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ABSTRACT 

 We studied the morphology of linear particle deposits obtained by inkjet-printing of silica 

nanoparticle suspension in drying condition where contact line depinning occurs. We show that 

this evaporation mode can be obtained by adjusting the particle concentration in different solvents. 

For isolated drops, deposited manually or by inkjet printing, drying induces the formation of two 

concentric rings in which particles self-assemble into a monolayer. For fused drops, our main result 

is that stable rivulets could be formed by drop overlap leading, after drying, to the formation of 

three parallel lines composed of a self-assembled particle monolayer. The three lines are of 

homogeneous thickness with two very thin outer lines ( 1 µm width) and a wider central line ( 

20 µm width). We reveal how the width of the resulting lines is influenced by drop spacing in a 

predictable manner for a large experimental window knowing the drop size. 
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 The drying of a drop of particle dispersion in open air on a solid substrate leads to a solid 

deposit which can take different forms such as coffee ring, stick-slip pattern, dot-like pattern or 

even uniform pattern.1 This evaporative process is at the basis of a large number of coating 

applications.2 Although uniform deposits have been mostly targeted so far, the formation of non-

uniform deposits has nevertheless also been aimed in recent years. In the biomedical field, several 

studies tried to establish a relationship between certain pathological conditions and the shape of 

the deposit obtained by drying a biofluid.3,4 Furthermore, the formation of coffee rings composed 

of metal nanoparticles in compact packing enabled the formation of Surface-Enhanced Raman 

Scattering sensors5,6 or of conductive micrometric domains without post-annealing step.7 The latter 

result has been exploited in the field of inkjet printing to quickly produce conductive lines of 

micrometric width with commercial ink-jet printer using nozzle with a diameter of 75 μm.8–11 The 

method consists in depositing individual drops of nanoparticle dispersion on a surface with a 

droplet spacing allowing their coalescence to form stable liquid rivulets12,13 that become a pair of 

solid “twin lines” after solvent evaporation and particle self-assembly at the pinned contact line.14 

This method is a simple alternative for forming nanostructures with high spatial resolution without 

the need for nozzle design or the application of an external electric field between the nozzle and 

substrate.15 It has been shown experimentally that the width of a single line (w) can be minimized, 

down to 2 µm, by minimizing the drop size (D) knowing that 𝑤 ∝ 𝐷 for individual drops.16 

Qualitatively, this relation reflects that the solute initially dispersed in the drop, of volume 

proportional to D3, is finally deposited in the external ring whose volume is proportional to Dw2 so 

that 𝑤 ∝ 𝐷. Given the limited range of individual drop size (i.e. 20-80 µm), w can be further 

minimized by increasing the drop spacing to the limit of ‘stable’ coalescence,13 increasing the 

temperature to speed up evaporation17 and/or increasing the advancing contact angle.18  

Surprisingly, past studies have given little consideration to the effect of particle concentration and 

have been only focused on the formation of twin lines resulting from an evaporation process where 

the contact line is always pinned. The purpose of the present work is to show that the morphology 

and dimensional characteristics of linear solid deposits can be modified by changing the 

evaporation mode. Our main result is that, 3 parallel and continuous lines, composed of particles 

in compact packing, with wmin ≈ 1.4 µm and an inter-line spacing, d, down to 10 µm, could be 

obtained by choosing experimental conditions that allow contact line depinning during drying to 
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form a central deposit between the external twin lines classically obtained by a "coffee ring" 

approach (Figure 1).  

 
Figure 1. Naïve scheme of the inkjet printing process with (a) a cross-sectional view and (b) a top 

view for drop spacing (Δx) higher than sessile drop diameter (D). (c) Top view before and after 

drying for Δx ≤ D. 

 

 As a case study, we considered cationic silica nanoparticles, noted SiNP, (Klebosol® from 

Merck) and a smooth gold substrate coated by a self-assembled monolayer of 11-

mercaptoundecanoic acid (HS(CH2)10CO2H). The ink was prepared by dispersing SiNP in a solvent 

mixture composed of milliQ water, ethanol (99.9 %, Sigma-Aldrich), n-propanol (99.9 %, Sigma-

Aldrich), and ethylene glycol (99.9 %, Sigma-Aldrich). The proportion of the different solvents 

was fixed in our experiment mixture as follows: water (48 vol.%), ethyleneglycol (32 vol.%), n-

propanol (10 vol.%) and ethanol (10 vol.%). We choose this composition to improve the printing 

quality with our commercial inkjet printer based on the results of Kim et al.9 The main 

characteristics of the different components of the system are given in the table 1. We used a Dimatix 

DMP-2800 printer with platen and cartridge temperature fixed at 30 °C. 10 pL cartridges and 20 

µm nozzles were used and printing was carried out using a drop-spacing of 20 to 40 μm and a drop 

velocity of 7 m/s. Additional information concerning materials and methods are given in 

supplementary material. 

SiNP 

R 

nm 
ζ 

mV Ink 

ΦNP 

vol.% 

η 

mPa.s 
γ 

mN.m-1 AuSub 

Rms 

nm 
Θ 

° 

37.5 50 0.4 3.4 35 2.8 60 

Table 1. Main characteristics of the nanoparticles, ink and substrate used in this study with their acronym: 

particle radius measured by SEM-FEG (R), particle zeta potential (ζ) measured by Laser Doppler 

velocimetry, particle volumic fraction (ΦNP), ink dynamic viscosity at a shear rate of 2.5 s-1, as measured 

with a cone (D = 4.8 cm) and plate geometry, surface tension (γ) of the inks measured with a Aqua Pi Kibron 

needle tensiometer, RMS roughness measured by AFM (Rms) and static contact angle measured with a 

Krüss DSA100 apparatus. All measurements were done at ambient condition (T = 25 °C and relative 

humidity  40 %). 
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 We first observed dry patterns obtained by drying simple aqueous SiNP dispersion on the 

gold substrates in open air for particle initial concentrations varying between 0.01 and 100 g/L (i.e. 

4.10-4 ≤ Φ (vol.%) ≤ 4). In this preliminary study, we deposited 0.5 µL using a manual micropipette 

in the cleanroom (25 °C, 40 % of relative humidity). Figure 2 shows typical images of the dry 

patterns obtained with a scanning electronic microscope equipped with a field emission gun (SEM-

FEG). 

 
Figure 2. Typical SEM-FEG images at different magnifications of the dry patterns formed after the 

evaporation of sessile drops manually deposited (V = 0.5 μL) of SiNP suspensions at different initial 

concentrations as indicated. The scale bar is the same for all images in the top line. The images in the bottom 

line are enlargements of the image just above in the area of the external ring. 

 

We have reproducibly observed a concentration-controlled shape transition sequence with different 

batches of particles and substrates. At low concentration, particles deposited preferentially in the 

center of the initial imprint of the drop, forming dot-like patterns. When particle concentration 

increased, particles started depositing at the drop periphery, forming a thick ring pattern, and finally 

a deposition over the entire surface was observed at high concentration.  

In the dilute domain (i.e. [SiNP] ≤ 0.04 ± 0.01 g/L), noted 1 in figure 2, the dot-like pattern is 

composed of a continuous domain of particles compacted in a monolayer with holes reminiscent 

of “spinodal dewetting” surface patterns. A transition of pattern morphology toward ‘thick’ ring 

patterns occurred when the particle concentration is in the 0.05-0.10 g/L range (i.e. Φvol. ≈ 2.10-3-

Discontinuous CrackedContinuous & Uncracked
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4.10-3 %). The patterns observed in this domain 2 present a peculiar structure taking the form of a 

thick ring whose outer diameter is much smaller than the diameter of the initial deposited droplet. 

The disk situated at the center of the thick ring is free of particles, whereas fine satellite rings could 

be detected beyond the outer edge. In these two first domains of concentration, the presence of 

concentric rings reflect a stick-clip evaporation process.1,19 When the concentration is further 

increased we enter in the domain 3 where the ring widens until it reaches the initial edge of the 

initially placed drop for [SiNP]  0.3 g/L (i.e. Φvol. ≈ 1.210-2 %). Beyond this concentration, the 

central disc, which until then had remained empty of particles is progressively covered with a 

monolayer of particles. The surface is completely covered from [SiNP]  10 g/L (i.e. Φvol. ≈ 0.4 

%). A ring of particles with an outer diameter corresponding to the initial diameter of the deposited 

drop was observed regardless of the particle concentration. This external ring is always separated 

from the rest of the deposit. As expected from previous studies, the width (w) of this external ring 

increases according to a power law with the particle concentration going from a fine deposit of a 

few particles wide (domain 1), to a compact multi-layer assembly (domains 2 & 3) and finally a 

compact, but cracked, assembly at high concentration (domain 4).  

 Most of previous ‘inkjet’ experiments on the formation of twinned lines by the so called 

“evaporation-driven convective particle self-assembly” were done in a concentration domain 

similar to the domain 3 where particles are packed in a continuous external ring without cracks.  

To the best of our knowledge, the domain 2 has never been the subject of studies in the inkjet 

printing field. However, the particle assembly observed in this domain meets several important 

criteria from an application point of view (i.e. continuous domain, particles in compact packing & 

no cracks) with a minimum quantity of particles, which is interesting considering the price of inks. 

Obviously, drying a 0.5 µL drop of water is different from drying a 10 pL drop of solvent mixture 

sprayed at  7 m.s-1 by a moving print head. Nevertheless, we were able to obtain inkjet deposits 

with a morphology similar to that obtained by manual deposition in the domain of concentration 

n°2. To do this we had to print with a drop-to-drop spacing (Δx) higher than the drop size (Figure 

1b) and at a much higher particles concentration, around 10 g/L.  

As shown in figure 3a, nice circular patterns were obtained repeatedly with diameters of 47 µm 

from measurements on SEM-FEG images. These patterns are composed of an external ring of 

width 1.2 µm and a central ring, which is not always circular, of average diameter 25 µm. Zooming 
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in on the patterns, we observed that the particles in the central ring form a compact monolayer 

assembly with holes as in the previous case. 

The external ring is also composed of a compact monolayer assembly without holes. In contrast to 

manually deposited droplets, the central ring obtained by inkjet printing is surrounded, inside and 

outside, by small clusters of nanoparticles forming monolayer islands.  

 

 
Figure 3. (a) Typical SEM images of dry deposits from unfused droplets deposited by inkjet printing, with 

∆𝑥 > 𝐷 = 47 µ𝑚, at different magnifications. (b) Typical SEM images of dry deposits from fused droplets 

deposited by inkjet printing, with ∆𝑥 = 40 µ𝑚 < 𝐷, at different magnifications.  

 

 We then varied the drop-to-drop spacing between consecutive droplets by adjusting the 

drop frequency, f, and the translation speed, v (Figure 1a), as ∆𝑥 = 𝑣
𝑓⁄ , to form stable rivulets by 

drop overlap (i.e. ∆𝑥 ≲ 𝐷 with D, the drop size as shown in figure 1c). In this way we were able 

to form rivulets of width and length corresponding respectively to D and 𝑛 × 𝐷 with n the number 

of fused drops. After evaporation, a solid deposit of almost the same size as the rivulet is recovered 

(Figure 3b). This solid deposit consists of three continuous lines of uniform widths with two very 

thin twin lines defining the outer edges of the deposit and a thick central line. Locally, the particle 

assembly within the external lines is similar to that described above for the unfused drops with a 

width of the order of 1-2 µm. The central deposit has a diameter corresponding to the diameter of 

the central ring previously described for unfused drops. The local particle assembly is also similar 

but with a homogeneous particle density. Indeed, the only difference with the local structure 

observed for non-fused deposits is the disappearance of the diluted zone initially observed in the 

center of the rings. Small clusters of nanoparticles could be detected in between de thick central 

(a)

(b)
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lines and the fine external lines. We point out that clusters of similar structures had been previously 

observed in the case of simple twin line deposits.20,10 In addition, we have verified that working at 

a higher particle concentration, corresponding to domain 3 in figure 2, results in a drying condition 

where the contact line remains pinned in the same place until drying is complete. Under these 

conditions, we recover the solid deposits already reported in the literature, namely (i) the classic 

"coffee ring" deposit when ∆x > D and (ii) a pair of solid "twin lines" when ∆x ≲ D, as shown in 

figure S3. 

 Finally, we studied the dependence of the characteristic dimensions of the different lines 

with the drop-to-drop spacing. Regardless the drop-to-drop spacing we got three continuous lines 

of uniform widths with two very thin twin lines and a thick central line which shows the robustness 

of the three-lines deposition technique (Figure 4a).  

 
Figure 4. (a) Typical SEM-FEG images of dry deposits at different normalized drop spacing (∆𝑥̃). (b) & 

(c) Evolution of the width of the full deposit (W) and of the external lines (w) with ∆𝑥̃ respectively. (d) 

Evolution of the ratio w/W with ∆𝑥̃. The dashed lines plotted in (b), (c) & (d) indicate the values of W, w 

and w/W for unfused droplets (see Fig. 2a) respectively.  The study [10] was conducted with a dilute (1% 

wt.) aqueous dispersion of Ag particles (D = 77 nm) onto two types of glass substrates showing different 

advancing contact angles (i.e. 𝜃𝐴
𝑡𝑦𝑝𝑒 𝐼

≈ 10 ° and 𝜃𝐴
𝑡𝑦𝑝𝑒 𝐼𝐼

≈ 45 °). 

 

To compare with previous studies, we normalized the drop spacing as ∆𝑥̃ = ∆𝑥
𝐷⁄ , where D is the 

drop size which is almost equal to the width of the solid deposit (W). As shown in figures 4a and 

4b, the width of the whole deposit, W, decreases with ∆𝑥̃. The width of the external lines (w) 

follows the same trend toward the width of the unfused droplet external ring (Figure 4c). This 
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agrees with previous results on twin lines although the range of ∆𝑥̃ under study is too narrow to 

verify the theoretically expected power law.10  

Interestingly, the ratio between w and the width of the whole deposit (see Figure 4a), W, does not 

vary with ∆𝑥̃ as well as with the deposition condition (Figure 4d). Indeed,  𝑤 𝑊⁄ ≈ 0 033 for this 

study and for a previous study10 conducted with a dilute (1% wt.) aqueous dispersion of Ag 

nanoparticles (D = 77 nm) onto two types of glass substrates showing different advancing contact 

angles (i.e. 𝜃𝐴
𝑡𝑦𝑝𝑒 𝐼

≈ 10 ° and 𝜃𝐴
𝑡𝑦𝑝𝑒 𝐼𝐼

≈ 45 °). These results show that the linear evolution of w 

with D observed by Deegan et al. for isolated drops deposited manually16 applies to the case of 

fused drops deposited by inkjet printing under very different conditions (i.e. nature of 

particle/substrate, presence or not of co-solvents, particle size/concentration, shape of the deposit) 

with 𝐷~𝑊 even if not all the particles are going to settle in the external ring. Incidentally, this 

observation indicates that the thinness of the external lines obtained in this study, compared to past 

studies, would only be related to the small size of the deposited drops. This small size is probably 

related to the small nozzle size used in this study (i.e. 20 µm) compared to 10. 

The width of the central deposit also decreases but the quantification of this variation is made 

difficult by the diffuse nature of the edges of the central deposit. The structure of the central deposit 

at high ∆𝑥̃ suggests that the central deposit results of a percolation of the small clusters of 

nanoparticles forming isolated islands in the interline space.  

 

 The purpose of this work was to show how the morphology and dimensional characteristics 

of linear solid deposits obtained by inkjet-printing of a nanoparticle suspension can be modified by 

considering drying condition where contact line depinning occurs. We show that such mode of 

evaporation can be achieved by minimizing particle concentration with pure water and a solvent 

mixture (i.e. water/ethyleneglycol/n-propanol/ethanol). We selected a peculiar particle 

concentration which, after drying of an isolated drop, forms two concentric rings in which the 

particles assemble in a continuous and compact monolayer. Our main result is that stable rivulets 

could be formed by drop overlap leading to the formation of three continuous lines of uniform 

widths after drying with two thin lines (1 µm width) defining the outer edges of the deposit and a 

thick central line. We reveal how the width of the resulting lines is influenced by drop-to-drop 

spacing in a predictable manner for a large experimental window knowing the drop size. 
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We believe that our results offer new possibilities toward the realization of nano/microperiodic 

structures for next generation plasmonic and electronic based set-up by combination of self-

assembly and inkjet-printing. Our study also highlights the interest of studying more systematically 

the mechanisms of non-uniform pattern formation from dried inkjet-printed rivulets of nanoparticle 

dispersion by taking the example of what has been undertaken over the last 20 years on the subject 

of individual drop drying. 
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Description of the materials and methods associated to Table 1. 

 

REFERENCES 

(1)  Parsa, M.; Harmand, S.; Sefiane, K. Mechanisms of Pattern Formation from Dried Sessile 

Drops. Advances in Colloid and Interface Science 2018, 254, 22–47. 

https://doi.org/10.1016/j.cis.2018.03.007. 

(2)  Zang, D.; Tarafdar, S.; Tarasevich, Y. Y.; Dutta Choudhury, M.; Dutta, T. Evaporation of a 

Droplet: From Physics to Applications. Physics Reports 2019, 804, 1–56. 

https://doi.org/10.1016/j.physrep.2019.01.008. 

(3)  Sefiane, K. On the Formation of Regular Patterns from Drying Droplets and Their 

Potential Use for Bio-Medical Applications. Journal of Bionic Engineering 2010, 7 (S4), 

S82–S93. https://doi.org/10.1016/S1672-6529(09)60221-3. 

(4)  Devineau, S.; Anyfantakis, M.; Marichal, L.; Kiger, L.; Morel, M.; Rudiuk, S.; Baigl, D. 

Protein Adsorption and Reorganization on Nanoparticles Probed by the Coffee-Ring 

Effect: Application to Single Point Mutation Detection. Journal of the American Chemical 

Society 2016, 138 (36), 11623–11632. https://doi.org/10.1021/jacs.6b04833. 



11 
 

(5)  Wang, W.; Yin, Y.; Tan, Z.; Liu, J. Coffee-Ring Effect-Based Simultaneous SERS 

Substrate Fabrication and Analyte Enrichment for Trace Analysis. Nanoscale 2014, 6 (16), 

9588. https://doi.org/10.1039/C4NR03198A. 

(6)  Xu, J.; Du, J.; Jing, C.; Zhang, Y.; Cui, J. Facile Detection of Polycyclic Aromatic 

Hydrocarbons by a Surface-Enhanced Raman Scattering Sensor Based on the Au Coffee 

Ring Effect. ACS Applied Materials & Interfaces 2014, 6 (9), 6891–6897. 

https://doi.org/10.1021/am500705a. 

(7)  Magdassi, S.; Grouchko, M.; Toker, D.; Kamyshny, A.; Balberg, I.; Millo, O. Ring Stain 

Effect at Room Temperature in Silver Nanoparticles Yields High Electrical Conductivity. 

Langmuir 2005, 21 (23), 10264–10267. https://doi.org/10.1021/la0509044. 

(8)  Cuk, T.; Troian, S. M.; Hong, C. M.; Wagner, S. Using Convective Flow Splitting for the 

Direct Printing of Fine Copper Lines. Applied Physics Letters 2000, 77 (13), 2063–2065. 

https://doi.org/10.1063/1.1311954. 

(9)  Kim, D.; Jeong, S.; Park, B. K.; Moon, J. Direct Writing of Silver Conductive Patterns: 

Improvement of Film Morphology and Conductance by Controlling Solvent Compositions. 

Applied Physics Letters 2006, 89 (26), 264101. https://doi.org/10.1063/1.2424671. 

(10)  Bromberg, V.; Ma, S.; Singler, T. J. High-Resolution Inkjet Printing of Electrically 

Conducting Lines of Silver Nanoparticles by Edge-Enhanced Twin-Line Deposition. 

Applied Physics Letters 2013, 102 (21), 214101. https://doi.org/10.1063/1.4807782. 

(11)  Zhang, Z.; Zhang, X.; Xin, Z.; Deng, M.; Wen, Y.; Song, Y. Controlled Inkjetting of a 

Conductive Pattern of Silver Nanoparticles Based on the Coffee-Ring Effect. Advanced 

Materials 2013, 25 (46), 6714–6718. https://doi.org/10.1002/adma.201303278. 

(12)  Duineveld, P. C. The Stability of Ink-Jet Printed Lines of Liquid with Zero Receding 

Contact Angle on a Homogeneous Substrate. Journal of Fluid Mechanics 2003, 477. 

https://doi.org/10.1017/S0022112002003117. 

(13)  Stringer, J.; Derby, B. Formation and Stability of Lines Produced by Inkjet Printing. 

Langmuir 2010, 26 (12), 10365–10372. https://doi.org/10.1021/la101296e. 

(14)  Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary 

Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature 1997, 389 (6653), 827–

829. https://doi.org/10.1038/39827. 

(15)  Kuang, M.; Wang, L.; Song, Y. Controllable Printing Droplets for High-Resolution 

Patterns. Advanced Materials 2014, 26 (40), 6950–6958. 

https://doi.org/10.1002/adma.201305416. 

(16)  Deegan, R. D. Pattern Formation in Drying Drops. Physical Review E 2000, 61 (1), 475–

485. https://doi.org/10.1103/PhysRevE.61.475. 

(17)  Dinh, N. T.; Sowade, E.; Blaudeck, T.; Hermann, S.; Rodriguez, R. D.; Zahn, D. R. T.; 

Schulz, S. E.; Baumann, R. R.; Kanoun, O. High-Resolution Inkjet Printing of Conductive 

Carbon Nanotube Twin Lines Utilizing Evaporation-Driven Self-Assembly. Carbon 2016, 

96, 382–393. https://doi.org/10.1016/j.carbon.2015.09.072. 

(18)  Liu, L.; Pei, Y.; Ma, S.; Sun, X.; Singler, T. J. Inkjet Printing Controllable Polydopamine 

Nanoparticle Line Array for Transparent and Flexible Touch‐Sensing Application. 

Advanced Engineering Materials 2020, 1901351. 

https://doi.org/10.1002/adem.201901351. 

(19)  Wu, M.; Man, X.; Doi, M. Multi-Ring Deposition Pattern of Drying Droplets. Langmuir 

2018, 34 (32), 9572–9578. https://doi.org/10.1021/acs.langmuir.8b01655. 



12 
 

(20)  Park, J.; Moon, J. Control of Colloidal Particle Deposit Patterns within Picoliter Droplets 

Ejected by Ink-Jet Printing. Langmuir 2006, 22 (8), 3506–3513. 

https://doi.org/10.1021/la053450j. 

 


