in the first-order transition domain (by increasing α or γ values).
Corresponding hysteresis loops are displayed in c) and d). The loop area
increases when interactions become important and shifts to low temper-
atures. The red down arrows indicate the starting point of isothermal re-
laxation. Other parameters are written in panels.

Figure 10. Isothermal relaxation curves near hysteresis loops. a,b) The
temperature is sensitive in the relaxation processes for both methods
(T = 23.9 and T = 24 K). c,d) Near the loops, the system oscillates in the
HS and LS phases when the relaxation occurs at T = 27.4 K and T = 24
K, respectively. Some snapshots are displayed in next panels ( Figures 11
and 12). Values considered for other parameters are:� = 400 K, g = 100,
1
3τ0

= 102 s−1, and E a
0 = 70 K.

oscillates in the HS and LS phases where some spins (σ = −1)
are favored in the process at T = 27.4 K (Figure 10c) and then,
spin-transition occurs for trending spin values σ = 0. Then, the
induced magnetization m has fluctuations through negative val-
ues in the LS phase. Hence, the temperature is an important fac-
tor in this range. In Figure 10d, at T = 22 K near the loop (for
α = 4. and γ = 0) similar situation is presented. Further investi-
gations of the dynamics are needed to substantiate the role of the
magnetic field in the course of the relaxation. For a better under-

Figure 11. Snapshots of the system configuration near the hysteresis
loops at T = 24 K at different relaxation times: t1 = 1.55; t2 = 1.62; t3 =

1.82; and t4 = 1.92 s. White clusters correspond to those of LS units
whereas red (spin +1) and the blue (spin −1) dots ones consist of HS
unit clusters. nL S increases in the course of the time. In a–d), respectively,
10%, 15%, 40%, and 55% of the lattice are occupied by LS units. Values
considered for other parameters are: α = 3, γ = 0, � = 400 K, g = 100,
1
3τ0

= 102 s−1, and E a
0 = 70 K.

Figure 12. Snapshots of the system configuration near the hysteresis loop
at T = 27.4 K at different relaxation times: t5 = 1.90; t6 = 1.96; t7 = 2.22;
and t8 = 5.01 s. Corresponding percentages of LS units are also: a) 10%,
b) 15%, c) 40%, and d) 55%. Values considered for other parameters are:
α = 3, γ = 0,� = 400 K, g = 100, 1

3τ0
= 102 s−1, and E a

0 = 70 K. Colors

have the same meaning as in Figure 11.

standing of these phenomena, some associated snapshots of spin
configurations are displayed in Figures 11 and 12 obtained at 24
and 27.4 K, and show that throughout the relaxation processes,
LS units are formed and get bigger to coalesce with some fewHS
units. One gets, at time t1 = 1.55 s, 10% of compact LS nucle-
ated units. At time t2 = 1.65 s (Figure 10b), similar behaviors are
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observed for the fixed parameters values used with the presence
of some few LS units at their edge, as well as sparse small LS
domains inside the lattice. When we approach the loop enough,
the time increases and the nucleation phenomenon is empha-
sized (see figures for more details). LS aggregates are rapidly
formed everywhere and become sparse, surrounded with some
HS units of spin values σ = −1. Through these panels, we have
concluded that in the relaxation, we have denoted: magnetic re-
laxation process in the HS phase and spin-transition between
para- and diamagnetic phases with competition of temperature
and magnetic field.
These studies allow us to substantiate the features of LS phase

growth involved during the relaxation process of an SCO sys-
tem under oscillating magnetic field. Two interacting remarks
emerge. The first one is the key role played by the temperature T
as a driving force which induces the thermal spin-transition. The
second one is that of the magnetic-transition played by the oscil-
lating magnetic-field when magnetic energy propagates within
the system.

4. Conclusion

The investigation of time-dependent systems has attracted much
interest in recent years not only for their fundamental aspects but
also for their applicability, such as quantum transport, quantum
optics, quantum information, spintronics. In this work, the the-
oretical study of a 2D spin-1 BEG model under the constraint of
a time-dependent oscillating magnetic-field energy is performed
to investigate SCO and PBAs materials by means of dynamic
mean field theory (DMFT) calculations and kinetic Monte Carlo
(KMC) simulations with Glauber dynamics. The fascinating re-
sults obtained by both methods bear some resemblance and are
obtained according to Arrhenius’ time scale. Usually, gradual and
first-order transitions are obtained with varying values of model
parameters in the phase diagram. Around first-order transitions,
the system exhibits hysteresis loops whose area depends on the
interactions strength as already obtained in our previous works.
Near the loop, the interactions increase and thermal fluctuations
are important too, causing oscillations in HS and LS phases
where themagnetic-field strength and the temperature play a cru-
cial role. The relaxation process frommetastable HS state occurs
with two processes: magnetic-transition in HS phase and spin-
transition between para- and diamagnetic phases. The analysis of
the relaxation process strengthens the transitions that occurred
through the stochastic distribution of the LS island species. One
could think that the relaxation processes follow a 2D-nucleation
as expressed in ref. [50].
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[43] M. Keskin, O. Kanko, Ü. Temizer, Phys. Rev. E 2005, 72, 036125.

[44] S. W. Sides, P. A. Rikvold, M. A. Novotny, Phys. Rev. Lett. 1998, 81,

834.

[45] M. Keskin, O. Canko, J. Korean, Phys. Soc. 2009, 55, 1344.
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[64] A. Bousseksou, N. Nègre, M. Goiran, L. Salmon, J. P. Tuchagues, M.-

L. Boillot, K. Boukheddaden, F. Varret, Eur. Phys. J. B 2000, 13, 451.

[65] S. Bonhommeau, G. Molnár, M. Goiran, K. Boukheddaden, A.

Bousseksou, Phys. Rev. B 2006, 74, 064424.

[66] a) S. Kimura, T. Otani, Y. Narumi, K. Kindo, M. Nakano, G. Matsub-

ayashi, J. Phys. Soc. Jpn. 2003, 75SB,122; b) P. G. Sim, E. Sinn, J. Am.

Chem. Soc. 1981, 103, 241.

[67] Y. Garcia, O. Kahn, J.-P. Ader, A. Buzdin, Y. Meurdesoif, M. Guillot,

Phys. Rev. Lett. A 2000, 271, 145.

10


