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We extend the resolvent-based estimation approach recently introduced by Towne et al.
(Resolvent-based estimation of space-time flow statistics, J. Fluid Mech., Vol. 883, A17,
2020) to obtain optimal, non-causal estimates of time-varying flow quantities from low-
rank measurements. We derive optimal transfer functions between the measurements and
certain nonlinear terms that act as a forcing on the linearized Navier-Stokes equations and
show that the resulting transfer function to the flow state is equivalent to a multiple-
input, multiple-output Wiener filter if the colour of the forcing statistics is known. A
matrix-free implementation is developed based on integration of the direct and adjoint
linearized Navier-Stokes operators, enabling application to the large systems encountered
for transitional and turbulent flows without the need for a priori model reduction.
Using a linearized Ginzburg-Landau problem, we show that the non-casual resolvent-
based method outperforms a casual Kalman filter for general sensor configurations and
recovers the Kalman filter transfer function in specific cases, leading to causal estimates
at a significantly reduced computational cost. Additionally, our method is shown to be
more accurate and robust than popular approaches based on truncation of the resolvent
operator to its leading modes. The applicability of the method to transitional and
turbulent flows is demonstrated via application to a (linearized) transitional boundary
layer and a (nonlinear) turbulent channel flow. Errors on the order of 2% are achieved
for the boundary layer, and the channel flow case highlights the needs to account for the
forcing colour to achieve accurate flow estimates. In practice, our method can be used as
a post-processing tool to reconstruct unmeasured quantities from limited experimental
data, and, in cases where the transfer function can be accurately truncated to its causal
components, as a low-cost estimator for flow control.
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1. Introduction

Incomplete and noisy information about a system is frequent in the analysis of fluid sys-
tems. Experiments typically involve partial access to flow information: hot-wire anemom-
etry provides high sensitivity and time-resolution, but for a limited number of spatial
locations; Particle Image Velocimetry (PIV) can provide considerably improved spatial
resolution, but generally suffers from lower signal-to-noise ratio and sampling frequency.
Stationary properties of the flow, such as the mean flow, can be obtained by moving
sensors over a region of interest, and two point statistics can be obtained by moving
pairs of sensors. The process is tedious, time consuming, and does not permit a time-
resolved estimation of the flow state. It is therefore of interest to develop methods capable
of estimating flow information from limited and noisy measurements.

Estimation has a long history. Landmark developments were obtained independently
by Wiener (1942) and Kolmogorov (1941), equivalent results being later obtained by
Kalman (1960) for problems where a system’s time evolution is known; this restriction
permits a simpler framework and is likely the reason for the more widespread use of
the Kalman filter. These methods constitute optimal linear estimators for generic errors
norms. Assuming a known initial condition and an external forcing characterised by
zero-mean Gaussian statistics, the two-point correlation of the state can be obtained
by solution of a Riccati equation. Wiener and Kalman approaches can be shown to
be equivalent (Gómez 2007). Specifically, the causal Wiener-filter is equivalent to the
Kalman filter and the non-causal Wiener filter is equivalent to the Kalman smoother.

Within Kalman’s framework, estimation is categorised into three classes, depending on
the information available for estimation of the state at time t0. If information is available
for all t 6 t0, estimation is referred to as a filter ; if readings are available for t < t1, with
t1 > t0 estimation is referred to as data smoothing ; and if t1 < t0, estimation is referred
to as a prediction. The method we develop is a smoother with infinite time horizon:
information for −∞ < t < ∞ is assumed to be available. Note that the nomenclature
used in Wiener’s framework is different: a Wiener filter performs non-causal estimation,
while a causal Wiener filter provides causal estimation.

The greater popularity of causal estimation is explained by its utility for flow control.
Linear Quadratic Gaussian (LQG) control can be implemented using Kalman-filter
estimation, coupled with a Linear-Quadratic Regulator (LQR), which calculates optimal
control based on state estimation (Hespanha 2009). LQG control of fluid systems has
become widespread in recent years, particularly for delaying boundary layer transi-
tion and reducing drag (see for instance Fabbiane et al. (2015b) and Fabbiane et al.
(2015a)). However, implementation is complicated by the large dimensionality of fluid
systems. Traditional LQG methods require the solution of two Riccati equations, which
is frequently too costly for direct application on flow systems of practical interest. An
alternative approach involves the use of a reduced-order model (ROM), typically obtained
by Galerkin projection of the system on a reduced basis. Bases can be constructed using
eigenmodes of the observability and controllability Gramians, or balanced modes (Bagheri
et al. 2009). Other possibilities include flow eigenmodes (Å kervik et al. 2007), proper
orthogonal decomposition (POD) modes (Kirby et al. 1990), spectral proper orthogonal
decomposition (SPOD) modes and a spectral version of balanced truncation modes
(Dergham et al. 2011). Balanced modes provide a quasi -optimal choice, having an a priori
error bound (Sipp & Schmid 2016). Eigensystem realisation algorithms (ERA) (Juang &
Pappa 1985) have been shown to be equivalent to ROM based on balanced truncation
(Ma et al. 2011), and have the advantage of being less costly and of avoiding the need to
integrate adjoint systems. Matrix-free methods have been developed that permit optimal
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(Semeraro et al. 2013) and robust (Bewley et al. 2000) flow control via iteration of the
system’s direct and adjoint equations. The ensemble Kalman filter approximates error
covariances using a reduced ensemble, and this can be used to provide an approximation
of Kalman-filter estimates (da Silva & Colonius 2018).

In a number of recent studies of turbulent flows, flow models are obtained by linearising
the Navier-Stokes equations about the time-averaged mean, and subjecting the resulting
linear operator to an external forcing that would model the effects of non-linearity. In the
frequency domain, this problem can be formulated such that the resolvent of the linear
operator appears as a transfer function between non-linear forcing and linear response.
Large gain separation between optimal and suboptimal resolvent force-response mode
pairs implies a system whose response will be relatively insensitive to specifics of the
forces; such a system tends to exhibits low-rank behaviour. This approach was first
used by McKeon & Sharma (2010) in the study of wall-bounded turbulence, and later
extended to non-parallel flows (Beneddine et al. 2016). Similar ideas have been used to
model turbulent jets (Towne et al. 2018; Cavalieri et al. 2019; Lesshafft et al. 2019), to
perform flow estimation with low computational cost (Sasaki et al. 2017a; Beneddine
et al. 2017), to elaborate simplified control strategies (Sasaki et al. 2016), and for the
modelling and estimation of turbulent flow over an airfoil (Abreu et al. 2017; Beneddine
et al. 2017; Yeh & Taira 2019). In most of these studies it is assumed that the system
has rank-1 behaviour at each frequency; thus, the cross-spectral density matrix can be
approximated by considering a single resolvent mode, which corresponds to the dominant
response mode of the system. Although not optimal, the lower costs of these approaches
makes them attractive.

All of the methods described above have advantages and disadvantages: control using
reduced order models is not guaranteed to be optimal for the full system and the com-
putation of large numbers of POD or eigenmodes can be costly; the frequency snapshot
method is limited to low-rank forces, as harmonic responses for many frequencies need to
be computed for each force component; matrix-free methods require routines to integrate
the adjoint equations, they require many iterations to ensure convergence, and they are
limited to low-rank external forces; ERA methods are useful when external forces are
low-rank, but become prohibitively expensive otherwise. Low-rank approximations based
on optimal response modes are not optimal, and can, depending on sensor placement,
become unstable if a higher-rank model is used, as will be shown latter. In all of these
methods force colouring can only be accounted for via a system expansion, in which
a filter colours white-noise inputs. For an overview of estimation with coloured forces
we refer the reader to Kailath & Geesey (1971) and Kailath (1974). One exception is
the work of Hervé et al. (2012), where a data-driven approach is elaborated based on
an autoregressive moving average (ARMAX) system identification. Force colour effects
are captured indirectly via data processing. Although effective, the approach does not
provide insight regarding the underlying physical mechanisms.

Smoothers have received considerably less attention, particularly in the fluid-mechanics
community. In the Wiener framework, Bode & Shannon (1950) presented a simplified
derivation of a smoothing theory. Fraser & Potter (1969) showed that Kalman smooth-
ing is equivalent to the combination of two Kalman filters, one moving forward and
another backward in time. Bell (1994) proposed an iterative Gauss-Newton method for
the performance of Kalman smoothing. Pnevmatikakis et al. (2014) developed efficient
filtering and smoothing techniques that can be obtained when the covariance between
states and measurements is low rank, or permits a low-rank approximation: this can be
a consequence of low-rank forces, large measurement noise or due to the way the system
filters the forces.
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While variations on the Kalman filter have been used in many studies to estimate flow
state, to the best of the authors’ knowledge, the only application of the Wiener-filter
(causal and non-causal) is that of Martinelli (2009), where Wiener methods were applied
to a turbulent channel flow. The study was restricted to the use of only one sensor and
actuator, probably due to the complexity of solving higher-order Wiener-Hopf problems,
and was, furthermore, restricted to a low-dimensional problem, as for flows with more
than one inhomogeneous spatial dimension, the construction and manipulation of the
system matrices becomes prohibitive. A similar method has recently been used to improve
PIV data (Gillissen et al. 2019), but no explicit mention of Wiener’s work was made.

In this work we explore estimation of linear systems, with infinite time horizon: there
are no transient effects, and readings for times before and after the estimated instant
are available, i.e. in the post-processing of experimental data. Building on works by
Beneddine et al. (2016), Beneddine et al. (2017) and Towne et al. (2020) we derive
an expression for force estimation considering underlying force statistics and sensor
noise by looking for a stationary point of the error correlation matrix for forces and
responses, and we show that optimal state estimation is obtained from the integration
of estimated forces. The estimation kernels are obtained analytically in the frequency-
domain, with a corresponding time-domain representation obtained a posteriori by an
inverse Fourier transform. When the forcing statistics are known, the method is shown to
be equivalent to a multiple-input, multiple-output Wiener filter. On the other hand, when
the forcing statistics are unknown and approximated as white, the method is equivalent
to constructing an approximate Wiener filter using estimated statistics obtained from the
resolvent-based statistical estimation method developed by Towne et al. (2020). Contrary
to previous work (Bagheri et al. 2009; Dergham et al. 2011; Sipp & Schmid 2016), no
model reduction is performed: estimation is performed using the full system, without the
need of iterative methods and subsequent integration of the estimation equations, as in
Semeraro et al. (2013).

The paper is organised as follows. In §2 we present the derivation of optimal state
and force estimations. §3 provides a comparison between causal (Kalman filter) and non-
causal (resolvent-based) estimation of a stochastically forced, linearised Ginzburg-Landau
model. The kernels of the two approaches are compared in §3.3. In §3.4 we compare the
proposed method to truncation methods reported in the literature. The method is then
applied on two fluid mechanics problems in §4: a linearised, spatially evolving boundary
layer is considered in §4.1; and a turbulent channel flow in §4.2. Conclusions are provided
in §5.

2. Resolvent-based estimation

We here derive optimal methods for the recovery of system states and driving forces.
As in previous studies (Kalman 1960; Bagheri et al. 2009; Murray 2009), we work with
the linear time-invariant model,

du

dt
(t) =Au(t) + Bf(t) (2.1)

y(t) =Cu(t) + n(t), (2.2)

where A,B and C are the system evolution (nu×nu), actuation (nu×nb) and observation
(nc×nu) matrices, u and y are, respectively, the system state (nu) and observation (ny)
vectors. Vectors f and n represent, respectively, the system’s driving forces (nb) and
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Figure 1: Flowchart illustrating the system considered and the estimation proposed.

measurement noise (ny), which are considered as zero-mean random processes with,

〈f(t)f(t′)†〉 =F (t− t′), 〈n(t)n(t′)†〉 =N(t− t′), 〈n(t)f †(t′)〉 =0, (2.3)

where † indicates the adjoint operator, where an unweighted inner product is assumed.
F (t−t′) and N(t−t′) being Hermitian positive-definite matrices. In the control literature
(2.1) is typically written using x and d to represent the system state and external
disturbances, u denoting actuation. In this study we use the nomenclature presented
above, which has become standard in fluid mechanics. Figure 1 presents a flowchart
illustrating the system and and the estimation that will presented in the next subsections.
We also assume that all variables and matrices are complex; real-valued matrices and
vectors, as is the case in the Navier-Stokes system, is a special case.

The forms used in (2.3) imply a more general framework than that of the Kalman
filter, where forces are assumed to be uncorrelated in time and space, i.e. F (t − t′) =
Iδ(t − t′), similar expressions are used to describe other cross-correlations. Coloured-
force methods exist in the Kalman framework. Typically, an extended system can be
obtained in which a filter is used to colour a white-noise force prior to application; the
approach we propose handles force colour naturally. Forces and readings are assumed to
be uncorrelated throughout the paper; but expressions obtained when this correlation is
non-zero are provided in Appendix A. Finally, we restrict our attention to stable systems:
all eigenvalues of A have negative real part.

In what follows, we derive independent methods for optimal force and response esti-
mation based on the time history of low-rank observations, y(t).

2.1. Force estimation

Defining the instantaneous error, e(t), between the force, f(t), and its estimation, f̃(t),
as,

ef (t) =f(t)− f̃(t), (2.4)

we seek an optimal estimation such that a stationary point of the time-averaged error
correlation matrix,

〈efe†f 〉 =

∫ ∞
−∞
〈ef (t)e†f (t)〉dt =

1

2π

∫ ∞
−∞
〈êf (ω)ê†f (ω)〉dω, (2.5)

is found. Note that this is a generalization of of root mean square errors, which is given
by the trace of 〈efe†f 〉. The integration limits reflect the estimation objective: to estimate
f(t) for all times. 〈·〉 represents an ensemble average, ê(ω) is the Fourier transform of



6 E. Martini, A. V. G. Cavalieri, P. Jordan, A. Towne and L. Lesshafft

e(t), defined by,

êf (ω) =

∫ ∞
−∞

ef (t)eiωtdt, (2.6)

and the equivalence of the time- and frequency-domains in (2.5) is given by Parseval’s
theorem (Arfken et al. 2013, page 595). No assumption is made regarding the underlying
probability functions of forces, responses, and errors. As discussed by Kalman (1960),
this provides the optimal estimation if forces are Gaussian distributed. For other force
distributions, optimal estimation is non linear, the method above providing the optimal
linear estimation. Note that this analogous to a least squares method for fitting curves:
if errors have a Gaussian distribution, the method is equivalent to a maximum-likelihood
method, however the method is still effective for other distributions.

Formal solutions of (2.1) in time and frequency domains are obtained as,

u(t) =

∫ t

−∞
eA(t−τ)Bf(τ)dτ, û(ω) =R(ω)Bf̂(ω), (2.7)

where R = (−A− iωI)−1. We assume a time evolution from −∞ to ∞, where an initial
condition, u0, at time, t0, can be represented via a forcing, Bf(t) = u0δ(t− t0).

Considering the state ũ obtained by integration of an estimated force f̃ ,

ũ(t) =

∫ t

−∞
eA(t−τ)Bf̃(τ)dτ, ˆ̃u(ω) =R(ω)B ˆ̃

f(ω), (2.8)

we seek to obtain f̃ as a linear function of the readings,

f̃(t) =

∫ ∞
−∞

Tf (t− τ)y(τ)dτ,
ˆ̃
f(ω) = T̂f (ω)ŷ(ω), (2.9)

such that the estimation problem involves finding an estimation function, T̂f (ω), that

would minimise the norm of 〈êf ê†f 〉. Note that the estimation function in (2.9) is generally
non-causal.

The error correlation matrix is re-written, with frequency dependencies omitted for
clarity, as,

〈êf ê†f 〉 =〈
(
f̂ − T̂f

(
Ryf̂ + n̂

))(
f̂ − T̂f

(
Ryf̂ + n̂

))†
〉,

=
(

I − T̂fRy

)
F̂
(

I − T̂fRy

)†
+ T̂f N̂T̂f

†
.

(2.10)

The operator Ry = CRB relates forces to sensor readings, and the matrices F̂ (ω) and

N̂(ω) are Fourier transforms of F (t) and N(t), defined in (2.3). Typically, the forcing
rank is much larger than the number of sensors, ny � nb, and thus it is natural that the
forcing cannot be fully estimated. The estimation is limited to the subspace of observable
forces (Towne et al. 2020). By definition, any force that generates a non-zero sensor
reading has a non-zero projection in this subspace.

A connection can be made with the observability Gramian (Bagheri et al. 2009), which
is obtained through a time integral

G =

∫ ∞
0

eA†τC†CeAτdτ. (2.11)

Alternatively, the observability Gramian can be written using Parseval’s theorem (Zhou
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et al. 1999; Dergham et al. 2011)

G =
1

2π

∫ ∞
−∞

R†C†CRdω. (2.12)

At a given frequency, the observable space is spanned by the eigenvectors of R†C†CR
associated with non-zero eigenvalues. When viewed in the time domain through the
observability Gramian, each force component is weighted by its overall observability at
all frequencies. A low-rank truncation of this Gramian can be used to obtain a reduced
basis for the construction of time-domain ROMs, implicitly favouring some frequencies
over others. A similar reasoning applies to the construction of balanced modes (Bagheri
et al. 2009). In the approach presented here, we use the full observable space at each
frequency, without the aforementioned truncation

As 〈êê†〉 is a matrix, it is typically necessary to specify a minimisation criterion:
minimisation of the trace, for instance, as is done in the design of Kalman filters, or
of the determinant. We will show, however, that a stationary point can be obtained
simultaneously for all matrix terms, illustrating a certain robustness of the method. We

impose
d〈êf ê†f 〉

dT̂f
† = 0 and

d〈êf ê†f 〉
dT̂f

= 0, where T̂f

†
and T̂f are treated as independent

variables (Ahlfors 1979, page 79). It can be shown that both expressions lead to the

same equation, we thus focus only on the first. As both 〈êf ê†f 〉 and T̂f

†
are matrices,

the derivative is a fourth-order tensor, it is thus simpler to take the derivative using
Einstein’s summation convention. Equation (2.10) has the form,

〈êf ê†f 〉il =ΓijTf
†
jk + Λik, (2.13)

with

Γ =T̂f

(
RyF̂R†y + N̂

)
− F̂R†y, (2.14)

Λ =
(

I − T̂fRy

)
F̂ . (2.15)

The derivative is given by

d〈êf ê†f 〉il
dT̂ †f mn

= Γijδjmδkn = Γimδkn, (2.16)

where δij is the Kronecker delta. The expression is a tensor product between two matrices,
and it is zero only if one of these is zero. As only Γ is a function of Tf , the stationary
point is found for,

T̂f

(
RyF̂R†y + N̂

)
= F̂R†y. (2.17)

As RyF̂R†y is semi-positive definite, RyF̂R†y + N̂ is always invertible, and thus

T̂f =F̂R†y
(

RyF̂R†y + N̂
)−1

. (2.18)

Note that sensor noise has a similar role of Tikhonov regularization parameter, but
instead of being a regularization which is imposed on the system, it arises naturally from
the system considered.

2.2. Response estimation

We here follow a procedure similar to that developed in the previous subsection, but
with the objective of obtaining an optimal estimation of the system response. Defining
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the error as,

êu = û− ˆ̃u = RB
(
f̂ − ˆ̃

f
)
, (2.19)

the error cross-correlation is given by,

〈êuê†u〉 =〈RB
(
f̂ − T̂f

(
Ryf̂ + n̂

))(
f̂ − T̂f

(
Ryf̂ + n̂

))†
B†R†〉

=RB
((

I − T̂fRy

)
F̂
(

I − T̂fRy

)†
+ Tf N̂Tf

†
)

B†R†.
(2.20)

The stationary point is given by,

T̂f =F̂R†y
(

RyF̂R†y + N̂
)−1

, (2.21)

which is the same as that obtained for optimal force estimation (2.18).

The equivalence between optimal force and response estimation motivates use of the
same nomenclature for T̂f . This equivalence between force and response estimation is
expected in the Kalman framework: in optimal estimation, only components correlated
with the sensor readings are estimated. As responses are correlated with their driving
forces, estimation of the former is synonymous with estimation of the latter.

State estimation is thus obtained using (2.8) and (2.9) as,

ˆ̃u = RBTf ŷ = Tuŷ. (2.22)

The expressions (2.18) and (2.22) are related to Wiener filter estimation, commonly used
in its scalar version (Meditch 1973), but also defined in vector form (Martinelli 2009).
The Wiener-filter is given by a transfer function obtained from cross-spectral densities
as SuyS−1yy , where Suy is the cross spectrum between state and measurement and Syy
is the measurement CSD. In the method proposed here, CSDs are computed a priori,
assumptions being made regarding the system model and the forces. For force and sensor
noise CSDs given, respectively, by F̂ and N̂ , it is straightforward to show that Suy = FR†y
and Syy = RyF̂R†y + N̂ .

As previously mentioned, classical derivations minimise the trace of the error CSD.
This suggests that optimal estimation may involve trading accuracy in one region in
favour of another, so as to obtain a global minimum. If this were the case, one could
localise the region where estimation is desired in order to improve it. Our derivation
shows that estimation is optimal everywhere.

2.3. Discussion

Insight into the estimation mechanisms is gained by analysing the terms in (2.18). For

simplicity we assume F̂ = I and N̂ = εI , so that (2.18) becomes T̂f = R†y(RyR†y + εI)−1.

The observable-forcing space is spanned by the columns of R†y, and, combined with the
proper coefficients, describe the estimated force in this basis. Such coefficients are given by
the term in parenthesis multiplied by ŷ. As the number of sensors (ny) is typically smaller
than the dimension of the external forces space (nb), it is not possible to reconstruct the
full force field from these measurements. Only the observable force subspace (and forces
correlated with them, as will be discussed later) can be estimated.
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The transfer function can be decomposed as,

T̂f = R†y
(
RyR†y + εI

)−1
= VRy

(
ΣRy

(
Σ2

Ry
+ εI

)−1)
︸ ︷︷ ︸

ΣT̂f

U†Ry
, (2.23)

where Ry = URy
ΣRy

V †Ry
is the singular value decomposition of Ry, such that ΣRy

is

a diagonal matrix with elements σi, and URy
and VRy

are unitary matrices, describing
forcing and response spaces, respectively. The matrix ΣT̂f

is also diagonal, with elements

σi/(σ
2
i + ε). In the limit of vanishing noise,

lim
ε→0

σi
σ2
i + ε

=

{
1
σi

σi 6= 0

0 σi = 0
, (2.24)

and thus,

lim
ε→0

T̂f =pinv (Ry) , lim
ε→0

T̂u =RBpinv (Ry) , (2.25)

recovering the method proposed by Towne et al. (2020). As the Moore-Penrose pseudo
inverse is equivalent to a least-square solution of a linear system (Lanczos 1997, page 124-
127), the estimated force can be understood as the minimum-norm force that generates
a sensor reading. These results can be generalised to cases with a generic force CSD,
where,

T̂f = lim
ε→0

F̂R†y(RyF̂R†y + εI)−1 = F̂ 1/2pinv
(

RyF̂ 1/2
)
. (2.26)

A least-square estimation, using F̂−1 as metric, is obtained. Expected forces components
are favoured by the estimation.

We illustrate the trend with a simple model, with two force components and one sensor,
and CSDs given by,

Ry =
[
1 1

]
, F̂ =

[
1 0
0 γ

]
, and N̂ =

[
ε
]
. (2.27)

Taking the limit ε→ 0,

T̂f = lim
ε→0

1

1 + γ + ε

[
1
γ

]
=

 1

1 + γ
γ

1 + γ

 . (2.28)

If the second force component is expected to be small, γ � 1, the estimated force is
dominated by the first component. In the opposite scenario, γ � 1, the second component
dominates the estimation.

For non-zero noise, ε > 0, a reduction in the estimation efficiency is expected. For
the same readings, larger ε leads to smaller estimated force components, as is seen by
inspection of ΣRy

. Separating sensor readings into a noiseless component (y0) and a noise

component (n) such that, ŷ = ŷ0 + n̂, the sensor CSD (Ŷ = 〈ŷŷ†〉) can be written as

Ŷ = Ŷ0 + ε̂I . The CSD of the estimated sensor reading is given by,

ˆ̃Y =CT̂uŶT †uC†,

=RyR†y
(
RyR†y + εI

)−1 (
Ŷ0 + εI

) (
RyR†y + εI

)−1
RyR†y.

(2.29)

By inspection it can be seen that the noiseless reading is only recovered for ε→ 0. Using
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F̂ = I , the expected sensor CSD is given by Ŷ0 = RyR†y = URy
Σ2

Ry
U†Ry

, and (2.29)

becomes,

ˆ̃Y =RyR†y
(
RyR†y + εI

)−1
RyR†y = URy

Σ4
Ry

(
Σ2

Ry
+ εI

)−1
U†Ry

, (2.30)

showing that for finite-noise levels the sensor CSD is underestimated.

2.4. Matrix-Free Approach

The simplest method for obtaining the resolvent-based estimator described above in-
volves matrix inversion, followed by direct application of (2.18) and (2.22). The approach
thus becomes prohibitively expensive for large matrices. Matrix inversion can be avoided
by solution of the linear system,

(−iωI − A)û = Bf̂ , (2.31)

as done by Schmidt et al. (2018). Although less-demanding, computational cost typically
limits this approach to two-dimensional problems. Time-marching schemes have been
used by W. Tam & Pastouchenko (2002), in which individual rows of Ry are obtained
via integration of harmonically forced adjoint equations; the approach is applicable for
much larger systems. Repeating the procedure for different frequencies and sensors,
an estimation based on (2.9), (2.21) and (2.22) can be obtained. We here propose a
method that significantly further reduces computational cost, providing solutions for all
frequencies with a single time-march. This is achieved by integration of the direct and
adjoint equations, similar to what is done in other matrix-free approaches (Semeraro
et al. 2013). For simplicity we assume F (t) = Iδ(t), B = I and N(t) = εIδ(t).

Consider the system,

dwi

dt
= A†wi + C†i δ(t), (2.32)

with null initial condition, and where A† corresponds to the adjoint linearised Navier-
Stokes operator, and C†i is the ith column of the adjoint of C. The impulse response of

(2.32) can be replaced by an initial condition, wi(0) = C†i . Taking the Fourier transform
of (2.32) leads to,

(−iωI − A†)ŵi = C†i , and thus ŵi = R†C†i . (2.33)

The ith component of R†y, given by R†C†i , is the Fourier transform of the response of
(2.32). The resolvent can thus be constructed row-by-row, as,

R̂y(ω) =

− ŵ†1(ω) −
− ŵ†2(ω) −

...

 . (2.34)

The values of wi(−t) are the sensitivities of the ith measurement at time t = 0 to forces
at the instant −t; in the frequency domain the same information is contained in ŵi(ω).

From solutions of the equation,

dqi
dt

= Aqi + wi(−t), (2.35)

which has frequency domain representation,

(−iωI − A)q̂i = ŵi, and thus q̂i = Rŵi, (2.36)
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the operator RR†y can be constructed from Fourier transforms of the solutions, as

RR†y(ω) = R

 | |
ŵ1(ω) ŵ2(ω) . . .
| |

 =

 | |
q̂1(ω) q̂2(ω) . . .
| |

 . (2.37)

As

RyR†y = CRR†y, (2.38)

this term can be obtained from observations of the system, ŷi = Cq̂i. State and force
estimation functions,

T̂u =RR†y
(
RyR†y + εI

)−1
, T̂f =R†y

(
RyR†y + εI

)−1
, (2.39)

can then be constructed.
The procedure can be summarised in the following steps:
(i) Adjoint Run: (2.32) is integrated for each sensor. Snapshots are saved on disk for

later use.
(ii) Direct Run: (2.35) is integrated for each sensor, with snapshots from the adjoint

run loaded and interpolated at each time step, to provide the force term. The readings
at the sensors, and some other points of interest are calculated at each time step and
saved separately.

Although the term RyR†y from (2.37) and (2.38) can be computed from flow snapshots
of the direct run, saving sensor readings at each simulation time step is computationally
cheap, and provides extra accuracy with negligible extra cost. Generalisation for any B
and F is obtained by multiplying ŵi by BF̂B† prior to the integration of (2.35).

3. Comparison between causal and non-causal estimation

3.1. Model problem

We compare resolvent-based estimation (non-causal) and Kalman-filter estimation
(causal) on a complex-valued linearised Ginzburg-Landau (GL) model, which is fre-
quently used as a simple model that qualitatively mimics the behaviour of complex
flows (Chomaz et al. 1991; Couairon & Chomaz 1999; Bagheri et al. 2009; Cavalieri et al.
2019; Towne et al. 2020), and thus constitutes a convenient benchmark. The comparison
provides insights on advantages of using non-causal estimation tools when the necessary
information for such is available.

The model takes the form,

∂u(x, t)

∂t
=Au(x, t) + f(x, t), A = −U ∂

∂x
+ µ(x) + γ

∂2

∂x2
, (3.1)

and we use the parameters: U = 6, γ = 1 − i and µ(x) = βµc(1 − x/20), where µc =
U2<(γ)/|γ|2 is the critical value for onset of absolute instability (Bagheri et al. 2009).
The parameters are similar to those used by Lesshafft (2018). The terms in A correspond
to advection, growth/decay and diffusion, respectively. Dirichlet boundary conditions are
considered at x = 0 and 40, u(0, t) = u(40, t) = 0, and the initial condition u(x, 0) = 0 is
used. We consider a system with β = 0.1, leading to a moderate gain separation between
optimal and suboptimal modes.

System observations are given by,

y(t) = Cu(x, t), (3.2)

where the operator C imposes Gaussian-shaped sensors: C is defined such that the ith
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Figure 2: Sample of the response of the GL model under white noise forcing. Colour scale
correspond to responses real part. The growth of perturbations for x < 20, their decay
for x > 20, and the convection behaviour of the model can be observed.

entry of y(t) is,

yi(t) =
1√

2πσ2
c

∫
e
−(x−xi)

2

2σ2c u(x, t)dx, (3.3)

with σc = 0.5. The number and positions of sensors (xi) will be indicated for each case
we consider.

The spatial domain is discretised using a second-order upwind differentiation scheme
at points evenly distributed between x = 0 and 40, with ∆x = 0.1, and the system is
time integrated from t = 0 to t = 500 with a Crank-Nicolson scheme with time step,
∆t = 10−2.

For application to a turbulent flow, the force term, f(x, t), would represent non-linear
interactions contained in the non-linear advection term of the Navier-Stokes equations
(McKeon & Sharma 2010). Various assumptions will be made regarding the statistics
of this term. We first consider f(x, t) to be spatially and temporally white. With the
parameters cited above, A is globally stable; it is locally convectively unstable in the first
part of the domain (x < 20), and locally convectively stable in the second part (x > 20).
A realisation of the system response to spatiotemporally white forcing is shown in figure
2.

System gains are shown in figure 3. Optimal force and response modes for the full-
rank system are shown in figure 4. The force modes observable by two sensors, and
their corresponding responses, are shown in figure 5. We note that forces observable by
different sensors, although linearly independent, can be quite similar: this is typically the
case when the system has large gain separations. In this scenario, the extra information
that can be obtained by adding a given sensor is more clearly visualised by plotting
an orthogonal basis for the observable space: i.e. the component of the newly added
observable force that is orthogonal to the previous observable space.

Figure 6 compares Kalman-filter and resolvent-based estimations for u(10, t) and
u(30, t) using one sensor at x = 20. Force estimation from the Kalman-filter were
obtained using the estimated state in (2.1). Alternatively, they can be estimated using
the frequency-domain counterpart of (2.1); in that case, it is necessary to account for
windowing effects. This can be accomplished by multiplying (2.1) by a window function
w(t) and manipulation of the terms, leading to

d(wu)

dt
(t) =A(wu)(t) + B(wf)(t) +

dw

dt
(t)u(t), (3.4)

with frequency-domain representation given by

u(ω) =R
(
Bf(ω) + u′(ω)

)
, (3.5)
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Figure 6: Comparison between Resolvent and Kalman filter methods for state estimation
with one sensor.

where

u(ω) =

∫ ∞
−∞

w(t)u(t)eiωtdt, u′(ω) =

∫ ∞
−∞

dw

dt
(t)u(t)eiωtdt, (3.6)

are respectively the estimation of û(ω) using a window w(t), and an associated force
correction term that must be included to account for the window function. The method
is described in detail by Martini et al. (2019), with a discussion of the impact of window
choice on the accuracy for a given sampling rate.

The Kalman-filter and resolvent-based estimation provide identical results for the
downstream position, but only the resolvent-based estimation can estimate the upstream
position, x = 10. Figure 7 compares root-mean-square (rms) errors of both methods for
different sensor configurations. Both methods show the same error downstream of the last
sensor, with the resolvent method consistently showing smaller errors in other regions.

Two-point state correlations were constructed from the original and estimated systems.
As seen in figure 8, the resolvent-based estimation requires a smaller number of sensors
for an accurate estimation of two-point state statistics. Being smoother, responses are
easier to estimate than forces, which, being white in space, are difficult to represent with
a small number of force modes.

Cross-spectral density (CSD) estimates were obtained for both forcing and state via
the Welch (1967) method, with a window length of 40 and 80% overlap. Comparison
of CSDs obtained with the original signal and results from Kalman-filter and resolvent-
based estimation are shown in figure 9. Results again show that the resolvent-based
approach leads to a more accurate CSD estimation for a given number of sensors. For
cases with small numbers of sensors, it becomes clear that measurements may be used to
estimate upstream information, which is not possible using a Kalman filter. Furthermore,
the resolvent-based approach provides a faster convergence of both force and response
estimations.

3.2. Estimation of a system driven by coloured forcing

To assess the robustness of resolvent-based estimation when exact knowledge of force
statistics is not available a priori we construct resolvent-based and Kalman-filter estima-
tors based on an assumption of spatiotemporally white forcing, and use these to estimate
a system driven by coloured forces. We consider a forcing cross-spectral density model
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Figure 7: Comparison between Resolvent and Kalman filter methods for states estimation
with 1,3 and 5 sensors, indicated by vertical dotted lines. Dashes black line represents
state rms on each position. Root-mean square (rms) errors on each point are normalized
by the global error rms.

given by,

〈f̂(x1, ω)f̂(x2, ω)〉 = eikh(x2−x1)e
− (x1−x2)2

L2
c e−

(x1−xc(ω))2

L2 e−
(x2−xc(ω))2

L2 + c.c., (3.7)

where 〈·〉 represents an ensemble average. The first term creates wave-like behaviour, the
second imposes a coherence length and the two final terms define an amplitude envelope
(Cavalieri et al. 2019). The following parameters were used, kh = 0.42, L = 4, Lc = 5,
and xc(ω) = 25− 5|ω|.

Estimation is performed under the assumption that F (t) = Iδ(t). Results for vanishing
sensor noise are presented in figures 10 and 11. The method is capable of distinguishing
the CSD for different frequencies, despite the underlying assumption of white forcing.

If, on the other hand, information is available concerning the force statistics, this can
be used to improve the estimation performance. We illustrate this case using a rank-2
force CSD, constructed as,

〈f̂(x1, ω)f̂(x2, ω)〉 =f1f
†
1 + f2f

†
2, (3.8)

f1(x) =e−(x−5)
2

+ e−(x−35)
2

, (3.9)

f2(x) =e−(x−15)
2

+ e−(x−25)
2

. (3.10)

This produces forces at x = 5 that are perfectly correlated with forces at x = 35, and
likewise for positions 15 and 25. Figure 12 compares resolvent-based estimations obtained
using the white force assumption to those obtained using the real force CSD. Use of the
correct force CSD leads to substantial improvement in the estimation of both response
and force when a single sensor is used, and an exact estimation when two sensors are
used, as a result of the very low rank of the force considered.

Although observable forces for this system are always upstream of the sensors, down-
stream forces are correlated with observable forces: these forces, and their responses are
thus correctly estimated.

3.3. Resolvent-based estimation as an alternative to the Kalman filter

Towne et al. (2020) suggest that resolvent-based estimation can provide a departure
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Figure 8: Response and force two-point correlation for zero time-lag, obtained using
the raw data (left most), Kalman filter and resolvent-based estimations. Colour scale
indicates the absolute level, normalized by the maximum value found on the raw data.
White markers indicate the sensor position.

point for the control of complex turbulent flows. But real-time control requires causal
estimation. We therefore consider a truncation of the kernel of the resolvent-based
estimator to is causal component (Sasaki et al. 2016), and we compare this to kernels
obtained using the standard Kalman-filter.

The comparisons of figure 6 suggest that Kalman-filter and resolvent-based estimators
may be equivalent at positions downstream of the sensor. This is an interesting possibility,
as the Kalman filter is a central feature of Linear Quadratic Gaussian (LQG) control
methods. If the methods are indeed equivalent when the resolvent-based estimator is
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Figure 9: Same as figure 8 for CSD at ω = 1.

truncated to its causal component, then its low cost would enable extension of LQG to
large systems. We proceed by comparing the kernels obtained for the two methods.

The resolvent-based kernel is obtained by converting the resolvent-based estimation
function to the time domain by inverse Fourier transform of (2.22). A state estimation
is then obtained via convolution of the kernel, Tu, and readings, y(t):

u(t) =

∫ ∞
−∞

Tu(τ)y(t− τ)dτ, (3.11)

where Tu(t) = F−1
(

T̂u(ω)
)

(Sasaki et al. 2016). The Kalman-filter estimation is

obtained via integration of,

dũ

dt
= Aũ + L(y − Cũ), (3.12)
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Figure 10: Same as figure 8 for frequency-dependent CSDs. Estimation for ω = 1.

where L is the Kalman gain. A formal solution is,

ũ(t) =

∫ t

−∞
e(A−LC)(t−τ)Ly(τ)dτ =

∫ ∞
−∞

Tu
kal(τ)y(t− τ)dτ, (3.13)

where

T kal
u (t) =

{
e(A−LC)tL , t > 0

0 , t < 0
, (3.14)

is the Kalman-filter kernel.
The kernels, Tu and T kal

u , are compared using different sensor configurations. Three
probes, at locations x = 5, 20 and 35, referred to as z1, z2 and z3, are used. Figure 13
shows kernels constructed using one sensor. The Kalman-filter kernel for probe z3 exactly
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Figure 11: Same as figure 8 for frequency-dependent CSDs. Estimation for ω = 3.

reproduces the resolvent-based kernel for all values of sensor noise, and the causal part of
the resolvent-based kernel closely approximates that of the Kalman-filter for the probe
z2. While the Kalman-filter makes no estimation on the probe z1, the resolvent-based
estimation provides a non-causal estimation.

The match between the causal component of the resolvent-based kernel and that of the
Kalman filter reinforces the idea that the latter can be obtained via a truncation of the
resolvent-based kernel. This is in accordance with the results obtained by Fraser & Potter
(1969): an optimal non-causal (smoothing) estimation is equivalent to the combination of
a pair of Kalman filters, one moving forward and the other backward in time; in systems
where no information can be gained from the backward-directed filter, the optimal causal
and non-causal estimates coincide.

Figure 14 shows the kernels obtained with inclusion of an additional upstream sensor.
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Figure 12: Same as figure 8, comparing estimation with the assumption of white-noise
forcing, and using the correct underlining force CSDs. Estimation for ω = 3.

The kernels are similar for probes z2 and z3. However, the resolvent-based kernel for probe
z1 has causal contributions from sensor y1 and non-causal contributions from sensor y2;
and, as suggested by the foregoing argument, resolvent-based and Kalman-filter kernels
do not match. Addition of a further downstream sensor, leads to kernels that differ for
all probe locations, as shown in figure 15.

When the methods are not equivalent, we note that the resolvent-based kernel is
consistently lower than those of the Kalman filter. Truncation of the former to its causal
components will thus lead to an underestimation. This can also be interpreted in terms
of the results of Fraser & Potter (1969): as the non-causal estimation is the average of
the forward- and backward-moving Kalman filters, truncating the resolvent-based kernel
to its causal part corresponds to a zeroing of the backward-directed filter, leading to an
underestimation.

The dominance of the downstream-travelling mode in the present model makes it is
easy to identify sensor locations which will produce predominantly causal resolvent-based
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Figure 13: Comparison between resolvent estimation (solid lines) and Kalman-filter
estimation (dashed lines) kernels using one sensor, for different values of sensor noise
ε. Blue, red and yellow lines indicate kernel for probes z1, z2 and z3, respectively. Sensor
and probes locations are shown on the bottom. In the legend, Tu,yi,zj , corresponds to the
transfer function term to be convoluted with the i-th sensor for obtaining estimates at
the j-th probe.

kernels, and from which Kalman-filter estimation can be obtained. Many fluid flows
of interest are dominated by downstream-travelling modes (incompressible boundary
layers and jets, see Sasaki et al. (2017b) and Beneddine et al. (2017) for examples)
and may therefore be amenable to the obtention of a Kalman-filter estimator, using
the resolvent-based approach we describe, at substantially lower computational cost and
without requiring the construction of a reduced-order model. In more complex systems,
where upstream- and downstream-travelling modes may be relevant, the procedure is not
necessarily simple, or possible. In such cases optimal non-causal kernels can be converted
to optimal causal kerners by solving associated Wiener-Hopf equations (Martinelli 2009).
Such equations are, however, not easily solved if more than one sensor is used.

3.4. Comparison with truncated response-mode estimation

The recognition that large resolvent gain separation implies that the response of a
system may be relatively insensitive to the specific details of its underlying driving forces
(McKeon & Sharma 2010) has motivated several studies (Gomez Carrasco et al. 2014;
Beneddine et al. 2017; Symon et al. 2017) in which the system response is estimated
using the dominant response modes. We refer to such approaches as truncated response-
mode estimation (TRME). Response-mode amplitudes and phases are obtained by fitting
them to available flow data. Parabolized Stability Equations (PSE) have also been used
with the same underlying idea (Sasaki et al. 2017b): these track the fastest growing
perturbation, which often approximates the optimal resolvent response mode (Towne
et al. 2019), and can therefore be understood as a rank-1 truncated response-mode
estimation.
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Figure 14: Same as figure 13 using two sensors, with sensor noise of ε = 10−2.

Figure 15: Same as figure 13 using three sensor, with sensor noise of ε = 10−2.

Beneddine et al. (2017) showed that sensors for a jet need to be located in regions
where the optimal modes have significant amplitude; with this choice of sensor location,
flow quantities downstream were estimated. Although successful, the approach lacks a
rigorous justification: it is not expected that such a basis will be optimal for any choice
of sensors. The authors argue that sensors should be located around the peak of the
response mode, which should lead to better signal-to-noise ratios. Our results suggest
that such locations are indeed desirable, but with a slightly different interpretation: the
observable force subspace for sensors at these locations has a larger projection of the
optimal force mode. A rank-1 TRME was also used to improve a data assimilation of the
flow around an airfoil by Symon (2018), but to the best of our knowledge higher-rank
estimations were not attempted. In what follows we show that higher-order TRMEs are
not suitable for estimation, and we provide an explanation as to why this is the case.

The orthogonality of the response-mode basis suggests that this constitutes an efficient
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basis if the projection is made using an L2 inner product. This norm can be emulated
using many sensors uniformly distributed throughout the flow. Figure 16 compares
errors associated with resolvent-based and truncated response-mode estimations when
uniformly spaced sensors are used. For the latter, the number of response modes corre-
sponds to the number of sensors. Response-truncation errors are always larger than the
resolvent-based estimation, but the results are similar.

A different picture emerges when sensors are not uniformly spaced, but concentrated
in the upstream region of the domain. Figure 17 shows that TRME errors are orders of
magnitude larger than the proposed method. This is a consequence of an ill-posed fit
of the optimal response mode basis to the collocation points used. From figure 4 we see
that only the optimal force mode is biased towards the upstream flow region, suboptimal
force modes being spread throughout the domain. As a sensor in a convection-dominated
system can only observe forces upstream of its location, the use of upstream sensors to
obtain forces spread throughout the domain leads to an ill-posed fitting. The resolvent-
based estimation, on the other hand, focuses on the observable force subspace, thus
providing a naturally stable method.

We illustrate the origin of the TRME ill-posed fitting with a simpler problem: curve
fitting using polynomials, as shown in figure 18. Fittings were obtained using uniformly
spaced collocation points, Gauss-Lobatto collocation points and collocation points lo-
cated on a small domain. Even though all fits use the same basis, fit performances vary
considerably: Gauss-Lobatto points provide uniform, exponential convergence (Trefethen
2000); equispaced points provide non-uniform convergence; and localised collocation
points lead to large errors, which increase with the polynomial order. This situation
can be understood as analogous to that which underpins the results of figure 17, once it
is realised that the procedure is implicitly trying to represent the systems forces with a
particular choice of basis: force modes in the case of TRME and observable forces in the
case of the resolvent-based method.

For estimation purposes, the instability of TRME may be worked around by using more
sensors than response modes, leading to a least-square minimisation of the sensor errors,
as was done by Gomez Carrasco et al. (2014). The sensors should be weighted in order to
reproduce an inner product for which the response modes are orthogonal. This approach,
however discards sensor information, which could be used for higher accuracy. It can be
justified if resolvent modes are readily available, but if they need to be constructed by
traditional methods, this would be more demanding than using the method we propose.

4. Application in transitional and turbulent flows

4.1. Transitional flat-plate boundary layer

We perform state-estimation in a two-dimensional spatially evolving transitional
boundary layer, with Reynolds number Re = 1000 based on the displacement thickness
at the beginning of the domain. The free-stream velocity is taken as the reference value
for non-dimensional quantities. The base flow, obtained from a Blasius boundary layer
solution, is shown together with sensors and probes used in figure 19. The linearised
Navier-Stokes equations are solved using the spectral-element code Nek5000 (Fischer &
Patera 1989; Fischer 1998), which uses nth-order Lagrangian interpolants within each
element to solve a weak formulation of the incompressible Navier-Stokes equations.

The computational domain is a box of size 1000×20, discretised with 250×25 elements
using sixth-order polynomials, ninth-order polynomials being used for de-aliasing. Time
integration was performed using a time step of 10−1. Convergence with mesh and time
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Figure 16: Comparisons between rms errors of resolvent-based estimations and TRME.
All curves are normalised by the global rms error.
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Figure 17: Comparisons between rms errors of resolvent-based and TRME methods with
sensors located at an upstream region. All curves are normalised by the global rms error.

step were checked. Dirichlet boundary conditions for velocity fluctuations were used on
all boundaries. At positions x = 0 and x = 1000 the boundary conditions create a viscous
boundary which is not well resolved by the mesh. Outflow conditions can alternatively be
obtained using extended domains together with sponge regions, as described by Bodony
(2006), but such treatment was not necessary here, as the regions around the boundary
are stable with the numerical methods used here, and associated errors are both small
and localised.

The flow is forced with a spatiotemporally white noise for y < 5. The distributed
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Figure 18: Fitting of a Gaussian curve using polynomials of order 4 and 15, makers
indicate the collocation points used. From left to right collocation points are: uniformly
spaced on the first half of the domain, uniformly spaced thorough the domain, on Gauss-
Lobatto points.

forcing excites, in addition to unstable Tollmien-Schlichting (T-S) waves, many other
stable modes, leading to a more challenging case for estimation in comparison to forcing
in a limited upstream region, which is often considered in flow-control problems (Bagheri
et al. 2009; Belson et al. 2013; Sasaki et al. 2018).

Readings from control sensors at x = 150, 500 and 850 were saved during the direct
run, defined in §2.4. Estimation for these positions is obtained via the transfer function,

T̂z = CzT̂u = CzRR†y(RyR†y + εI), (4.1)

which can be directly evaluated from the available direct-run readings. The observable
force and response modes for each sensor are shown in figure 20. In figure 21 the modes
observable by the second sensor are made orthogonal to those observable by the the
first, as was previously done for the Ginzburg-Landau model (cf. figure 5 ). Figure 22
shows estimations at these points using only one sensor at x = 300, and using sensors at
x = 300 and 700. The estimates are especially accurate for the two downstream positions,
and inclusion of the second sensor reduces the error for both. For the upstream point,
x = 150, a reasonable accuracy is obtained. The kernels are shown in figure 23. As in the
Ginzburg-Landau model, estimation is causal for positions downstream of the last sensor;
this suggests that resolvent-based estimation is equivalent to Kalman-filter estimation for
these locations.

Appendix B shows how to estimate a flow snapshot in a memory efficient manner.
Snapshots of the flow and its estimation, and their error, are seen in figure 24; the fields
are virtually indistinguishable at downstream locations, slight differences being observed
upstream: this region is not dominated by Tollmien-Schlichting waves, which here have
low amplitudes; the flow here thus has higher rank, and the presence of multiple modes
makes this region harder to estimate using downstream sensors. Nonetheless the method
provides a good overall estimation, given that the upstream region contains less energy.
The ratio between error energy, defined as

eerr =
1

2

∫ (
(u(x, y)− ũ(x, y))2 + (v(x, y)− ṽ(x, y))2

)
dv, (4.2)

and the flow energy is 2.3%.
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Figure 19: Boundary layer base flow. Colour contours indicates the stream-wise velocity
component, dotted and dashed lines indicate the boundary layer thickness (δ0.99) and
displacement thickness (δ∗). White markers correspond to the locations of perturbation
sensors used for estimation and green markers show the control positions used in figures
22 and 23.

Figure 20: Observable forces (top) and responses (bottom) for the sensors located at
x = 300 (left) and x = 700 (right), for f = 0.004. Dotted and dashed lines indicate the
boundary layer thickness (δ0.99) and displacement thickness (δ∗).

4.2. Turbulent channel flow

We now consider a turbulent channel flow, with friction Reynolds number Reτ = 180.
We use data obtained via direct numerical simulation (DNS) to compute the flow and
nonlinear forcing statistic, both of which were previously documented by (Morra 2020;
Morra et al. 2020), to compare our estimation results with. Inner (viscous) units can be
defined in terms of a friction velocity uτ =

√
τw/ρ, where τw is the mean wall shear, and

ρ the fluid density. These are denoted using the superscript + .
A direct numerical solution of the non-linear Navier-Stokes equations was obtained

using the channelflow code (Gibson 2012; Gibson et al. 2008) version 2.0. Fourier bases
are used for streamwise (x) and spanwise (z) directions, Chebyshev polynomials being
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Figure 21: Same as figure 20, with forces and responses on the right made orthogonal to
the ones on the left.
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Figure 22: Boundary layer time series estimation at x = 150, 500, 850 from top to bottom.
Reconstructions using one (red line) and two (blue line) sensors are shown along with
the simulation signal at these position (dashed line).

used in the wall-normal (y) direction. De-aliasing is performed in the x and z directions.
A box of size 4π × 2 × 2π, with 288 × 129 × 288 grid points was used. The simulation
was started with a random initial condition and run until transient effects vanished and
stationary turbulence was obtained; only data after this time was used. A snapshot of the
flow is shown in figure 25, and flow statistics (mean flow and rms profiles) are presented
in figure 26. Comparison with previous DNS results from Del Alamo & Jiménez (2003)
validates the database.

The non-linear terms, considered as external forces of the linear operator as discussed
earlier, were computed using Fourier and Chebyshev differentiation matrices (Weideman
& Reddy 2000) saved along with the responses. A total number of 2000 snapshots were
saved every ∆t = 0.5 in outer units (∆t+ = 5.7). Force and response statistics were
computed, CSDs being obtained using the Welch method with a Hanning window, 256
samples per block, and with a 75% overlap. Force CSDs are denoted by F̂ ′(ω), while the

symbol F̂ (ω) is reserved for the CSD model used to construct the estimator. Windowing
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(a) Kernel using only the upstream sensor, y1.

(b) Kernel using both sensor, y1 and y2.

Figure 23: Resolvent-based kernels for the three probes, at positions (x = 150, 500
and 850). Blue and red lines corresponds to the term be convoluted with y1 and y2,
respectively.

effects were corrected using the method developed by Martini et al. (2019) and described
in §3.1; Nogueira et al. (2020) have shown that the correction is fundamental for the
correspondence of force and response modes in turbulent flows.

The Navier-stokes equations, linearised around the mean, are homogeneous in the x and
z directions. Applying a Fourier transform in the homogeneous directions, the streamwise
perturbation velocity component, u(x, y, z, t), can be written as u′(α, y, β, t). For brevity
the wave numbers α and β will be omitted in what follows.

It is well known that near-wall structures are dominated by ( 2π
α+
, 2π
β+

) = (λ+x , λ
+
z ) =

(1000, 100) (Del Alamo & Jiménez 2003), and we thus focus on this wavenumber. Two
Fourier-mode sensors are used, each measuring streamwise and spamwise components
of the wall shear stress. For these wavenumbers the linearised Navier-Stokes operator
depends only on y, and can thus be explicitly constructed and inverted to obtain the
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Figure 24: Snapshot of the u component of the boundary-layer. From top to bottom:
real flow, two-sensor estimation, and error. The plots are normalized by the maximum
snapshot stream-wise flow speed. Note the lower range of the colour scale of the error
plot.

Figure 25: Snapshot of the streamwise velocity component of the turbulent channel flow.

resolvent operator. We here consider the standard linearised Navier-Stokes operator with
terms non-linear in fluctuations considered as forcing (McKeon & Sharma 2010).

Non-causal resolvent-based estimation was performed using equations (2.18) and
(2.22), using four different models for the force CSD:

(i) White: spatiotemporally white forcing: F̂ (ω) = I ,
(ii) White in time: white-noise in time, with spatial correlation given by the two point

correlation of the DNS: F̂ (ω) = F ′(0),
(iii) Estimated colour : force statistics estimated from the CSD of streamwise and wall-

normal velocity components.
(iv) True colour : force statistics calculated from the DNS: F̂ (ω) = F̂ ′(ω).
Force-statistic estimation (iii) was performed using the CSD of an auxiliary set of sen-

sors, referred to as y′, that consisted of streamwise and wall-normal velocity perturbations
at y+ = 5, 10, 15, 20, 35 and 40. The force CSD was estimated as,

F̂ = T̂f

′
Ŷ ′T̂f

′
, (4.3)

where Ŷ ′ is the CSD of the auxiliary sensor set: Ŷ ′ = 〈ŷ′ŷ′†〉, and T̂f

′
is the equivalent
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Figure 26: Turbulent-channel mean flow (left), and perturbation root-mean square
values (right). Lines indicate results from the current study, while squares results from
Del Alamo & Jiménez (2003).

of (2.18) constructed for the auxiliary set of sensors y′. This is similar to the procedure
in Towne et al. (2020), with the difference that here the estimated force CSD is used

to improve estimation using a different set of measurements. Note that Ŷ ′ can be
constructed in experiments using only two sensors. The auxiliary sensors are not used in
the flow estimation described next. The choice of sensors was motivated by Nogueira et al.
(2020), where correlations between wall-normal velocities and streamwise forces is shown
to be important for the flow dynamics. Force CSDs for λ+t = 100, where λ+t = 2π/ω+

denotes the period in inner units, obtained directly from the DNS and estimated using the
auxiliary sensors are shown in figure 27. The estimated colour has considerable differences
when compared to the true colour. Nevertheless, as will be shown next, it contains the
necessary information for an accurate state estimation.

A comparison of power spectral densities (PSD) obtained from the DNS and estimation
at y+ = 12, where the PSD of the streamwise velocity component peaks, is presented in
figure 28. The PSD for λ+t = 100 at different wall-normal positions is show in figure 29,
and a time-series comparison is provided in figure 30. The largest velocity fluctuations
are in the streamwise direction, and it is therefore the component for which estimation
performance is best.

The assumption of white-noise force in time and space does not provide a satisfactory
flow estimation, as previously observed by Chevalier et al. (2006). Studying the structure
of the non-linear force terms, Nogueira et al. (2020) showed that streaks generated by
the lift-up mechanism have their amplitudes reduced by streamwise forces. This effect is
not present if forces are assumed to be spatiotemporally white, leading to the overshoot
observed in figure 28.

Chevalier et al. (2006) explored spatial colouring of the forces, which were nonetheless
simplified as white noise in time, probably due to the complexity of including full
colour information in a Kalman-filter estimation. To the best of the authors’ knowledge,
no previous study has included full force colour. With the resolvent-based estimation
procedure we propose, estimation of relevant force components and their use for response
estimation is straight-forward.

The use of spatio-temporal forcing colour provides significant improvements in esti-
mation performance. Low-rank forcing models can easily be obtained from experimental
set-ups from sensor CSDs and the resolvent operator, and can thus be a useful tool to
estimate full flow states in experimental setups, where one is typically limited to low-rank
observations of the system.
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Figure 27: Force CSDs (F̂ ) for λ+t = 100 obtained directly form DNS data (Morra 2020),
on the left, and estimated using the extra sensor set. on the right. Colour scale is saturated
for the F̂fx,fx component, which is an order of magnitude greater than the others, as to
make cross-correlations clearer.
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Figure 28: Turbulent-channel power-spectral densities for λ+t = 100, of u,v and w from
DNS and estimation using different assumption of force statistics.

5. Conclusions

We have presented an optimal method for the estimation of unsteady flow dynamics
from sparse measurements. The approach is a generalisation of the work of Towne et al.
(2020) and includes both force colour and sensor noise. Due to the explicit appearance
of the resolvent operator, we refer to the method as resolvent-based estimation.

The method is suitable for application in transitional and turbulent flows. In the
latter case the inhomogeneous linearised Navier-Stokes system is considered, non-linear
interactions being treated by means of an external forcing (McKeon & Sharma 2010).
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Figure 29: Turbulent-channel power-spectral densities of u at y+ = 12 obtained from the
DNS and estimation using different assumption of force statistics.
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Figure 30: Turbulent-channel stream-wise velocity perturbation time series obtained from
the DNS and estimation using different assumption of force statistics. Estimation at
y+ = 12.

Comparison with Kalman-filter estimation shows the resolvent-based approach to provide
equal or better performance. A matrix-free procedure, involving the integration of one
direct and one adjoint equation for each sensor, is elaborated that makes the method
suitable for application in complex flows. Higher accuracy, lower computational cost
and a simpler implementation renders the method attractive for the post-processing of
experimental data.

When the resolvent-based estimator is truncated to its causal component it is shown
to be equivalent to Kalman-filter estimation in certain scenarios. The approach may thus
provide a viable means by which to perform real-time estimation and control of large
systems without requiring the construction of reduced-order models.

In addition to clear computational benefits, the method provides a framework for
interpretation of the mechanics of estimation. The foundation of this is resolvent analysis,
which recent studies have shown to be a promising tool for the study and modelling of
turbulent flows (McKeon & Sharma 2010; Towne et al. 2020; Beneddine et al. 2017; Abreu
et al. 2017; Schmidt et al. 2018; Yeh & Taira 2019; Nogueira et al. 2020). Thanks to this
framework, the resolvent-based estimation can be understood in terms of an observable



Resolvent-based optimal estimation of transitional and turbulent flows 33

forcing subspace associated with the sparse measurements. Estimation accuracy depends
on the extent to which the key forcing activity is observable by the sensors. Furthermore,
we have shown that with limited knowledge of underlying force correlations, or a model
of these, information from unobservable regions of the force space can be leveraged for
estimation thanks to their correlation with the observable subspace. We show, using a
turbulent channel flow, how modelling of the force statistics is necessary for accurate
estimation.
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Appendix A. Expressions for sensors noise correlated with forces

Given the system

du

dt
(t) =Au(t) + Bf(t) (A 1)

y(t) =Cu(t) + n(t), (A 2)

with

〈f(t)f(t′)†〉 =F (t− t′), 〈n(t)n(t′)†〉 =N(t− t′), 〈n(t)f(t′)†〉 =M(t− t′). (A 3)

Optimal force and state estimations, following an analogous derivation as presented in
Section 2, are stationary points of

〈êuê†u〉 =〈RB
(
f̂ − T̂f

(
Ryf̂ + n̂

))(
f̂ − T̂f

(
Ryf̂ + n̂

))†
B†R†〉 (A 4)

=RBΘB†R†, (A 5)

where

Θ =
(

I − T̂fRy

)
F̂
(

I − T̂fRy

)†
+ T̂f N̂T̂f

†
−
(

I − T̂fRy

)
M†T̂f

†
−MT̂f

(
I − T̂fRy

)†
(A 6)

for state estimation, and of

〈êf ê†f 〉 =〈
(
f̂ − T̂f

(
Ryf̂ + n̂

))(
f̂ − T̂f

(
Ryf̂ + n̂

))†
〉 = Θ (A 7)

for force estimation. Both stationary points are given by

T̂f =
(

F̂R†y + M†
)(

RyF̂R†y + N̂ + RyM† + MR†y
)−1

. (A 8)

Appendix B. Memory efficient estimation of flow snapshots

The estimation expression in (2.39) reads,

ˆ̃u = RR†y(RyR†y + εI)−1ŷ. (B 1)
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From §2.4, the terms RyR†y and RR†y can be obtained from integration of the direct and
adjoint equations as

RR†y = q̂, and RyR†y = Cq̂, (B 2)

where q̂ contains the Fourier transform of the direct systems response. In order to
estimate one snapshot of the flow, the large convolutions can be avoided using the
following strategy: constructing Ĝ = (RyR†y + εI)−1ẑ, which can be calculated using
only sensor readings from the direct run and from the flow to be estimated. Estimations
can be obtained as

ˆ̃u(ω) =q̂(ω)Ĝ(ω), (B 3)

which in the time domain is expressed as,

ũ(t) =

∫ ∞
−∞

q(τ)G(t− τ)dτ, (B 4)

which amounts to a single integral to construct one estimated flow snapshot. Thus the
only large data operation is the weighted sums of snapshots of the direct run, and only
requires storing one snapshot in memory at a time.
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Nogueira, Petrônio A. S., Morra, Pierluigi, Martini, Eduardo, Cavalieri, André
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