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Nomenclature

� = scaling factor

0 9 = amplitude captured my mode 9

0(b) = hydrodynamic wavenumber

�0, �1 = exponential function coefficient

20 = ambient sound speed

� = jet diameter

� = error

5 , 6 = generic functions

" = Mach number

< = azimuthal wavenumber

% = pressure fluctuation

q = flow variables

q′ = flow fluctuations in the time domain

q̄ = time-averaged component of q

q̃ = shape function of the fluctuation amplitude

q̂?B4 = Parabolic Stability Equations calculated fluctuation flow field in the frequency domain

q̂B?>3 = flow fluctuations for the leading SPOD in the frequency domain

A = radial coordinate

(C = Strouhal number

) = temperature

C = time

* 9 = jet exit velocity

DA = radial velocity

DG = axial velocity

D\ = azimuthal velocity

, = Chebyshev quadrature weights

, ′ = diagonal weight matrix

G = axial coordinate

V = normalised projection coefficient

W = heat capacity ratio

\ = azimuthal coordinate
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_ = Spectral Proper Orthogonal Decomposition eigenvalue

d = density

q = polar coordinate

k 9 = basis functions of q′

l = angular frequency of the fluctuations

Subscripts

0 = nozzle exit

5 = end of analyzed domain

Superscripts

� = Hermitian transpose

I. Introduction

Jet noise remains a challenging problem in the aerospace community, due to increasingly stringent noise-emission

regulations. Historically it was thought that the main source of sound in jet flows was related to small eddies

(Laurence [1]) associated with turbulence, but more recently, large-scale structures have been shown to be a dominant

source of sound. These structures initially grow exponentially through the Kelvin-Helmholtz mechanism, reach a peak,

and then decay downstream, forming a wavepacket. Wavepackets have been observed and studied extensively; further

information can be found in Jordan & Colonius [2] and Cavalieri et al. [3] and references therein.

Wavepacket models have been developed to predict the behaviour of large-scale turbulent structures in jets and their

associated noise. The parabolized stability equations (PSE), described by Herbert [4] and Malik [5], were initially used

to describe laminar-turbulent transition in slowly-diverging flows. But as shown in Gudmundsson & Colonius [6] and

Sasaki et al. [7], PSE can be used to model coherent structures in turbulent jets, especially in the near-nozzle region

characterised by amplitude growth. Central in such comparisons is spectral proper orthogonal decomposition (SPOD)

of flow fluctuations, as described in Picard & Delville [8] and Lumley [9]. As recently shown by Towne et al. [10], the

leading SPOD mode is expected to match the optimal flow response when white-noise forcing is considered, and this

optimal response can be obtained using PSE for flows with strong convective amplification, as first pointed out by Jeun

et al. [11]. This provides a basis to understand why PSE results compare favorably with the leading SPOD mode of jets.

Linear PSE has solutions with free amplitudes, which must be scaled with results from experiments or numerical

simulations. This can be done in an ad hoc manner using a limited number of available measurements, or in a more

theoretically-consistent manner by obtaining the amplitude of the Kelvin-Helmholtz mode near the nozzle exit by a

projection using the adjoint mode (Rodríguez et al. [12]). Each combination of Strouhal number (C and azimuthal

mode < leads to a free amplitude. How such amplitudes scale with (C and < remains an open question. If one wishes to
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predict spectra of flow fluctuations using the aforementioned linear models, the frequency dependence of the amplitude

is important. For lack of available information, Tam & Chen [13] assumed that wavepackets are excited by white noise

in time and space. Similar hypotheses have been applied in linearised models used to model wall-bounded turbulence,

but it is now known that the use of "coloured" excitation improves the agreement with reference data (Jovanovic &

Bamieh [14], Chevalier et al. [15], Zare et al. [16]).

In the present study, we explore how initial wavepacket amplitudes change as a function of Strouhal number and

azimuthal wavenumber. Empirical scaling laws of wavepacket amplitude are extracted from LES data, allowing us to

infer how they may have been excited in the flow; possible candidates involve disturbances within the nozzle boundary

layer (Kaplan et al. [17]) and/or non-linear interactions with other turbulent structures (Towne et al. [10]). The present

analysis is intended to help to clarify the mechanisms underpinning the excitation of Kelvin-Helmholtz wavepackets.

To derive empirical scaling laws, we will use data from the large eddy simulations (LES) of Brès et al. [18, 19].

Because the LES provides full flow information, it is suitable for detailed comparisons with PSE results. Here, we

identify the free amplitude of the PSE results by minimising the difference between the leading SPOD mode from the

LES and the PSE solutions using a scalar amplitude variable. This allows us to explore how the free amplitude of the

PSE wavepackets change with (C, <, and Mach number, providing insight on the mechanisms by which wavepackets are

excited.

This paper is organized as follows. In section II we present the LES results and the PSE model, and also describe

how the free amplitude of PSE solutions can be found using the leading SPOD mode from LES data. In section III we

show some validation results for PSE, then proceed with the determination of the wavepacket amplitudes as a function

of (C and <, and we compare the spectrum using the identified amplitude function with LES and experimental results.

The paper is completed with conclusions in section IV.

II. Methods

A. Large Eddy Simulation Database

This work relied on the numerical simulations described in Brès et al. [18, 20]. These are large eddy simulations

(LES) of an isothermal subsonic jets, which exhaust from a converging-straight round nozzle, shown in figure 1. The

boundary layer inside the nozzle is already turbulent; this was accomplished by synthetic turbulence injected at the

position where a boundary layer trip was used in accompanying experiments. For the turbulent boundary layer, a wall

model was used, as described in Brès et al. [21].

Simulations were performed for Mach numbers " =
* 9

20
= 0.4 and 0.9, based on jet exit velocity* 9 and ambient

sound speed 20. A range of Mach numbers 0.4, 0.7, 0.8 and 0.9 were simulated and validated against experimental

measurements [18, 20]. Here, the focus is on the Mach 0.4 and 0.9 cases as representative of low and high-subsonic jets.
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Fig. 1 Jet LES simulation with coordinate system used throughout this work.

The corresponding Reynolds numbers are 4 · 105 and 106, respectively, using the jet diameter � as the reference length;

reference density and temperature are taken at the nozzle exit. The coordinate system used throughout this work is the

same used in [18] and shown in figure 1, where G, A, \, and q are the axial, radial, azimuthal, and polar coordinates,

respectively, and the origin is at the center of the nozzle exit. All LES results are in close agreement with accompanying

experiments, conducted at the Pprime Institute [18, 20, 22]. The measured turbulent flow spectra are broadbanded, and

the LES results are in close agreement with experimental spectra up to a Strouhal number of 2.7.

B. Spectral Proper Orthogonal Decomposition

To isolate the dominant wavepackets at each frequency and azimuthal wavenumber, spectral proper orthogonal

decomposition (SPOD) was applied to the LES data. This procedure is explained in detail by Towne et al. [10]. For the

round jets considered in this paper, SPOD decomposes the flow fluctuations into spatial modes that are function of G and

A for each azimuthal wavenumber <, and Strouhal number (C, i.e.,

q̂B?>3 (G, A, <, (C) =
∞∑
9=1
0 9 (<, (C)k 9 (G, A, <, (C). (1)

The SPOD procedure expands the Fourier-transformed fluctuations q̂B?>3 into orthogonal modes that optimally

capture the flow energy. In eq. (1), k 9 are the basis functions of q̂B?>3 and 0 9 is the amplitude captured by the mode 9 .

The total energy is recovered by the sum over |0 9 |2. For this work, only the first SPOD mode at each (C, < pair, is

considered as it represents the leading wave-packet properties (Schmidt et al. [23]). The SPOD modes used here are

those computed by Schmidt et al. [23].
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C. Parabolized Stability Equations

1. Basic Equations

The SPODmodes taken from the large-eddy simulation do not provide directly the amplitude of the Kelvin-Helmholtz

wavepackets, as they also comprise other flow structures. For that matter, the Kelvin-Helmholtz component needs to be

derived, and this is accomplished using the parabolized stability equations. The procedure is described in what follows.

The parabolized stability equations (PSE) are used to predict the fluctuation fields of the jet, using the mean turbulent

field as a base flow. PSE was first developed by Bertolotti et al. [24] and unlike the traditional Orr-Sommerfeld

equation, it can be used to study the linear stability of non-parallel flows with slow divergence in the streamwise

direction, including jets. The PSE procedure was traditionally used for transitional flows, but as shown in various works

(Gudmundsson & Colonius [6], Cavalieri et al. [25], Sasaki et al. [7]), it is also suitable for modeling large-scale

structures in turbulent flows.

Considering flow variables written as q(G, A, \, C), it is possible to define a decomposition into an axisymmetric

time-averaged component q̄(G, A), which is used as base flow, and a temporal fluctuation component q′(G, A, \, C):

q(G, A, \, C) = q̄(G, A) + q′(G, A, \, C). (2)

The vector q refers to the flow variables, q = (DG , DA , D\ , ), d)) , where DG is the axial velocity, DA radial velocity,

D\ azimuthal velocity, ) the temperature, and d the density, all in cylindrical coordinates. The jet is non-swirling, so the

mean azimuthal velocity component D̄\ is zero. The temporal fluctuation can be written as a Fourier decomposition in \

and C, show in equation (3).

q′(G, A, \, C) =
∑
l

∑
<

q̂?B4 (G, A, <, (C)48<\4−8lC (3)

In Gaster [26] and Crighton & Gaster [27] an appropriate Ansatz for the fluctuations Fourier decomposition q̂?B4 is

derived,

q̂?B4 (G, A, <, (C) = q̃(G, A, <, (C)48
∫ G 5
G0

U( b )3b
. (4)

In equation (4) the term U(b) is a complex-valued hydrodynamic wavenumber that varies with axial direction; its

imaginary part is related to exponential growth or decay of fluctuations. < is the azimuthal wavenumber, and l is

the angular frequency of the fluctuations. In this Ansatz, @̃(G, A, <, (C) is the shape function, which varies slowly in

the streamwise direction, and the exponential term captures the fast variation related to exponential and oscillatory

behaviour of the large-scale turbulent structures. The combination of these two parts generates fluctuations in the shape

of a wavepacket.
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To obtain the values of U(b) and q̃(G, A, <, (C), the Ansatz from equation (4) is substituted into a matrix system with

the linearized compressible equations of continuity, momentum, and energy, resulting in a system that can be cast in

matrix form as

[�" (q̄, U, l, <) + �" (q̄)] q̃ + �" (q̄)
mq̃
mG
+ �" (q̄)

mq̃
mA

= 0. (5)

viscous terms were not considered due to the high Reynolds number of the jets considered. Details of the equation

system can be found in Gudmundsson & Colonius [6] and Gudmundsson [28]. The PSE code used to generate the

results is described in Sasaki et al. [7]. The initial fluctuation profile, in the nozzle exit plane, is given by linear stability

theory, where the Kelvin-Helmholtz instability mode is found, and then marched downstream by the PSE. Note that

other types of waves coexisting at the same frequency and azimuthal wavenumber, e.g., acoustic waves or disturbances

growing through the Orr mechanism [29],[30], are not captured by PSE [31, 32], leading to a wavepacket dominated by

the Kelvin-Helmholtz mode. For this case the base flow used is a time-averaged mean flow taken from the large eddy

simulation, described in the previous section.

The domain was discretized numerically using 301 Chebyshev nodes in the A direction, using the mapping function

from Lesshafft & Huerre [33] to concentrate points in the jet region. The solution is advanced in the downstream G

direction using an implicit Euler method.

We are interested in determining the behavior of wavepacket amplitudes as a function of (C and <. To define these

amplitudes in a consistent manner, the linear PSE solutions must be normalized in a definite way. We have adopted as

normalization condition that flow fluctuations at the nozzle exit, G = 0, have unit norm. This is ensured by rescaling

q̃0 = q̃(G = 0, A, <, (C) such that

q̃�0 ,
′q̃0 = 1, (6)

with, ′ is diagonal weight matrix given by

, ′ = 3806

(
,d̄0,, d̄0,, d̄0,,

)̄0

Wd̄0"2 ,,
d̄0

W(W − 1))̄0"2

)
(7)

and where the superscript � denotes the Hermitian transpose and the subscript 0 denotes properties at the nozzle exit.

The matrix, contains Chebyshev quadrature weights for integration over the radius. The inner product defined with

, ′ corresponds to the Chu norm used by Schmidt et al. [23]. The present definition thus normalises the PSE solution

such that the initial Kelvin-Helmholtz mode, taken at G = 0, has unit norm.

2. Study of Wavepacket Amplitudes Using PSE and SPOD Modes

The normalization described in the previous section leads to an amplitude for the PSE solution that may not be

representative of flow fluctuations for given (C and <, the PSE solutions require re-scaling using simulation data. The
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values in the near-nozzle region of the jet were used to calculate a scaling factor between PSE results and the first SPOD

mode educed from the LES data. This scaling factor � is used to adjust the free amplitude of the linear PSE solutions,

so as to minimise the difference � , given by

� = ‖
√
_q̂B?>3 − �q̂?B4‖, (8)

where _ is the SPOD eigenvalue, whose value is equal to the power spectral density (energy) of flow fluctuations for

the corresponding SPOD eigenfunction. Rescaling the orthonormal SPOD modes by
√
_ leads to amplitudes that are

representative of the mode contribution to the full LES fields, as shown in Sinha et al. [34].

� is a complex-valued scalar value, and its optimal value is obtained by minimising the error � separately at each <

and (C combination. Setting the derivative of � with respect to the amplitude � to zero leads to

〈
√
_q̂B?>3 , q̂?B4〉 − �〈q̂?B4, q̂?B4〉 = 0,

and thus the optimal amplitude is

� =
〈
√
_q̂B?>3 , q̂?B4〉
〈q̂?B4, q̂?B4〉

. (9)

The inner product in eq. (9) induces the norm in eq. (8), and thus defines the sense in which the error is minimized.

Since q̂B?>3 and q̂?B4 are functions of G and A and depend parametrically on (C and <, we define the inner product as

〈 5 (A, G, (C, <), 6(A, G, (C, <)〉 =
∫ G 5

G>

∫ ∞

0
( 5 (G, A, (C, <)6∗ (G, A, (C, <))A3A3G. (10)

and consider only the pressure component in q̂B?>3 and q̂?B4. This is due to a smoother behaviour of �((C) observed

when pressure is taken as the relevant flow quantity. However, considering velocity fluctuations or the full disturbance

vector leads to similar results. Since azimuthal modes are orthogonal to each other, no azimuthal integration is required.

This leads to an amplitude �((C, <), depending on Strouhal number and azimuthal wavenumber. The argument of the

complex-valued amplitude � in eq. (9) also allows to set the phase of the PSE solution for a best match with the SPOD

mode. It is possible to apply this method considering the whole domain, but, as illustrated in section III, the PSE has

good agreement with the leading SPOD mode for a limited axial range for each Strouhal number (C. Thus, limiting the

domain will lead to more precise results. The trapezoid rule is used to calculate the integral in the inner product. PSE

uses a different grid from the LES results, and therefore an interpolation was required to obtain values for the same G.

Unlike global stability modes, linear PSE does not provide a basis for flow fluctuations; PSE results are the solution

of a boundary-value problem, with non-zero boundary conditions at the nozzle exit, and not eigenfunctions of a linear

operator. Hence, strictly speaking, one cannot think of the procedure above as a projection as often done for stability
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eigenfunctions (Rodríguez et al. [12, 35]). However, we are here interested in the determination of the amplitude of a

single spatial function, and thus the approach can be used as a method to estimate wavepacket amplitudes considering a

jet region between G> and G 5 .

III. Results

A. Showing The PSE Results

The first step is to obtain PSE wavepackets and validate them by comparison with the first SPOD modes educed

from the LES data. The PSE code was run for Mach numbers 0.4 and 0.9, for (C varying from 0.0488 to 1.6113 for the

" = 0.4 case and from 0.0868 to 2.778 for the " = 0.9 case. These Strouhal number ranges were chosen due to the

range of expected agreement between the PSE and the SPOD data ([6], [7]), so as to capture the exponential behaviour

with less influence from fluctuations other than the Kelvin-Helmholtz wavepacket that show up in very low and high (C.

We thus focus on the parameter range with dominance of linear behaviour, justifying the neglect of non-linear terms in

PSE.

The Strouhal numbers used are those of the SPOD results to facilitate comparison. The first three azimuthal modes

are calculated (< = 0, 1, 2). A comparison of pressure fluctuations is shown for two representative (C, and are restricted

to the axisymmetric mode < = 0 for brevity. The Strouhal numbers are: (C = 0.44 and 1.22 for " = 0.4, (C = 0.61 and

1.39 for " = 0.9. The amplitude and phase of the PSE solution was adjusted using eq. (9). These results are shown in

figure 2.

It is possible to see a close agreement between the PSE and the first SPOD modes for a good range of frequencies,

especially in the upstream region, characterized by amplitude growth associated with the Kelvin-Helmholtz mechanism.

For downstream points there is a growing mismatch, explored by Tissot et al. [30]. The present code was previously

used by Sasaki et al. [36] and showed agreement for LES data Strouhal number as high as 4.

B. Amplitude Scaling

Results from Sasaki et al. [36] are used to select appropriate integration limits in the definition of the inner product

(10), which define the PSE solutions and SPOD modes are compared in determining the desired amplitudes. Sasaki et

al. [36] showed a normalized projection coefficient V between SPOD and PSE results at each G station of the jet. The

expression for V is

V(G, (C, <) =
|〈q′B?>3 (G, A, (C, <), q′?B4 (G, A, (C, <)〉|
| |q′B?>3 (G, A, (C, <) | | | |q′?B4 (G, A, (C, <) | |

(11)

where the inner product considers only radial integration in eq. (10) so as to indicate a local level of agreement at a

station G. V = 1 is perfect agreement, and V = 0 is obtained when the PSE result at a given station, G is orthogonal to the
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corresponding SPOD result. Such agreement metric is shown in figure 3 for " = 0.4 and in figure 4 for " = 0.9.

(a) " = 0.4, (C = 0.44 (b) " = 0.9, (C = 0.61

(c) " = 0.4, (C = 1.22 (d) " = 0.9, (C = 1.39

Fig. 2 Pressure fluctuation contour for azimuthal mode < = 0 for Mach numbers 0.4 and 0.9, for two sample
(C each.

To ensure that the amplitude scaling is trustworthy, the region of the jet flow used is delimited by the yellow

rectangle in figures 3 and 4; this upstream region corresponds to exponential growth of wavepackets associated with

the Kelvin-Helmholtz mechanism [35], with good agreement between PSE and experimental or numerical results

(Gudmundsson & Colonius [6], Cavalieri et al. [25], Tissot et al. [30], Sasaki et al. [36]). Therefore the range

of the scaling will be G/� ∈
[
G> = 0.5, G 5 = 1.5

]
, (C ∈ [0, 1.6] for " = 0.4 and (C ∈ [0, 2.5] for " = 0.9. The

amplitude identification was performed for " = 0.4 and 0.9 and the first 3 azimuthal modes < = 0, 1, 2. These lower

azimuthal wavenumbers are known to dominate the peak of far-field spectra [18, 37]. As commented earlier, the pressure

fluctuations were used to obtain the amplitudes.
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(a) " = 0.4, < = 0 (b) " = 0.4, < = 1 (c) " = 0.4, < = 2

Fig. 3 Metric for agreement between SPOD mode and PSE for < = 0, 1, 2 for " = 0.4; Yellow rectangle
indicates the region used for amplitude scaling in the present work.

(a) " = 0.9, < = 0 (b) " = 0.9, < = 1 (c) " = 0.9, < = 2

Fig. 4 Metric for agreement between SPOD mode and PSE for < = 0, 1, 2 for " = 0.9; Yellow rectangle
indicates the region used for amplitude scaling in the present work.

The absolute value of the amplitudes calculated using this choice of inner product are shown in figure 5 for " = 0.4

and " = 0.9. Even though observable oscillations are present in these plots, there is clearly an exponential decay of the

absolute value of the amplitude with increasing of St. An exponential fit was applied to the data, yielding a function

|A|(St) that may be used to scale the wavepacket models. The fitting function is given by

|�| ((C) = �e^(C (12)

with � and ^ coefficients reported in table 1. The exponential fits are shown in figures 5 and 6, which refer to M=0.4 and

0.9, respectively. An accurate representation of the amplitude behaviour is obtained with the fitting functions. However,

azimuthal mode < = 2 for the Mach 0.4 jet has more marked oscillations whose origin is unclear at this time. However,

even in the latter case the general trend of amplitude decay with increasing (C is retrieved, with coefficients that are

similar to the other cases.
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Table 1 Fit obtained from amplitude in function of (C, where � and ^ are the coefficients of the exponential
equation |�| ((C) = �e^(C .

" < � ^

0.4 0 1.85 · 10−3 −2.02
0.4 1 1.40 · 10−3 −1.97
0.4 2 8.42 · 10−4 −1.60
0.9 0 6.34 · 10−4 −3.01
0.9 1 5.10 · 10−4 −3.05
0.9 2 2.07 · 10−4 −2.52
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-5

10
-4

10
-3

|A
|

(a) " = 0.4, < = 0

0.5 1 1.5
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10
-5

10
-4

10
-3

|A
|

(b) " = 0.4, < = 1

0.5 1 1.5

St

10
-5

10
-4

10
-3

|A
|

(c) " = 0.4, < = 2

Fig. 5 Curve fit for scaling factor, in semilog scale, for " = 0.4. (−−) The original scaling factor obtained by
eq. (9) with (�) the data points, and (−) the exponential fit of the black curve, with values shown in Table 1.

Only the absolute value of � is relevant, since the phase in a specific point is arbitrary due to the stochastic nature of

the jet. The leading SPOD modes are eigenfunctions, and thus have arbitrary phase for each frequency; such phase is

retrieved in the argument of � and allows a visual comparison such as in fig. 2, but the precise value of phase is not of

particular interest.

C. Modeled Spectra

The Strouhal-number dependencies obtained in the previous section can be used to estimate power spectra at given

positions of the flow; an accurate representation of spectra is a useful consistency check and shows whether the proposed

exponential fits, once taken as initial PSE amplitudes, may describe accurately flow fluctuations for a range of St.

Pressure spectra on the jet lipline and centerline were chosen to plot and compare the spectrum between the PSE model

and the LES. These spectra are representative of near-field disturbances within the jet. Results are shown in figures

7-10. Figures 7 and 8 display centerline comparisons for M=0.4 and 0.9, respectively. Corresponding lipline spectra are

shown in figures 9 and 10. Centerline comparisons are restricted to < = 0, as this is the sole azimuthal wavenumber

with non-zero amplitude on the jet axis. Spectra on the lipline are shown for < = 0, 1 and 2.
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(a) " = 0.9, < = 0
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Fig. 6 Curve fit for scaling factor, in semilog scale, for " = 0.9. (−−) The original scaling factor obtained by
eq. (9) with (�) the data points, and (−) the exponential fit of the black curve, with values shown in Table 1.
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(a) " = 0.4 < = 0, G/� = 1
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Fig. 7 Centerline (A/� = 0) spectrum using the scaling factor of pressure fluctuations, for the " = 0.4 case,
for < = 0 and G/� = 1, 2, 3. (−) PSE results, (◦) LES values.

There is an overall good agreement between PSE results scaled with the amplitude fits in Table 1 and the pressure

spectra, except for low Strouhal numbers, at which a mismatch between PSE and turbulent jet data can be associated

with mechanisms other than Kelvin-Helmholtz (Schmidt et al. [23] & Lesshafft et al. [33]). For (C < 0.2, some

discontinuity appears, in view of the fact that the domain is not large enough.

For higher (C there is also a mismatch, possibly due to flow structures other than Kelvin-Helmholtz wavepackets

with significant contributions at the considered positions. For the Mach 0.9 jet, oscillations in the spectra near the nozzle

are observed; these are related to trapped acoustic waves (Towne et al. 2017 [38], Schmidt et al. [39]) which are not

modelled in the PSE solution; however, the downstream spectra are dominated by the Kelvin-Helmholtz contribution

and thus accurately represented by PSE with the amplitudes in Table 1.
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Fig. 8 Centerline (A/� = 0) spectrum using the scaling factor of pressure fluctuations for the " = 0.9 case, for
< = 0 and G/� = 1, 2, 3. (−) PSE results, (◦) LES values.

Our results were obtained by considering solely pressure fluctuations in determination of the amplitude described

in section II.C.2. The same approach was also applied considering the streamwise velocity DG , and similar results

were obtained;Similar trends can be seen in the comparison between the velocity spectrum of the scaled PSE and the

experimental results by Cavalieri et al. [25], where good agreement is obtained again for the Mach 0.4 jet in figure 11.

The results show that the initial absolute value of the amplitude of turbulent jet wavepackets has an exponential

dependence on (C. Amplitudes change by about two orders of magnitude in the Strouhal range considered. It is thus

clear that the excitation of wavepackets at the nozzle exit cannot be considered as white noise, with the same amplitude

for all (C. This can be further appreciated if a (C-independent amplitude is considered for PSE; lipline < = 0 spectra

generated with such an assumption are shown in figs. 12 and 13. Comparison of these figures to the amplitude-scaled

results in figures 9 and 10 highlights that the exponential decay of amplitude with increasing St is an important dynamic

feature, required to obtain spectral shapes accurately. Improvements on methods such as Tam & Chen [13] may be

obtained if the observed exponential dependence in amplitude is included in models.
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Fig. 9 Lipline (A/� = 0.5) spectrum using the scaling factor of pressure fluctuations, for the " = 0.4 case, for
< = 0, 1, 2 and G/� = 1, 2, 3. (−) PSE results, (◦) LES values.
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Fig. 10 Lipline (A/� = 0.5) spectrum using the scaling factor of pressure fluctuations, for the " = 0.9 case, for
< = 0, 1, 2 and G/� = 1, 2, 3. (−) PSE results, (◦) LES values.
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Fig. 11 Centerline (A/� = 0) spectrum using the scaling factor of axial velocity fluctuations for the " = 0.4
case, for < = 0 and G/� = 1, 2, 3. (−) PSE results, (4) experimental data [25]).

10
-1

10
0

St

10
-10

10
-5

|P
|2

(a) " = 0.4 < = 0, G/� = 1

10
-1

10
0

St

10
-10

10
-5

|P
|2

(b) " = 0.4 < = 0, G/� = 2

10
-1

10
0

St

10
-10

10
-5

|P
|2

(c) " = 0.4 < = 0, G/� = 3

Fig. 12 Lipline (A/� = 0.5) spectrum using a amplitude (white-noise forcing), taken for (C=0.2 results for the
" = 0.4 case, for < = 0 and G/� = 1, 2, 3. (−) PSE results, (◦) LES values.
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Fig. 13 Lipline (A/� = 0.5) spectrum using a amplitude (white-noise forcing), taken for (C=0.2 results for the
" = 0.9 case, for < = 0 and G/� = 1, 2, 3. (−) PSE results, (◦) LES values.
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IV. Conclusion
The frequency dependence of turbulent jet wavepacket amplitudes is studied by an approach that consist in

minimizing the difference in amplitude between linear PSE results and the leading SPOD mode educed from a well

validated large-eddy simulation. This procedure, which is applied for a region of the flow where linear PSE has been

shown to agree with numerical and experimental data, leads to wavepacket amplitudes with an exponential dependence

on Strouhal number. Exponential fits are obtained for azimuthal wavenumbers < = 0, 1 and 2, for Mach numbers

" = 0.4 and 0.9. These fits were shown to accurately predict in good agreement the power spectra of the flow, matching

simulation and experimental data.

The amplitude scaling results may serve as a basis to study the receptivity mechanisms of Kelvin-Helmholtz

wavepackets in turbulent jets. An open question regarding such wavepackets is related to their excitation; the exponential

dependence seen here can serve as a test of proposed mechanisms and models, which should be able to reproduce the

amplitude scaling observed in the present paper. The consistency of the same kind of fit for different Mach numbers is

another indication of the clear exponential scaling of the wavepackets.

The next step is to understand how the wavepackets with this behavior are excited. In the current case, the turbulent

boundary layer inside the nozzle is a clear candidate for an excitation mechanism; this has been explored by Kaplan et al.

[17] but requires further study. The determination of the physical mechanism underpinning the observed exponential

decay of amplitude with increasing (C is a future prospect of this work. The determination of amplitudes require use of

LES data, and is thus an empirical determination of Kelvin-Helmholtz wavepacket amplitudes. Non-linear models (Wu

& Huerre [40], Sandham & Salgado [41], Zhang & Wu [42]) may directly provide such amplitudes from first principles,

especially if coupled to the nozzle boundary-layer dynamics.

The present results can be used to scale wavepacket models in jets if detailed data from experiment or simulation

is not available; a recent example is the work of Wong et al. [43], where wavepacket source models with a proper

amplitude scaling are used in an acoustic analogy to obtain broadband-shock-associated noise from supersonic jets. The

present results may be used in acoustic predictions based on other kinematic source models jet wavepackets, such as in

Papamoschou [44] or Maia et al. [45].
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