Tetrahedral Complexity in Amorphous Networks: A Possible Clue for the Unique Properties of Phase-Change Materials

Matthieu Micoulaut, Hugo Flores-Ruiz, Annie Pradel, Andrea Piarristeguy

- To cite this version:

Matthieu Micoulaut, Hugo Flores-Ruiz, Annie Pradel, Andrea Piarristeguy. Tetrahedral Complexity in Amorphous Networks: A Possible Clue for the Unique Properties of Phase-Change Materials. physica status solidi (RRL) - Rapid Research Letters, 2021, Phase-Change and Ovonic Materials, 15 (3), pp.2000490. 10.1002/pssr.202000490 . hal-03043696

HAL Id: hal-03043696

https://hal.science/hal-03043696

Submitted on 9 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. www.pss-rapid.com

Tetrahedral Complexity in Amorphous Networks: A Possible Clue for the Unique Properties of Phase-Change Materials

Matthieu Micoulaut,* Hugo Flores-Ruiz, Annie Pradel, and Andrea Piarristeguy

Abstract

A typical binary amorphous telluride GeTe_{2} is investigated from the first principles molecular dynamics simulations. After a comparison with chemical analogs from neutron or X-ray diffraction experiments, such as GeO_{2} or GeSe_{2}, the structure of this material is focused by examining real and reciprocal space properties. It is found that the base geometrical motifs of the germanium atom can be either in tetrahedral or in defected coordinations involving pyramidal units. A review of previous results for other compositions reveals that such binary Ge tellurides contain soft tetrahedra, at variance with lighter chalcogenides, such as $\mathrm{Ge}-\mathrm{S}$ and $\mathrm{Ge}-\mathrm{Se}$, and are characterized by an increased angular bending motion (typically $\mathbf{2 0}^{\circ}$) as compared with, e.g., $\mathrm{Ge}-\mathrm{S}\left(5^{\circ}\right)$. In addition, for amorphous Ge -rich materials, GeTe_{2} and GeTe , a secondary tetrahedral geometry appears, related to the presence of $\mathrm{Ge}-\mathrm{Ge}$ bonds, having a larger mean angle of about 125°. These typical features not only relate to characteristics observed from scattering experiments but may also be a crucial feature for the understanding of the phase-change phenomena.

Over the past two decades, phase-change materials (PCM) have received a huge attention with various technological applications ranging from optical discs, such as DVD-RW or blue-ray discs, to phase-change memory (PC-RAM), including more recent opportunities as all-photonic memories and flexible displays with nanopixel resolution. ${ }^{[1]}$ These applications build mainly on unique properties of the PCM that use the important electrical

[^0]The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/pssr.202000490.

DOI: 10.1002/pssr. 202000490
or optical contrast between a crystalline and 1 an amorphous phase, as well as the fast recrystallization of the amorphous phase.

On PC properties and recording, special 4 emphasis is made on short crystallization 5 times, on the optical or electrical contrast 6 between the amorphous and the crystalline 7 phase, ${ }^{[2]}$ on the reversibility between 8 both phases upon a large number of phase- 9 change cycles, and on the high thermal 10 stability. Over the years, extensive investi- 11 gations as a function of composition or 12 alloying elements have led to the recogni- 13 tion that such important properties and performances are being optimized along the $\mathrm{GeTe}-\mathrm{Sb}_{2} \mathrm{Te}_{3}$ join in the ternary $\mathrm{Ge}-\mathrm{Sb}-\mathrm{Te}$ system (GST). In this search for optimal performances, the key material has turned to be GeTe or $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$, one of the very first PCM used for enhanced storage capacities ${ }^{[2]}$ close to the $100 \mathrm{~GB} / \mathrm{cm}^{2}$ domain.
Of special interest is the nature of the Ge geometry as it has been suggested that the PC mechanism is driven by switching between an octahedral (O) site in the crystalline state to a fourfold tetrahedral (T) site in the amorphous one, ${ }^{[3]}$ as it is known that external conditions (light, current, and pressure) lead to an increase in the atomic bond lengths, ${ }^{[4,5]}$ which appears to be one of the very obvious mechanisms able to accommodate the electronic repulsion induced by a reduction of the bond angle from 109° to about 90°. While such a simple picture might not be fully valid, a certain number of comments should be made. First, one neglects the possibility to have homopolar $\mathrm{Ge}-\mathrm{Ge}$ bonds, but these are obviously present in PCM having the appropriate compositions ${ }^{[6]}$ and also might drive the tendency to form T-Ge. While a certain number of contributions using density functional theory (DFT)-based simulations have found that the population of such (T) motifs represents minority sites, ${ }^{[7-9]}$ it should be emphasized that the theoretical conclusions were based on electronic schemes that led to a spurious overestimation of the Ge-Te bond length, typical of octahedral geometries. In addition, the methods of estimation of the tetrahedral population η were in part inaccurate, and recently, a rigorous approach has been introduced to estimate $\eta \cdot{ }^{[10]}$ In parallel, improved DFT schemes (i.e., DFT-D2) using the inclusion of empirical dispersion forces have been used, ${ }^{[11]}$ and these have been found to substantially improve the structural description and to reduce the $\mathrm{Ge}-\mathrm{Te}$ bond length; this statement is valid for a variety of
23
789101112131415161718192021222324

$$
7
$$

www.pss-rapid.com

The represented materials display rather different structures as GeO_{2} is entirely based on corner-sharing (CS) tetrahedra, whereas both GeS_{2} and GeSe_{2} have a mixed topology made of both CS and edge-sharing (ES) tetrahedral ${ }^{[24]}$ The structure of GeTe_{2}, albeit investigated from XRD, ${ }^{[16]}$ appears to be still not fully elucidated, although reverse Monte Carlo (RMC) methods ${ }^{[16,25]}$ have characterized the structure in more detail. The characterization of the local structure and environment including the degree of tetrahedral character will be discussed throughout this contribution.

There has been a recent attempt to establish ordering on typical length scales from scattering functions in tetrahedral materials, ${ }^{[26]}$ and these can be summarized in a single plot (Figure 1) once the x-axis has been rescaled using the first nearest neighbor distance $d=r_{\mathrm{Ge}-\mathrm{X}}$ that can be determined either from the full set of calculated partial pair distribution functions $g_{i j}(r)$ or from the resolution of experimental partials using either isotopic substituted $\mathrm{ND}^{[20,22]}$ or anomalous X-ray scattering ($\mathrm{AXS}^{[27]}$). Once represented as a function of $k d$, the structure factor features three typical peaks with positions $k_{i} d$ that scale as $k_{1} d=2-3$, $k_{2} d=4.6-4.9$, and $k_{3} d=5 \pi / 2 \simeq 7.7-8.9$ where the first one is referred to the first sharp diffraction peak (FSDP) found in a variety of glasses, and the peaks at $i=2,3$ are usually termed the principal peaks.

An inspection of the substitution of the progressive heavier Group-VI atoms indicates that the peak at $k_{1} d$ (i.e., the FSDP) tends to vanish when moving from GeO_{2} to GeTe_{2}, whereas the opposite trend is acknowledged for the peak at $k_{2} d$. The peak at $k_{3} d$ appears to be more or less preserved under chemical substitution, except a shift to higher kd for heavier Group-VI elements. The observed variability underscores obvious changes in the ordering of length scales.

A decomposition into partials for amorphous GeTe_{2} (Figure 2) shows that the first principal peak observed at $k d \simeq 5$ (i.e., $k=2.1 \AA^{-1}$) arises essentially from all partials but with a larger contribution arising from $\mathrm{Te}-\mathrm{Te}$ correlations, and the secondary principal peak having an approximate contribution of 1:2:1 from $\mathrm{Ge}-\mathrm{Ge}, \mathrm{Te}-\mathrm{Te}$, and $\mathrm{Ge}-\mathrm{Te}$, respectively. Note that some differences emerge from structure models obtained from RMC fits (blue curves), especially for the Ge-Ge partial, and the other two DFT calculated functions $S_{\mathrm{TeTe}}(k)$ and $S_{\mathrm{GeTe}}(k)$ are globally compatible with the RMC. ${ }^{[25]}$
These features rather compare well with experimental determinations from AXS for a close composition $\left(\mathrm{GeTe}^{[27]}\right)$, and the determination of relevant partials indicates, indeed, that the principal peak at $\simeq 2 \AA^{-1}$ is dominated by Te-based correlations, whereas the one at $3.5 \AA^{-1}$ arises from a more equilibrated contribution from both Ge and Te .

While the peak at k_{3} is found for all materials and associated with nearest-neighbor contacts that correspond to the very first shell of neighbors, ${ }^{[28]}$ the second peak at k_{2} is supposed to be indicative of a bonding scheme assuming directional character that leads to the formation of tetrahedral motifs. ${ }^{[26]}$ This suggests that the present GeTe_{2} is partially tetrahedral but with a Ge subnetwork that has no long-range correlation given the absence of the FSDP.

It is also instructive to inquire real-space properties, and Figure 3a shows the computed pair correlation functions of

Figure 2. Calculated total structure factor $S(k)$ and Faber-Ziman-related partials $S_{i j}(k)$ of amorphous GeTe_{2}. Black curves: direct calculation from the trajectories using Equation (1). Red curves: Fourier transform of $g(r)$ and $g_{i j}(r)$. The blue curves correspond to an RMC model of GeTe_{2}. ${ }^{[25]}$
GeTe_{2}, compared with available XRD measurements from the 1 literature. ${ }^{[16]}$

It appears that the agreement is rather very good at short 3 distances as the main features of the pair distribution function; the main peak at $2.65 \AA$ dominated by $\mathrm{Ge}-\mathrm{Te}$ correlations (experimentally $2.61 \AA^{[25]}$) is correctly reproduced, as well as the second principal peak arising from the second neighbor shell 7 at $\simeq 4.10 \AA$. This secondary peak actually results from different 8 contributions ($\mathrm{Ge}-\mathrm{Te}$ and $\mathrm{Te}-\mathrm{Te}$) and has been previously found to depend on the Ge content, ${ }^{[10,25]}$ but in the present material, the $\mathrm{Te}-\mathrm{Te}$ correlations essentially arise from vertices of the Ge polyhedra, and the first peak at $\simeq 2.67 \AA$ is associated with the remaining $\mathrm{Te}-\mathrm{Te}$ homopolar bonds. Here, the structure remains, indeed, dominated by such $\mathrm{Te}-\mathrm{Te}$ and $\mathrm{Ge}-\mathrm{Te}$ correlations, and the possibility of having $\mathrm{Ge}-\mathrm{Ge}$ atoms is still small, albeit a typical prepeak featuring the $\mathrm{Ge}-\mathrm{Ge}$ homopolar bonds is found at $\simeq 2.69 \AA$, i.e., somewhat larger than the corresponding distance found in $\mathrm{GeSe}_{2}\left(2.44 \AA^{[22]}\right)$. The $\mathrm{Ge}-\mathrm{Te}$ distance is found to increase with temperature (from 2.65 to $2.69 \AA$ at 820 K), which is compatible with experimental studies in the liquid state, ${ }^{[29]}$ albeit the bond distance is slightly underestimated with respect to experimental data ($2.81 \AA$ at $1023 \mathrm{~K}^{[30]}$). It should also be remarked that some differences with the RMC models ${ }^{[25]}$ of amorphous GeTe_{2} do appear (Figure 3b), especially for $\mathrm{Ge}-\mathrm{Ge}$ and $\mathrm{Te}-\mathrm{Te}$ correlations, and the amplitude of the main peak of the former is much larger than the present calculated one from DFT, which signals an increased Ge-Ge structuration for RMC structures. Similarly, the homopolar $\mathrm{Te}-\mathrm{Te}$ and the $\mathrm{Ge}-\mathrm{Te}$ bonds are found to be slightly smaller in RMC models. The combination of both sets of partials leads to a similar total pair
4

Figure 3. a) Calculated total pair correlation function $g(r)$ (red) together with corresponding weighted partials in amorphous GeTe_{2}. Experimental data from XRD are represented by circles. ${ }^{[25]}$ The inset shows the calculated BADs $P(\cos \theta) \mathrm{Ge}-\mathrm{Te}-\mathrm{Ge}$ (black) and $\mathrm{Te}-\mathrm{Ge}-\mathrm{Te}$ (red) together with a corresponding distribution $\mathrm{Se}-\mathrm{Ge}-\mathrm{Se}$ for GeSe_{2} (broken red line ${ }^{[24]}$). b) Comparison of the calculated functions $g_{i j}(r)$ (solid lines, the same as panel (a)) with corresponding partials obtained in the liquid state (broken colored curves, 920 K) and from RMC (dotted lines ${ }^{[25]}$).
correlation function. The coordination numbers obtained at the minimum of the pair correlation function ($r_{\mathrm{m}}=3.27 \AA$) are equal to $n_{\mathrm{Ge}}=4.3$ and $n_{\mathrm{Te}}=2.7$; i.e., typical numbers found at other compositions in these $\mathrm{Ge}-\mathrm{Te}$ mixtures ${ }^{[10,14]}$ that underscore 1) the increased Te coordination number with respect to the octet $(8-\mathrm{N})$ rule encountered in the other GeX_{2} materials and 2) the increased Ge coordination number with respect to its expected value of 4 and results from a mixed population of tetrahedra and higher coordinated $n_{G e}>4$ defect octahedral geometries.

We now concentrate on angles. The bond angle distributions (BADs) $\mathrm{Ge}-\mathrm{Te}-\mathrm{Ge}$ and $\mathrm{Te}-\mathrm{Ge}-\mathrm{Te}$ are represented in the inset of Figure 3a and show that the Te-centered angles involve an angle of about 90°, consistently with the reported defect
octahedral geometry for $\mathrm{Te}{ }^{[31]}$ Conversely, the Ge-centered 1 bond angle turns out to display a main distribution at $105^{\circ} 2$ and a tail at 180°, which is the signature of the presence of defect 3 octahedral geometries. Note that here, we have represented 4 $P(\cos \theta)=P(\theta) / \sin \theta$ rather than $P(\theta)$, which permits to blow 5 up the angles found at 180°. In fact, as the infinitesimal area 6 element during angle calculations in spherical coordinates is 7 $\sin \theta d \Phi d \theta$, as one approaches $\theta \rightarrow 180^{\circ}$, the area goes to zero, 8 and therefore, $P\left(180^{\circ}\right) \rightarrow 0$. We also recall that the inclusion 9 of dispersion forces tends to shift the $\mathrm{Te}-\mathrm{Ge}-\mathrm{Te} \mathrm{BAD}$ to larger 10 angles and to an increased tetrahedral character. ${ }^{[14]}$

To investigate the angular motion around the Ge atom, we 12 use algorithms, which convert the bond-bending motion into 13 a topological constraint. ${ }^{[32,33]}$ Such a counting is based on partial 14 bond angle distributions (PBADs) $P\left(\theta_{i j}\right)$ that is defined from a set 15 of neighbors. From a given trajectory, we first select N first neigh- 16 bors, which lead to $N(N-1) / 2$ possible angles labeled as $i 0 j 17$ with $(i, j)=\{1 . . N\}$ and 0 the central Ge atom; i.e., one has 18 102, 103, etc. From such PBADs, a corresponding first moment 19 $\bar{\theta}$ and second moment (standard deviation) $\sigma_{\theta i j}$ can be calculated 20 for each distribution, and this provides a measure of average 21 angle and its excursion, which is related to the bond-bending 22 interaction strength. ${ }^{[34]}$ Such methods have permitted to estimate 23 network rigidity in glasses and other complex materials as a func- 24 tion of thermodynamic conditions. ${ }^{[35,36]}$ In the forthcoming, we 25 have set $N=6$, and this leads to 15 possible PBADs out of which 26 different $\bar{\theta}$ and $\sigma_{\theta i j}$ (σ_{θ} in the forthcoming) have been calculated. 27

To check for the degree of rigidity of the geometrical unit, one 28 represents $\sigma_{\theta}(\bar{\theta})$ for different systems. In silica where the $\mathrm{SiO}_{4 / 2} \quad 29$ tetrahedra are known to act as a rigid unit mode ${ }^{[37]}$ and where the 30 disordered structure of the network is achieved from a variety 31 of angles for the bridging oxygen, such a representation leads 32 to data found at $\bar{\theta}=109^{\circ}$ only for angles $i 0 j$ with $i, j \leq 4$ that 33 is also acknowledged in corresponding silicates of the form $\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}$ (SN ; Figure 4), and such angles, furthermore, display an equivalent and low value for the corresponding standard deviation $\sigma_{\theta}\left(5^{\circ}\right)$. The same behavior holds for germania $\left(\mathrm{GeO}_{2}\right)^{[34]}$ or for window glass ${ }^{[38]}$ (SCN; Figure 4).

Figure 4. Plot of $\sigma_{\theta}(\bar{\theta})$ for the silicon atom calculated for a sodium silicate $\left(\mathrm{SN}^{[32]}\right)$ and in window glass $\mathrm{CaO}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}\left(\mathrm{SCN}^{[38]}\right)$. www.pss-rapid.com

In contrast, angles involving atoms beyond the first shell of neighbors lead to larger bond-bending motions due to the increased distances between the central atom at the chosen (i, j) with $4 \leq i, j \leq N$. This leads to a broad distribution for the corresponding average angle $\bar{\theta}$, which is found in the range between $90^{\circ} \leq \bar{\theta} \leq 105^{\circ}$. Such angles are, furthermore, characterized by a large angular standard deviation ($\sigma_{\theta} \simeq 40^{\circ}$) and are not considered here, given that they do not contribute to the characterization of the short-range order.

Figure 5 now represents the same quantity for binary germanium chalcogenides $\mathrm{Ge}-\mathrm{X}$ with changing composition $(X=S, S e$, Te). Noticeable features can be detected in the region of interest $\left(\bar{\theta} \simeq 109^{\circ}, \sigma_{\theta} \simeq 8-20^{\circ}\right)$. Germanium sulfides ${ }^{[23]}$ exhibit a similar trend to the one determined for the oxides; i.e., whatever the considered composition smaller than the stoichiometric GeS_{2} ($\mathrm{Ge}_{x} \mathrm{~S}_{100-x}, x \leq 1 / 3$), the $\mathrm{GeS}_{4 / 2}$ tetrahedra appear to be well defined and rigid because of a low value for the angular excursion ($\sigma_{\theta} \simeq 8^{\circ}$) that is sharply centered around $\bar{\theta} \simeq 109^{\circ}$. An almost similar situation is encountered in $\mathrm{Ge}_{x} \mathrm{Se}_{100-x}$ selenides, and here also, σ_{θ} appears to be low for the angles defining the Ge tetrahedron, except for compositions satisfying $x \geq 33.3 \%$ (not shown here). Here, it was found that the part of the increasing stress imposed by Ge additional cross-links can be released

(c)

Figure 5. Measure of the Ge angular excursion $\sigma_{\theta}(\bar{\theta})$ in binary Ge-X chalcogenides. a) $\mathrm{X}=\mathrm{S}$ from simulations published in the previous study. ${ }^{[23]}$ b) $X=$ Se from the previous study ${ }^{[24]}$ and c) $X=T e$ from the previous studies ${ }^{[10,14]}$ and the present work. The broken vertical line represents the value of the tetrahedral angle.
by softening of the angular constraints, which manifests by an 1 increased bending motion inside the tetrahedra ${ }^{[24]}$ as also 2 detected in the liquid phase when thermal activation softens 3 bending interactions. ${ }^{[23]}$

The situation is dramatically changed in $\mathrm{Ge}-\mathrm{Te}$ binary alloys. A representation for various compounds recently investi- 6 gated ${ }^{[10,14]}$ including the present GeTe_{2} indicates that angles 7 around the Ge atoms experience wider angular motions, and this 8 increases σ_{θ} to about $15-20^{\circ}$ indicative of soft geometrical unit at variance with the rigid unit mode encountered in silicas. ${ }^{[37]}$

A representation of different PCM previously investigated ${ }^{[39]}$ can be plotted to provide some perspective (Figure 6). It is seen that PCM (e.g., $\mathrm{Ge}_{1} \mathrm{Sb}_{2} \mathrm{Te}_{4}$ [GST124]) are characterized by large angular excursions $\left(10^{\circ}-25^{\circ}\right)$ and angles that are somewhat smaller than the tetrahedral value but are larger than the typical value of pyramidal geometries $\left(98^{\circ}\right)$ typical of Group-V elements, such as $\mathrm{As}_{2} \mathrm{Se}_{3}$. For the tellurides, it is, furthermore, seen that as averages are performed over the whole system, angles $\bar{\theta}$ (i.e., first moments of the PBADs) involving the first four neighbors of the Ge atom span between the two limiting values of 98° and 109°.

Using such angular constraints, a recent method permits to rigorously extract the fraction of Ge tetrahedra. ${ }^{[10]}$ The detection and quantification of tetrahedral germanium can be made from the previously introduced method but instead of ensemble averaging to obtain, e.g., Figure 5, one performs a selection of individual Ge atoms with a rule based on angular standard deviations. This has the advantage to focus on angular excursions only, rather than working directly on angles, which span over a restricted domain. Angles are followed individually during the simulation from the $N(N-1) / 2$ possible triplets i-Ge-j 30 defined by a set (i, j) of N first neighbors. If the calculated number of low standard deviations around such atoms is six, a tetrahedron is identified, because this geometry is defined by six rigid

Figure 6. Comparison of the Ge angular excursion $\sigma_{\theta}(\theta)$ in different phase-change alloys, compared with reference materials (SN, the same as in Figure 4).
www.advancedsciencenews.com
angles that give rise to corresponding low standard deviations with associated angles that are all close to 109°.

Averages over the entire system for such identified Ge atoms then lead to a BAD that has the property of having six rigid angles and centered around 109° (black curve, Figure 7).

This distribution for GeTe_{2} is centered at an angle that is exactly equal to the tetrahedral angle as already acknowledged for GeTe. ${ }^{[14]}$ Interestingly, the (T) distribution exhibits a tail at large θ that is not obtained in the corresponding selenide glass, ${ }^{[24]}$ and it signals that tetrahedral Ge atoms display two distinct populations in this GeTe_{2} material as the six constrained angles can also experience angular excursions that are larger than the average 109°, i.e., in the domain between $120^{\circ} \leq \theta \leq 160^{\circ}$.

The residual distribution (nT) has the following properties (red curve, Figure 7). It is centered at $\bar{\theta} \simeq 98^{\circ}$, i.e., typical of a pyramid with a triangular basis having the $\mathrm{Te}-\mathrm{Te}$ bonds as edges, and a Ge at the remaining vertex, similar to the pyramidal geometry found in $\mathrm{As}_{2} \mathrm{Se}_{3}$ for which three rigid angles are obtained. ${ }^{[33]}$ In the present GeTe_{2}, similar findings are obtained, and the (nT) is, indeed, also characterized by three rigid angles with $\sigma_{\theta i j} \simeq 15^{\circ}$. Note that possible additional longer bonds do exist, but these do not constrain the geometry as they involve $\sigma_{\theta i j} \simeq 30^{\circ}-40^{\circ}$.

Finally, the fraction η of tetrahedral Ge can be calculated from the number of atoms fulfilling six standard deviations with a low value, and for the present GeTe_{2}, we find $\eta=55.0 \pm 1.0$ in amorphous phase. This value is similar to numbers previously found at close compositions $\left(\mathrm{GeTe}_{4}, \eta=54.6 \%{ }^{[10]}\right)$.

The results obtained for GeTe_{2} are now put in perspective with previous ones obtained for other compositions in this $\mathrm{Ge}-\mathrm{Te}$ binary.

Figure 8 represents the obtained evolution of the tetrahedral population in $\mathrm{Ge}_{x} \mathrm{Te}_{100-x}$ as a function of Ge content x. It shows that chalcogen-rich and Ge-rich materials contain a large amount of tetrahedral Ge , of about $60-65 \%$. At large Ge content, the enhancement of the (T) population is known to be driven by the presence of homopolar bonds, which lead to energetically more favorable structures in (T) geometry, ${ }^{[6]}$ whereas the increased presence of such motifs at low x seems compatible

Figure 7. BAD of identified tetrahedral (T, black) and non-tetrahedral (nT , red) Ge in GeTe_{2}. Associated structures are represented. The broken curve corresponds to the $\mathrm{Se}-\mathrm{Ge}-\mathrm{Se} \mathrm{BAD}$ in the isochemical $\mathrm{GeSe}_{2}{ }^{[24]}$

Figure 8. a) Evolution of the calculated tetrahedral fraction $\eta(x)$ as a function of Ge content in amorphous $\mathrm{Ge}_{x} \mathrm{Te}_{100-x}$ systems (see the previous studies, ${ }^{[0,14]}$ and the present work). The red open symbols represent experimental numbers extracted from Mössbauer spectroscopy. ${ }^{[10]}$ Right axis: Experimentally drift coefficient characterizing the time evolution (aging) of the resistivity (blue symbols). ${ }^{[42]}$ b) Thermal stability $\Delta T=T_{\mathrm{x}}-T_{\mathrm{g}}$ in $\mathrm{Ge}_{x} \mathrm{Te}_{100-x}$, measured by differential scanning calorimetry. ${ }^{[16]}$ Right axis: Calculated ratio $\delta=d_{\text {TeTe }} / d_{\text {GeTe }}$ as a function of Ge content (blue symbols).
with an measurement from Mössbauer spectroscopy. This exper- 1 imental technique finds a (T) fraction η of about 57% around the 2 eutectic composition $\mathrm{Ge}_{15} \mathrm{Te}_{85}$, prior to an important decrease 3 close to $\mathrm{GeTe}_{4}\left(41.6 \pm 0.8^{[10]}\right)$, which indicates that Ge atoms 4 are then predominantly found in an octahedral geometry. 5 While this fraction is not fully reproduced from our simulations, 6 we do find that $\eta(x)$ displays a minimum value for larger Ge con- 7 tent, close to the GeTe_{3} composition (52%), and the structure of 8 GeTe is dominated by tetrahedra ($\eta=64.7 \%$). It is important to emphasize at this stage that the chosen electronic schemes alter 10 dramatically the calculated value of η and DFT calculations, 11 which do not consider a dispersion correction lead to values that 12 are much lower ($\eta=41.2 \%{ }^{[14]}$), a result that is directly driven 13 by increased (i.e., overestimated) $\mathrm{Ge}-\mathrm{Te}$ bond lengths, which 14 promote octahedral geometries. 15

An indirect evidence for the evolution of (T) population 16 with Ge content is also provided by the ratio $\delta=d_{\mathrm{TeTe}} / d_{\mathrm{GeTe}}$ that 17 is calculated from the relevant partial pair correlation functions. 18 This ratio usually serves to characterize the modification in 19 tetrahedral bonding, ${ }^{[4]}$ given that for perfect tetrahedral geome- 20 tries, one can expect to have the ratio δ_{X} of the vertex distance 21 d_{XX} over the $\mathrm{Ge}-\mathrm{X}$ distance $d_{\mathrm{GeX}}(\mathrm{X}=\mathrm{O}, \mathrm{S}, \mathrm{Se})$ to be: 22
$\delta=d_{\mathrm{XX}} / d_{\mathrm{GeX}}=\sqrt{8 / 3}=1.63$, which is fulfilled in tetrahedral selenides and sulfides, ${ }^{[26]}$ whereas the same ratio in a perfect octahedral bonding is given by $\delta=\sqrt{2}=1.41$. The departure from the value $\sqrt{8 / 3}$, thus, signals for certain systems a tetrahedral to octahedral conversion. ${ }^{[4]}$ In the present tellurides, it is seen that δ is found between the limiting values of 1.41 and 1.63 (Figure 8b, right axis), which signals, indeed, that the Ge is found as a mixture of (T) and (O) populations. Interestingly, the minimum evolution of η with Ge content correlates directly with the one found for δ, and the latter is essentially driven by a reduction in the domain $\simeq 20-35 \% \mathrm{Ge}$ of the $\mathrm{Te}-\mathrm{Te}$ bond distance defining the vertex of the polyhedra. An alternative means of analyzing the tetrahedral fraction is the consideration of the single $\mathrm{Ge}-\mathrm{Te}$ bond length $d_{\mathrm{GeTe}} \cdot{ }^{[27]}$ In the present tellurides, the change with composition is too small and appears to be weakly sensitive to Ge content as d_{GeTe} is always found between 2.63(9) and 2.65(4) \AA.

Figure 9 represents the different obtained Ge-centered BADs fulfilling six rigid angles. All are, indeed, centered around 109°, although one notices increased excursions at large θ for the GeTe_{2} and GeTe compositions. A convenient way to provide an increased characterization of the effect of composition is to interpret the BADs in terms of an effective potential $U_{\text {eff }}(\theta)$, assuming that one has
$P(\cos \theta) \propto \exp \left[U_{\mathrm{eff}}(\theta) / k_{\mathrm{B}} T\right]$
as introduced in studies on liquid-liquid transitions of silica. ${ }^{[40]} \mathrm{We}$, furthermore, assume that the effective potential
is harmonic with a compositional-dependent stiffness constant 1 k_{2}, i.e., $U_{\text {eff }}(\theta)=\frac{1}{2} k_{2}(x)\left(\theta-\theta_{0}\right)^{2}$, and θ_{0} being the tetrahedral 2 angle. Using Equation (3), we fit the represented BADs and 3 extract a stiffness k_{2} that is now represented as a function of 4 Ge content (Figure 9). Note that θ_{0} is left as an adjustable param- 5 eter, and the fits lead systematically to the values in the range 6 $110.0^{\circ}-112.3^{\circ}$, except for two compositions $\left(\mathrm{GeTe}_{2}\right.$ and 7 GeTe), which needed an additional distribution of the form of 8 Equation (3) because of the presence of a tail in the BAD at 9 $\theta \simeq 130^{\circ}-140^{\circ}$. This second contribution involves an additional 10 fitted mean angle obtained at $\theta_{0}=124.9^{\circ}$ for GeTe $\left(115.2^{\circ}\right.$ for 11 GeTe_{2}) and smaller stiffness k_{2}. The detailed analysis of the Ge-centered BADs shows that this contribution is associated with a Ge-Ge-Te BAD, and the emergence of such motifs is linked with the growing presence of homopolar bonds that have been detected from RMC simulations once $x>20 \%$. ${ }^{[25]}$ The evolution of k_{2} for the main contribution (i.e., at 109°) with Ge content is compatible with the trend observed for the tetrahedral fraction (Figure 8) as large k_{2} values imply that more tetrahedra are present in the structure with small harmonic excursions away from 109°. The stiffness appears, however, to be much 21 smaller than the one calculated from a trajectory of $\mathrm{GeSe}_{4}{ }^{[24]} 22$ where a similar fit on the $\mathrm{Se}-\mathrm{Ge}-\mathrm{Se} \mathrm{BAD}$ leads to 23 $k_{2}=315.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{deg}^{-1}$, i.e., much larger than for the corre- 24 sponding tellurides, and this selenide material is, indeed, made 25 of 100% tetrahedra.

The presence of a minimum in tetrahedral fraction (Figure 8) 27 and stiffness k_{2} in this compositional range (20-33\%) has a link 28 with a possible flexible to rigid transition but with features that 29

Figure 9. a) Calculated Ge-centered $\mathrm{BADs} P(\cos \theta)$ fulfilling six rigid angles for different compositions in Ge-Te binary. The thin red line represents a fit using Equation (3) over the $80^{\circ}-150^{\circ}$ angular domain for GeTe, and green curves correspond to the two respective contributions centered at 109.2° and 124.9° (see text for details). b) Fitted stiffness k_{2} at $\simeq 109^{\circ}$ for the Ge-centered bond angle as a function of Ge content x in amorphous $\mathrm{Ge}_{x} \mathrm{Te}_{100-x}$.
www.pss-rapid.com
turn out to be specific to tellurides, given that the fraction of tetrahedra evolves with Ge content. Such transitions are being currently observed for the other chalcogenides, e.g., $\mathrm{Ge}_{x} \mathrm{Se}_{100-x}{ }^{[24]}$ or $\mathrm{Ge}_{x} \mathrm{~S}_{100-x} \cdot{ }^{[23]}$ At this transition, a certain number of physicochemical properties display minima or maxima, and for selenides or sulfides, this transition point is located at $x_{\mathrm{c}}=20 \% .{ }^{[33]}$ While this transition point at x_{c} can be predicted exactly from a mean-field treatment of radial and angular rigidity in such lighter chalcogenides where the octet rule applies, the uncertainties associated with the increased electronic delocalization of the bonding make the application of such theoretical methods more problematic in tellurides.

An inspection of Figure 8 indicates that the anomaly observed for η correlates with properties measured in the context of phasechange applications.

The evolution of the drift of the resistivity with Ge content appears to be related to the change in local geometry. This drift is usually described by a power law of the form $\rho(t) / \rho_{0}=\left(t / t_{0}\right)^{\alpha}$, where ρ_{0} is the resistivity at the initial time t_{0}, the exponent α characterizing the behavior with time. ${ }^{[41]}$ Once represented as a function of Ge content (Figure 8a, right axis), one realizes qualitatively that PCM with a large amount of (T) geometries will display a smaller variation in resistivity (small α values), and the abrupt change in $\alpha(x)$ at $x_{\mathrm{c}}=23 \%$ is possibly related to a flexible to rigid transition. ${ }^{[42]}$ The important increase in the drift coefficient resistivity at this rigidity threshold obviously reflects a higher tendency to aging for Ge-rich layers, and is also associated with the appearance of the homopolar $\mathrm{Ge}-\mathrm{Ge}$ bonds. ${ }^{[25,43]}$

Figure 8 b also shows some correlation with the fraction of tetrahedra, and one acknowledges an enhanced thermal stability $\Delta T=T_{\mathrm{x}}-T_{\mathrm{g}}$ close to $22 \% \mathrm{Ge}$. Here, T_{x} is the temperature of crystallization onset, and T_{g} is the glass-transition temperature, ${ }^{[16]}$ which reflects the ability of the material to vitrify, and ΔT is maximum in the region where the population of both tetrahedra and defect octahedra is about the same.

Regarding the link between PC phenomena and local structure/geometry, the picture that emerges from our analysis is the following. At large Ge content, apart (O) local geometries, (T) display two types of short range order: a first one that is, indeed, close to the value $\arccos \left(-\frac{1}{3}\right)=109.47^{\circ}$ and dominant at small composition x (Figure 9) where the effects of stress and presence of homopolar $\mathrm{Ge}-\mathrm{Ge}$ bonds is negligible. With increasing Ge content, the rigidity induced from increased stress/bond density ${ }^{[33]}$ is partially released by a global reduction of the (T) fraction to about $\simeq 50 \%$ at GeTe_{3} (Figure 8a) as less angular rigid constraints are involved, because these evolve as $5 \eta+3(1-\eta)=3+2 \eta .{ }^{[17]}$ For larger concentration, the emergence of $\mathrm{Ge}-\mathrm{Ge}$ bonds promotes back again (T) geometries, ${ }^{[6]}$ and a second (T) contribution emerges at $115-124^{\circ}$ that involves a homopolar bond and continues to have six rigid angles. It is already detected for GeTe_{2} (Figure 9). The deviation from a standard tetrahedral angle to larger values is rather well known in the literature and found in strained molecules, such as, e.g., fenestranes, ${ }^{[44]}$ a class of materials where the bond lengths deviate from those found in reference alkanes and induce a bond angle at the central carbon atom of around 130°. The mechanism of "planarization" of the tetrahedral carbon results of a gradual
increase in bond angle deformation and strain energy that effect 1 a change in hybridization. ${ }^{[45]}$ In the present tellurides, this sec- 2 ondary (T) population appears to be an intermediate geometry 3 between the regular (T) and the (O) geometry, promoted by 4 the presence of stress.

The fact that the intratetrahedral bending motion is more soft 6 in tellurides must have some implications for corresponding 7 vibrational spectra as acknowledged, e.g., for the case of densified 8 silicas. ${ }^{[46]}$ In $\mathrm{Ge}-\mathrm{Te}$ glasses, ${ }^{[42]}$ the Raman spectra contain 9 features of Te-sites but also signatures of Ge-based local geome- 10 tries with typical frequencies of $122-126$ and $160 \mathrm{~cm}^{-1}$ for 11 defect octahedra and a broadband centered around $190 \mathrm{~cm}^{-1} 12$ for tetrahedral. ${ }^{[47]}$ Using an effective mass m for the vibrating 13 structures (i.e., corresponding to the chalcogen mass, which is 14 larger in the case of Te -based glasses), one can estimate the 15 typical frequency of bending modes $\omega_{\mathrm{BB}}=\sqrt{\beta / m} \cos \theta / 2$ from 16 a nearest-neighbor central-force model. ${ }^{[48]}$ It indicates that 17 $\omega_{\text {BB }}$ must be smaller in tellurides as the restoring force constant 18 β must be lower in GeTe_{γ} due to the increased angular 19 excursion, when compared with, e.g., selenides, which involve 20 an increased frequency for bending motion ${ }^{[49]}$ as also 21 acknowledged for vibrational study of S/Se substitution in stoi- 22 chiometric compounds. ${ }^{[50]}$
In the present contribution, DFT-based simulations, we have 24 focused on the structure of GeTe_{2}, an isochemical compound of 25 tetrahedral network formers of the form $\mathrm{GeX}_{2}(\mathrm{X}=\mathrm{O}, \mathrm{S}, \mathrm{Se}) .26$ These simulations appear to reproduce rather accurately the 27 overall structural properties of the amorphous phase, as 28 acknowledged by a rather good agreement with experimental 29 structure functions (structure factor $S(k)$ and pair correlation 30 functions $g(r)$). We have then focused on the geometrical motif 31 associated with Ge atoms and results that indicate a rather 32 important fraction of tetrahedra (55\%), but these appear to be 33 soft units that experience angular excursions up to $160^{\circ}-170^{\circ} 34$ during bond-bending motions. These excursions are larger than 35 in corresponding sulfides and selenides whose short range order 36 can be fairly described within a rigid unit model typical of oxide 37 network formers $\left(\mathrm{GeO}_{2}, \mathrm{SiO}_{2}\right)$.

Once the fraction of tetrahedra is followed as a function of Ge 39 content, a minimum is obtained close to a reported rigidity tran- 40 sition, whereas Ge-rich compositions and GeTe appear to contain 41 the largest population of tetrahedra but, in the last case, with a 42 secondary geometry, related to the presence of Ge-Ge bonds, 43 having a mean angle of about 125° that leads to a specific tail 44 in the BAD at large angles. These trends permit to decode 45 observed anomalies in properties regarding phase-change mech- 46 anisms, and might be of some interest for further work in terms 47 of applications. More generally, the ease of phase switching is 48 directly linked to small ionicity and a limited degree of hybrid- 49 ization, enabling some resonance p-electron bonding to prevail. 50 This means that sp^{3} tetrahedral geometries involving occupied 51 but energetically unfavorable sp^{3} antibonding states might lead 52 to the absence of resonance bonding. The fact that such (T) units 53 appear to be much softer than their selenide or sulfide counter- 54 parts, able to explore larger angles and possible additional 55 interactions, indicates that even tetrahedral tellurides can be 56 promising candidates for PC applications.

45

\qquad 12 12
13 13 14
718
19202122 28 290
www.advancedsciencenews.com

Acknowledgements

2 The authors acknowledge support from Agence Nationale de la Recherche 3

Conflict of Interest

5 The authors declare no conflict of interest.
[1] W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Nature Rev. Mat. 2019, 4, 150.
[2] Phase Change Materials And Applications, (Eds: S. Raoux, M. Wuttig), Springer, Berlin 2008.
[3] A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 2004, 3, 703.
[4] M. Micoulaut, J. Phys.: Condens. Matter 2004, 16, L131.
[5] D. A. Baker, M. A. Paesler, G. Lucovsky, S. C. Agarwal, P. C. Taylor, Phys. Rev. Lett. 2006, 96, 255501.
[6] J.-Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, C. Bichara, M. Wuttig, Nat Commun 2015, 6, 7467.
[7] J. Akola, R. O. Jones, Phys. Rev. Lett. 2008, 100, 205502.
[8] S. Gabardi, S. Caravati, G. C. Sosso, J. Behler, M. Bernasconi, Phys. Rev. B 2015, 92, 054201.
[9] S. Caravati, M. Bernasconi, M. Parrinello, J. Phys.: Condens. Matter 2010, 22, 315801.
[10] M. Micoulaut, K. Gunasekera, S. Ravindren, P. Boolchand, Phys. Rev. B 2014, 90, 094207.
[11] M. Micoulaut, J. Chem. Phys. 2013, 138, 061103.
[12] M. Micoulaut, M.-V. Coulet, A. Piarristeguy, M. R. Johnson, G. J. Cuello, C. Bichara, J.-Y. Raty, H. Flores-Ruiz, A. Pradel, Phys. Rev. B 2014, 89, 174205.
[13] H. Flores-Ruiz, M. Micoulaut, M.-V. Coulet, A. A. Piarristeguy, M. R. Johnson, G. J. Cuello, A. Pradel, Phys. Rev. B 2015, 92, 134205.
[14] M. Micoulaut, A. Piarristeguy, H. Flores-Ruiz, A. Pradel, Physical Review B 2017, 96, 184204.
[15] A. Bouzid, C. Massobrio, M. Boero, G. Ori, K. Sykina, E. Furet, Phys.Rev. B 2015, 92, 134208.
[16] P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, A. Pradel, J. Phys. Condens. Matter 2013, 25, 195401.
[17] K. Gunasekera, P. Boolchand, M. Micoulaut, J. Appl. Phys. 2014, 115, 164905.
[18] J. Akola, R. O. Jones, S. Kohara, T. Usuki, E. Bychkov, Phys. Rev. B 2010, 81, 094202.
[19] S. Grimme, J. Comput. Chem. 2006, 27, 1787.
Received: October 14, 2020
Revised: November 6, 2020
Published online:
[20] P. S. Salmon, A. C. Barnes, R. A. Martin, G. J. Cuello, J. Phys.: Condens. 1 Matter 2007, 19, 415110.
[21] A. Bytchkov, C. J. Cuello, S. Kohara, C. J. Benmore, D. L. Price, 3 E. Bychkov, Phys. Chem. Chem. Phys. 2013, 15, 8487.
[22] P. S. Salmon, J. Non-Cryst, Solids 2007, 353, 2959.
[23] S. Chakraborty, P. Boolchand, M. Micoulaut, Phys. Rev. B 2017, 96, 6 094205.

7
[24] M. Micoulaut, A. Kachmar, M. Bauchy, S. Le Roux, C. Massobrio, 8 M. Boero, Phys. Rev. B 2013, 88, 054203.

9
[25] A. Piarristeguy, M. Micoulaut, R. Escalier, P. Jóvári, I. Kaban, J. van 10 Eijk, J. Luckas, S. Ravindren, P. Boolchand, A. Pradel, J. Chem. Phys. 11 2015, 143, 074502.12
[26] P. S. Salmon, A. Zeidler, J. Stat. Mech. 2019, 114006. 13
[27] J. R. Stellhorn, S. Hosokawa, W.-C. Pilgrim, N. Blanc, N. Boudet, 14 H. Tajiri, S. Kohara, Phys. Status Solidi 2016, 253, 1038.
[28] M. Micoulaut, J. Phys. Condens. Matter. 2019, 31, 285402.
[29] S. Hosokawa, K. Tamura, M. Inui, H. Endo, J. Non-Cryst. Solids 1993, 17 156-158, 712.18
[30] I. Kaban, P. Jóvári, W. Hoyer, R. G. Delaplane, A. Wannberg, 19J. Phys. Cond. Matt. 1993, 18, 2749.20
[31] J. Akola, R. O. Jones, Phys. Rev. B 2007, 76, 235201. 21
[32] M. Bauchy, M. Micoulaut, J. Non-Cryst. Solids 2011, 357, 2530. 22
[33] M. Micoulaut, Adv. Physics X 2016, 1, 147. 23
[34] M. Bauchy, M. Micoulaut, M. Celino, M. Boero, S. Le Roux, 24
C. Massobrio, Phys.Rev.B 2011, 84, 054201. 25
[35] M. Bauchy, M. Micoulaut, M. Boero, C. Massobrio, Phys. Rev. Lett. 262013, 110, 165501.27
[36] M. Bauchy, M. J. Abdolhosseini Qomi, C. Bichara, F.-J. Ulm, 28R. J.-M. Pellenq, J. Phys. Chem. C 2014, 118, 12485.
[37] M. Dove, K. Hammonds, M. Harris, V. Heine, Mineral. Mag. 2000, 3064, 377.
[38] O. Laurent, B. Mantisi, M. Micoulaut, J. Phys. Chem. B 2014, 118, 32 12750.33
[39] M. Micoulaut, C. Otjacques, J.-Y. Raty, C. Bichara, Phys. Rev. B 2010, 3481, 174206.35
[40] E. Lascaris, M. Hemmati, S. V. Buldyrev, H. E. Stanley, C. A. Angell, 36J. Chem. Phys. 2014, 140, 224502.37
[41] M. Boniardi, A. Redaelli, A. Pirovano, I. Tortorelli, F. Pellizzer, 38J. Appl. Phys. 2009, 105, 084506.39
[42] J. Luckas, A. Olk, P. Jost, H. Volker, J. Alvarez, A. Jaffré, P. Zalden, 40
41
Lett. 2014, 105, 092108. 42
[43] A. V. Kolobov, P. Fons, J. Tominaga, Phys. Rev. B 2013, 87, 155204. 43
[44] V. B. Rao, C. F. George, S. Wolff, W. C. Agosta, J. Am, Chem. Soc. 44
1985, 107, 573. 45
[45] R. Keese, Chem. Rev. 2006, 106, 4787. 46
[46] B. Hehlen, J. Phys. Cond. Matt. 2010, 22, 022401. 47
[47] R. Mazzarello, S. Caravati, S. Angioletti-Uberti, M. Bernasconi, 48M. Parrinello, Phys. Rev. Lett. 2010, 104, 085503.
[48] P. N. Sen, M. F. Thorpe, Phys. Rev. B 1977, 15, 4030. 49
[49] P. Boolchand, W. J. Bresser, Phil. Mag. 2000, 80, 1757.50
[50] X. Han, H. Tao, L. Gong, X. Wang, X. Zhao, Y. Yue, J. Non-Cryst, Solids 52
2014, 391, 117. 53
[51] A. Zeidler, W. E. Drewitt, P. S. Salmon, A. C. Barnes, W. A. Crichton, 54
S. Klotz, H. E. Fischer, C. J. Benmore, S. Ramos, A. C. Hannon, 55
J. Phys.: Condens. Matter 2006, 21, 474217. 56
.

 35

8

[^0]: Dr. M. Micoulaut
 Physique Théorique de la Matière Condensée
 Sorbonne Université
 CNRS UMR
 7600, Boite 121, 4 place Jussieu, 75252 Paris, Cedex 05, France
 E-mail: mmi@lptl.jussieu.fr
 Dr. H. Flores-Ruiz
 Departamento de Ciencias Naturales y Exactas, CUValles Universidad de Guadalajara
 Carr. Guadalajara-Ameca km 45.5, Ameca, Jalisco 46600, México
 Dr. A. Pradel, Dr. A. Piarristeguy
 ENSCM
 ICGM
 Univ Montpellier
 CNRS
 Montpellier, France

