
HAL Id: hal-03043681
https://hal.science/hal-03043681v1

Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Permissionless Consensus based on Proof-of-Eligibility
Geoffrey Saunois, Frédérique Robin, Emmanuelle Anceaume, Bruno Sericola

To cite this version:
Geoffrey Saunois, Frédérique Robin, Emmanuelle Anceaume, Bruno Sericola. Permissionless Con-
sensus based on Proof-of-Eligibility. NCA 2020 - 19th IEEE International Symposium on Network
Computing and Applications, Nov 2020, Boston (virtual venue), United States. �hal-03043681�

https://hal.science/hal-03043681v1
https://hal.archives-ouvertes.fr


Permissionless Consensus based on
Proof-of-Eligibility

Geoffrey Saunois, Frédérique Robin
Inria, Univ. Rennes, CNRS, IRISA
Inria, Campus de Beaulieu, France

firstname.lastname@inria.fr

Emmanuelle Anceaume
CNRS, Univ. Rennes, Inria, IRISA

IRISA, Campus de Beaulieu, France
emmanuelle.anceaume@irisa.fr

Bruno Sericola
Inria, Univ. Rennes, CNRS, IRISA
Inria, Campus de Beaulieu, France

bruno.sericola@inria.fr

Abstract—We propose a consensus algorithm whose objective
is to decide on the same union of proposed values, such that
with high probability all the values proposed by the honest nodes
belong to the decision. Our algorithm has been designed to cope
with an asynchronous and permissionless system. By relying on
a proof-of-eligibility, our algorithm is tolerant to an adversary
capable of instantaneously corrupting entities. A straightforward
application of our algorithm is the design of permissionless
distributed ledgers.

Index Terms—consensus algorithm, proof of eligibility, aggre-
gation, asynchronous and permissionless environment, adaptive
adversary.

I. INTRODUCTION

Permissionless blockchains aim at achieving the impressive
result of being a persistent, distributed, consistent and con-
tinuously growing log of transactions, publicly auditable and
writable by anyone. Despite the openness of the environment
and thus the inescapable presence of malicious behaviors,
security and consistency of permissionless blockchains do not
demand the presence of a trusted third party [11]. In the
seminal blockchains, i.e., Bitcoin and Ethereum, this achieve-
ment results from the tight combination of two ingredients:
a randomized election of the next block of transactions to
be appended to the blockchain and a short latency broadcast
primitive. While the latter one relies on the properties of peer-
to-peer networks, the former one has so far been commonly
implemented by solving proof-of-work (PoW). A PoW is a
cryptographic puzzle that is provably secure against a large
proportion of participants that may wish to disrupt the system,
and allows to keep the rate at which blocks are created
parametrizable and independent of the size of the system.
Unfortunately, resilience of PoW-based solutions fundamen-
tally relies on the massive use of computational resources,
which is a real issue today. Numerous investigations have been
devoted to find a secure alternative to PoW, but most of them
either rely on the intensive use of a large quantity of physical
resources (e.g. proof-of-space [2], proof-of-space/time [10])
or make compromises in their trust assumptions (e.g. proof-
of-elapsed-time [8], delegated proof-of-stake [6]). In contrast,
solutions based on proof-of-stake (PoS) seem to be a quite
promising way to build secure and permissionless blockchains.
Indeed, proof-of-stake relies on a limited but abstract resource,
the crypto-currency, in such a way that the probability for

a participant to create the next block of the blockchain is
generally proportional to the fraction of currency owned by
this participant. It is an elegant alternative in the sense that
all the information needed to verify the legitimacy of a
stakeholder to create a block (i.e., crypto-currency possession)
is already stored in the blockchain. Finally, by being a sus-
tainable alternative (creating a block requires a few number
of operations), scalability concerns, exhibited by PoW-based
solutions, should be a priori more tractable. However, an
important condition for PoS-based blockchains to be secure
is randomness: the creator(s) of the next block must be truly
random, and the source of randomness must not be biaised
by any adversarial strategy. So far, this has been addressed
by two main approaches: chain-based consensus and block-
wise Byzantine agreement. In the former approach (e.g. [3]),
a snapshot of current users’ status is periodically taken, from
which the next sequence of leaders is computed. In the
latter one (e.g. [5], [7]), a Byzantine agreement per block,
relying on the properties of verifiable random cryptographic
schemes, is achieved. While [5] is tolerant to a weakly adaptive
adversary (i.e., a targeted attack needs a given amount of time
before being effective), node corruptions in [7] are effective
once decided by the adversary. Algorand [7] handles such
a strong adaptive adversary by implementing proof-of-stake
with a proof-of-eligibility. Proof-of-eligibility allows us to
decide who is in charge of executing an action. When the
eligibility is found out by each one individually, it is called
a cryptographic sortition scheme [7]. Note that in contrast
to cryptographic sortition, proof-of-work cannot be attributed
to a single user which explains the development of mining
pools. In Algorand, participation to the agreement protocol is
ephemeral and depends on the amount of stake owned on user
account. However, by relying on account balance, Algorand
may not defend against an adversary that will observe, during
the very first rounds of the consensus protocol, the IP address
of users with significant savings account balance and launch a
targeted attack on these users. Since these users have a higher
probability to be involved in the subsequent rounds of the pro-
tocol than those with low savings, by preventing these wealthy
users from participating to these rounds, the adversary may
strongly jeopardize rounds progress, and consequently prevent
termination of the Byzantine tolerant agreement protocol from
holding.



The objective of this work is to go a step further by
deeply relying on ephemeral but provable user identities.
These identities allow any user to act under multiple identities
without depending upon a trusted third party. We use the
so-called unspent transaction outputs (UTXOs) to implement
such identities. An UTXO can be roughly seen as a single-
use account in the sense that once credited, an UTXO can
be debited only once. An UTXO is uniquely characterized
by a key pair (pk, sk) and its associated amount of stake.
Each public key is related to the digital signature schema with
the uniqueness property, which allows stakeholders to use the
public keys (or a hash thereof) of their UTXOs as a reference
to them, as demonstrated in the “Public Keys as Identities
principle” of Chaum [4]. Any two UTXOs created by the same
user are unlinkable. Hence user u is publicly known as pku if
u owns the UTXO whose key pair is (pku, sku). An UTXO
is created when it appears for the first time in the output set
of a transaction, and once it is referenced in the input set
of another transaction, it cannot be used anymore. Hence, by
using UTXOs as user identities, a user owns as many verifiable
identities as he wants, and can easily spread all its coins over
multiple and unlinkable UTXOs. Since UTXOs are ephemeral,
the number of users continuously varies with the activity of
the system. Hence the rationale of using UTXOs in the proof-
of-eligibility is to prevent the adversary from presuming on
user wealthiness, and thus makes the above described targeted
attack inefficient. This allows us to design a Byzantine tolerant
consensus algorithm, which in presence of a rushing adversary,
guarantees that all correct users of the permissionless system
decide on the same union of proposed values with any high
probability 1 − ε, with ε ∈ (0, 1), in a bounded number
of rounds. To fit the context of blockchains, users propose
their set of pending transactions as their input values, and the
decision value is a union of pending transactions. When all
the users propose the same set of pending transactions then
with high probability the algorithm decides in three rounds,
otherwise the number of rounds is upper bounded.

The remaining of the paper is orchestrated as follows.
Section II presents the model of the system in terms of
synchrony, communication, security, and user transactions.
Section III specifies the problem addressed by this paper. Sec-
tion IV describes the main tenets of our consensus algorithm.
Section V presents an in-depth analysis of our algorithm.

II. SYSTEM ASSUMPTIONS

a) Asynchronous and permissionless system: By permis-
sionless we mean a distributed system in which (i) the number
of participants for carrying out the protocol is not known
before hand, is not even known during the course of the exe-
cution, and may change over time, (ii) the right to contribute
and to participate is not controlled by a (trustworthy) third
authority, i.e. we do not assume the presence of any public key
infrastructure (PKI), and (iii) participants communicate over
a weakly but reliable connected communication topology. We
assume an asynchronous environment, that is our algorithm
does not make any synchrony assumptions, i.e. does not

assume any bounds on the time needed for a message to be
received by its recipients, nor on the computation time of the
processes, nor on the individual drifts of clocks.

b) Cryptographic functions: Users have access to ba-
sic cryptographic functions, including a cryptographic hash
function h of hash-value size h and an asymmetric signature
scheme that allows a user to generate a public and secret
key pairs (sk, pk), and compute a signature σsk,h(d) of
any message d. Function h is modeled as a random oracle.
Our algorithm relies on verifiable random functions (VRFs).
A Verifiable Random Function (VRF) [9] is the public-key
version of a keyed cryptographic hash. It is a pseudorandom
function that provides a proof of its correct computation.
Only the holder of the private key sk can compute the hash,
but anyone with corresponding public key pk can verify the
correctness of the hash.

c) Public Keys as Identities principle [4]: Users own
some minimal amount of stake (i.e., money), which gives
them the right to participate to the algorithm. As said in
the introduction, we adopt a simplified version of what is
commonly known as the Bitcoin Unspent Transaction Output
(UTXO) model. In the following, when we say that UTXO
(pku, sku) is selected to perform some action we mean the
user that owns this UTXO is selected to perform some action.
Symmetrically, when we say that some user u executes some
action we mean the owner of UTXO < pku, sku > executes
some action.

d) Threat model: An adaptive adversary: We assume the
presence of Byzantine (i.e. malicious) users which controls up
to pA < 1/3 of the total amount of stake currently available in
the system. This model, named the ”stake threshold adversary”
by Abraham and Malkhi [1], is an alternative to the common
threshold adversary model. It bounds the total number of
parties the adversary controls relative to the total population
of the system. It is an extension (or modification) of the com-
putational threshold adversary introduced by Bitcoin, which
bounds the proportion of the computational power owned by
parties. Byzantine users can deviate from the protocol. They
are modeled by an adversary. The adversary can perfectly
coordinates all malicious users. It can learn the messages sent
by honest users (i.e. non malicious users), delay them, and
then chooses messages sent by malicious ones. Further the
adversary is adaptive: it can select at any time which users to
corrupt in replacement of corrupted ones (i.e. corruptions are
”moving”). The adversary is computationally bounded so that
it can neither forge honest nodes’ signatures nor break the hash
function and the signature scheme. Finally, we assume that all
users (honest and malicious) share an initial knowledge that
we call genesis block which contains an initial arbitrary UTXO
set. We assume this block also shares the same properties as
regular blocks. How to setup the genesis block is out of the
scope of this paper.



III. THE ADDRESSED PROBLEM: THE
MERGED-CONSENSUS

While the overall goal of this work is to build a permission-
less blockchain, in this paper we will concentrate on the design
of the consensus algorithm whose objective is to decide on a
union of valid transactions. We will prove that all the honest
users of the asynchronous and permissionless system decide on
the same union of transactions and that the decision is reached
in a finite and bounded number of rounds with any high
probability. We will also show that our algorithm is tolerant
to a strongly adaptive adversary capable of instantaneously
corrupting entities. Such an adversary is also called rushing
adversary. Clearly, by sequentially invoking an instance of
the consensus with a sequence number, this will allow the
construction of a permissionless blockchain.

The task that honest users want to solve is the Merged-
Consensus which is formalized by the following properties.

• Termination: Each honest user u eventually outputs one
decision value decu;

• Agreement: For any honest users u and v that respec-
tively decide decu and decv , then decu = decv;

• Validity: Any decision value dec contains at least the set
of transactions proposed by an honest user.

IV. MAIN PRINCIPLES OF OUR MERGED-CONSENSUS
ALGORITHM

The algorithm we propose to implement the Merged-
Consensus specification in a permissionless system consists
of several asynchronous rounds. By adopting the nice idea
of user replacement [7], each asynchronous round r, r ≥ 0,
is run by a dynamically created committee whose members
are selected among all the users (i.e. UTXO owners) of the
system at round r. As said in the introduction, selection is
achieved in a random, unpredictable, and non-interactive way
with a cryptographic sortition mechanism. Correctness of our
cryptographic sortition is ensured by guaranteeing that no
obvious Byzantine strategy such as a concentration of the stake
on a single manipulated UTXO or a massive sub-division of
stake on a multitude of compromised UTXOs (Sybil attack),
can bias user random selection. Mitigating the impact of the
former strategy is achieved by assuming an upper bound on
the amount of stake credited on UTXOs. Note that this is not a
constraint since each user may create an arbitrary large number
of UTXOs and the number of transaction outputs is not upper
bounded. To prevent an adaptive adversary from manipulating
committee members during round r, r ≥ 0, the action of each
committee member is limited to a unique step of computation
followed by a unique step of communication. Hence, if the
adversary eavesdrops a message from a committee member u,
it is too late for him to manipulate u since u will not execute
any more steps in round r, and possibly in any other rounds
of the algorithm. Recall that users are ”short-lived” (a user is
alive as long as its UTXO has not been spent).

Rule 1. Any UTXO stake amount is bounded by constant U .

Cryptographic sortition exports two functions: the DRAW
and VERIFYDRAW functions. Function DRAW is a private
function which allows users (i) to determine by themselves
whether they are selected as a committee member of a given
round r of the consensus algorithm, and (ii) to provide later
and if necessary a proof of soundness of this selection. The
DRAW function when invoked by UTXO < sku, pku >, has
five arguments: the secret key sku of the UTXO, a seed
seed from which comes the randomness of the sortition, the
expected number of stake τ selected by the current sortition,
the amount of stake wu credited on UTXO < sku, pku >, and
the total current amount of currency units W owned by all the
users of the system. Computation of the seed is based on the
most recent pieces of information known by every user. In our
case, this is the hash of the last created block, that is the hash
of the decision value decided by the preceding instance of
the Merged-Consensus. The knowledge of W is obtained by
successively reading all the blocks of the blockchain. Function
DRAW is made of two steps, first a call to a VRF function
which calculates a random and verifiable number hu, and
second a weighted random sampling seeded with hu. The
weighted random sampling computes the voting weight voteu
of UTXO < sku, pku > during round r according to the
amount of stake credited on this UTXO. This voting weight is
used by UTXO < sku, pku > during round r of the consensus
algorithm. If voteu is equal to 0, user u cannot participate to
the r-th round of the consensus algorithm. Otherwise, voteu
gives u the right to belong to the committee of round r, and
represents the weight of u’s vote during round r. Specifically,
let voteu be the random variable representing the voting weight
of UTXO < sku, pku > as computed by function DRAW.
Random variable voteu has a binomial distribution B(wu, p)
where probability p is equal to τ/W . The probability that
UTXO < sku, pku > is selected is thus 1−(1− τ

W )wu . These
random variables being independent, whatever the sub-division
w1 + w2 = w of w, the distribution of the weight associated
with w is the same as the sum of the weight associated with
w1 and w2: B(w, p) = B(w1, p) + B(w2, p). This guarantees
that an adversary has no advantage in launching a Sybil attack:
an adversary can create as many accounts as he wants, what
will influence the probability of winning is the total amount
of stake, not the number of accounts.

Function VERIFYDRAW is a public function that allows
each user to verify the legitimacy of UTXO < sku, pku >
to get a voting weight vote. This function is similar to DRAW
except that it is called with the public key pku of the UTXO
and proof πu.

Any honest 1 user of the system invokes the Merged-
Consensus algorithm (invocation of Propose() with the set
of locally pending valid transactions 2), but participation to
round r, r ≥ 0, depends on the outcome of the Draw function.

1Recall that we cannot compel Byzantine user to follow the protocol.
2We can legitimately talk about the validity of a transaction. A transaction

is valid if none of its referenced UTXOs have already been spent in some
transactions belonging to a previous decision value, i.e., in a block belonging
to the blockchain.



The following parameters are public knowledge: the seed of
the current instance of the consensus, the expected number
of stake τ selected by the lottery, the total amount of stake
W in the system, µ ∈ (0, 1), and λ ∈ (0, 1) whose values
are analyzed in the full version of the paper. From above, in
expectation, for each round r, τ stakes are randomly selected
among the W stakes of the system.

The Merged-Consensus algorithm is made of a succession
of rounds r = 0, 1, . . . During round r = 0, committee mem-
bers (i.e., those that successfully passed the DRAW function for
round r = 0) propose their sets of pending transactions T by
broadcasting the message mu = 〈⊥, 0, (pku, πu), Tu, ∅, voteu〉
to all the users. In rounds r > 0, committee members collect
and merge proposed transactions. Each round r > 0 is made
of the following two steps: collect of broadcast messages,
and construction of the final set of transactions, together with
the proof that those sets of transactions have been initially
broadcast in round r = 0. The collect of broadcast messages
step consists for committee members of round r in collecting
sufficiently many messages broadcast during round r− 1. By
sufficiently many, we mean that the total number of votes
of the senders of these messages must be larger than µτ .
Conditions on the value of µτ are provided in the full version
of the paper. To guarantee the convergence on a unique
set of transactions with high probability, we first need to
guarantee that messages only contain transactions that have
been initially sent in round r = 0, and second we need
to prevent the adversary from withholding the transactions
it sent during round r = 0, and then progressively make
honest committee members discover them during subsequent
rounds. The first case is guaranteed by providing in message
mu a proof (data structure Mu) asserting that all collected
transactions have been initially proposed by the committee
members of the previous round, and thus by induction by those
of round r = 0. The second case is handled in round r = 2
and is detailed below. The second step consists in building
the final set of transactions. Once valid messages have been
collected, any committee member u tries to build the final set
of transactions. Specifically, if r = 1, then the preliminary final
set of transactions Tu contains the union of all the transactions
received by u during the round and variable IsF inalCnt = 0.
It may happen that all the committee members of round r = 0
broadcast the same set of transactions, in which case the
final set of transactions will not evolve anymore (Boolean
IsF inal is set to true). Set Tu together with the set of collected
messages Mu (which acts as a proof for Tu) is broadcast to
all the users (Recall that by the proof-of-eligibility property,
users determine by themselves whether they are selected as
a committee member of a given round r which explains why
any message must be broadcast to all users to be received
by the intended recipients). Round r = 2 is particular and
its objective is twofold: achieving faster convergence to the
final set of transactions and preventing the adversary from
withholding the transactions it sent during round r = 0,
and then progressively making honest committee members
discover them during subsequent rounds. This is achieved by

keeping in the final set of transactions Tu only transactions that
have received sufficiently many votes (i.e. λµτ ). Parameter
λ ∈ (0, 1) can be seen as a broadcast factor, whose value
is analyzed in the full version of the paper. As for round
r = 1, set Tu together with the set of collected messages
Mu (which acts as a proof for Tu) is broadcast to all the
users for the next round of the algorithm. Subsequent rounds
r > 2 are run until convergence to the same set of transactions
is reached. Convergence to the same final transaction occurs
when some user u receives sufficiently messages from the
previous round where IsF inal argument is set to TRUE.
Again, by sufficiently, we mean that the cumulative votes of
these messages is larger than µτ .

V. ANALYSIS

Theorem 1 (Agreement). For any honest users u and v that
respectively decide decu and decv , then decu = decv with
probability 1− ε.

Theorem 2 (Validity). Any transaction t belonging to an
honest set broadcast at round 0 will appear into the final
decision with probability 1− ε .

Theorem 3 (Termination). Our algorithm completes in a finite
number of rounds r, and r is upper bounded by rmax with
rmax = 3 (bα/λc+ 1) with probability 1− ε.

All the proofs are provided in the full version of the paper.

REFERENCES

[1] Ittai Abraham and Dahlia Malkhi. The blockchain consensus layer and
bft. Bulletin of the European Association for Theoretical Computer
Science, (123), 2017.

[2] G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi. Proofs of Space:
When Space Is of the Essence. In International Conference on Security
and Cryptography for Networks (SCN), 2014.

[3] D. Bernardo, Peter Gaži, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-
stake blockchain. In International Conference on the Theory and
Applications of Cryptographic (EUROCRYPT), 2018.

[4] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1988.

[5] A. Durand, E. Anceaume, and R. Ludinard. Stakecube: Combining
sharding and proof-of-stake to build fork-free secure permissionless
distributed ledgers. In Proceedings of the International Conference on
Networked Systems (NETYS), 2019.

[6] EOS.IO. Technical white paper v2, 2019. Accessed: 2019-03-10.
[7] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-

olai Zeldovich. Algorand: Scaling byzantine agreements for cryptocur-
rencies. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP), SOSP 17, page 5168, New York, NY, USA, 2017.
Association for Computing Machinery.

[8] Intel. Hyperledger Sawtooth description, 2019. Accessed: 2019-03-10.
[9] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In

40th Annual Symposium on Foundations of Computer Science, 1999.
[10] Tal Moran and Ilan Orlov. Proofs of space-time and rational proofs of

storage. In Cryptology ePrint Archive, Report 2016/035, 2016.
[11] S.Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

www.bitcoin.org, 2008.


	Introduction
	System assumptions
	The addressed problem: the Merged-Consensus
	Main principles of our Merged-Consensus algorithm
	Analysis
	References

