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Abstract
Tropical algebra emerges in many fields of mathematics such as algebraic geometry,
mathematical physics and combinatorial optimization. In part, its importance is related
to the fact that it makes various parameters of mathematical objects computationally
accessible. Tropical polynomials play a fundamental role in this, especially for the case
of algebraic geometry. On the other hand, many algebraic questions behind tropical
polynomials remain open. In this paper, we address four basic questions on tropical
polynomials closely related to their computational properties:

1. Given a polynomial with a certain support (set of monomials) and a (finite) set of
inputs, when is it possible for the polynomial to vanish on all these inputs?

2. A more precise question, given a polynomial with a certain support and a (finite)
set of inputs, how many roots can this polynomial have on this set of inputs?

3. Given an integer k, for which s there is a set of s inputs such that any nonzero
polynomial with at most k monomials has a non-root among these inputs?

4. How many integer roots can have a one variable polynomial given by a tropical
algebraic circuit?

In the classical algebra well-known results in the direction of these questions are
Combinatorial Nullstellensatz due to N. Alon, J. Schwartz–R. Zippel Lemma and
Universal Testing Set for sparse polynomials, respectively. The classical analog of the
last question is known as τ -conjecture due to M. Shub–S. Smale. In this paper, we
provide results on these four questions for tropical polynomials.
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1 Introduction

Amax-plus or a tropical semiring is defined by a setK, which can beR orQ endowed
with two operations, the tropical addition⊕ and the tropical multiplication�, defined
in the following way:

x ⊕ y = max (x, y) , x � y = x + y.

Tropical polynomials are a natural analog of classical polynomials. In classical
terms, a tropical polynomial is an expression of the form f (�x) = maxi Mi (�x), where
eachMi (�x) is a linear polynomial (a tropicalmonomial) in variables �x = (x1, . . . , xn),
and all the coefficients of all Mi ’s are nonnegative integers except for constant terms
that can be any elements of K (the constant term corresponds to a coefficient of the
tropical monomial, and other coefficients correspond to the powers of variables in the
tropical monomial).

The degree of a tropical monomial M is the sum of its coefficients (except the
constant term), and the degree of a tropical polynomial f denoted by deg( f ) is the
maximal degree of its monomials. A point �a ∈ K

n is a root of the polynomial f if
the maximum maxi {Mi (�a)} is attained on at least two different monomials Mi . The
detailed definitions on the basics of max-plus algebra are provided in Preliminaries.

Tropical polynomials have appeared in various areas of mathematics and found
many applications (see, for example, [22,23,29,30,34,41,47]). An early source of
the tropical approach was the Newton’s method for solving algebraic equations in
Newton–Puiseux series [41]. An important advantage of tropical algebra is that it
makes some properties of classical mathematical objects computationally accessible
[23,29,41,43]: on the one hand, tropical analogs reflect certain properties of classical
objects, and on the other hand, tropical objects have much more simple and discrete
structure and thus are more accessible to algorithms. One of the main goals of max-
plus mathematics is to build a theory of tropical polynomials which would help to
work with them and would possibly lead to new results in related areas. Computa-
tional applications, on the other hand, make it important to keep the theory maximally
computationally efficient.

The case studied best so far is the one of the tropical linear polynomials and systems
of tropical linear polynomials. For them, an analog of a large part of the classical
theory of linear polynomials was established. This includes studies of tropical analogs
of the rank of a matrix and the independence of vectors [1,13,24], an analog of the
determinant of a matrix and its properties [1,13,14], an analog of Gauss triangular
form [14]. Also the solvability problem for tropical linear systems was studied from
the complexity point of view. Interestingly, this problem turns out to be polynomially
equivalent to the mean payoff games problem [2,16] which received considerable
attention in computational complexity theory.

For tropical polynomials of arbitrary degree, less is known. In [38], the radical of
a tropical ideal was explicitly described. In [34,40], a tropical version of the Bezout
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theorem was proved for tropical polynomial systems for the case when the number
of polynomials in the system is equal to the number of variables. In [12], the Bezout
bound was extended to systems with an arbitrary number of polynomials. In [18], the
tropical analog of Hilbert’s Nullstellensatz was established. In [7], a bound on the
number of nondegenerate roots of a system of sparse tropical polynomials was given.
In [43], it was shown that the solvability problem for tropical polynomial systems is
NP-complete.

Our results In this paper, we address several basic questions for tropical polynomials.
The first question we address is given a set S of points inRn and a set of monomials

of n variables, is there a tropical polynomial with these monomials that has roots in
all the points of the set. In the classical case, a famous result in this direction with
numerous applications in Theoretical Computer Science and in Number Theory is the
Combinatorial Nullstellensatz [4]. Very roughly, it states that the set of monomials of
a polynomial can be substantially larger than the set S of the points, and at the same
time, the polynomial is still nonzero on at least one of the points in S. In the tropical
case, we show that this is not the case: if the number of monomials is larger than the
number of points, there is always a polynomial with roots in all the points.We establish
the general criterion for existence of a polynomial on a given set of monomials with
roots in all the points of a given set (Theorem 1). From this criterion, we deduce that
if the number of points is equal to the number of monomials, and the set of points
and the set of monomials are structured in the same way (more specifically, these sets
augmented with coordinate-wise order are isomorphic), then there is no polynomial
with roots in all the points (Theorem 2).We note that the last statement for the classical
case is an open question [35].

There is onemore notable difference in our version ofCombinatorialNullstellensatz
compared to the classical case. In the classical version, an important technical assump-
tion in the theorem is that a certain large degree monomial occurs in the polynomial.
Without this assumption, the classical theorem is not true: there might be a polynomial
with zeros in all points of a certain set and with a small number of monomials. In the
tropical case, on the other hand once the polynomial has roots in some set of points,
we can add any monomials to this polynomial without reducing the number of zeros.

The second question is given a finite set T ⊆ R how many roots can a tropical
polynomial of n variables and degree d have in the set T n? In the classical case,
the well-known Schwartz–Zippel Lemma [36,48] states that the maximal number of
roots is d|T |n−1. We show that in the tropical case the maximal possible number
of roots is |T |n − (|T | − d)n (Theorem 3). We note that this result can be viewed
as a generalization and improvement in isolation lemma of Mulmuley, Vazirani and
Vazirani [10,26,32,42]. In particular, we prove a more precise version of a technical
result in [26, Lemma 4]. The paper [42] proves the same upper bound as in our result
for the special case of d = 1.

The third question is related to a universal testing set for tropical polynomials
of n variables with at most k monomials. A universal testing set is a set of points
S ⊆ K

n such that any nontrivial polynomial with at most k monomials has a non-
root in one of the points of S. The problem is to find a minimal size of a universal
testing set for given n and k. In the classical case, this problem is tightly related to the
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problem of interpolating a polynomial with a certain number of monomials (with a
priori unknown support) given its values on some universal set of inputs. The classical
problem was studied in [6,15,19,25], and the minimal size of the universal testing
set for the classical case turns out to be equal to k, in particular, independent from n
(while for the interpolation problem the size is 2k). In the tropical case, it turns out
that the answer depends on which tropical semiring K is considered: for K = R, we
show that as in the classical case the minimal size of a universal testing set is equal
to k (Theorem 4). For K = Q, it turns out that the minimal size of a universal testing
set is substantially larger. We show that its size is Θ(kn) (Theorems 5 and 7 ; the
constants in Θ do not depend on k and n).1 For n = 2, we find the precise size of
a minimal universal testing set s = 2k − 1 (Theorems 6 and 9). For greater n, the
precise minimal size of a universal testing set remains unclear. Finally, we establish an
interesting connection of this problem to the following problem in discrete geometry:
what is theminimal number of disjoint convex polytopes in n-dimensional space that is
enough to cover any set of s points in such a way that all s points are on the boundaries
of the polytopes (Theorem 8 and Corollary 2 and Lemma 4).

The fourth question is related to the number of integer roots of a single-variable
polynomial computed by an algebraic circuit. In the classical case, a well-known
τ -conjecture states that the number of integer roots of a single-variable polynomial
computed by an algebraic circuit is upper bounded by a polynomial in the size of the
circuit [8,37,39] (see [27,28] for some recent developments). The positive answer to
this conjecture would imply an algebraic version of P �= NP statement. The conjecture
is open even for the case of algebraic formulae. We address a tropical analog of
this conjecture. Interestingly, in the tropical case the answer is different for tropical
formulae and tropical circuits. We observe that if a tropical polynomial of one variable
is computed by a tropical formula, then the number of roots of this polynomial is
upper bounded by the size of the formula (Lemma 8). On the other hand, we show
that for circuits the tropical analog of τ -conjecture is false: there is a family of tropical
polynomials of one variable that are computable by tropical circuits of linear size and
have exponentially many integer roots (Theorem 11). For the proof of this result, we
adapt a construction from [31].

The rest of the paper is organized as follows: In Sect. 2, we introduce necessary
definitions and notations. In Sect. 3, we give the results on a tropical analog of Com-
binatorial Nullstellensatz. In Sect. 4, we prove a tropical analog of Schwartz–Zippel
Lemma. In Sect. 5, we give the bounds on tropical universal sets. In Sect. 6, we prove
results on the tropical analog of τ -conjecture.

2 Preliminaries

A max-plus or a tropical semiring is defined by a set K (which we take to be R or Q
in the present paper) endowed with two operations, the tropical addition ⊕ and the
tropical multiplication �, defined in the following way:

1 For two nonnegative real-valued functions f (k, n) and g(n, k), the notation f = Θ(g) means that there
are positive constants c and C such that c f (k, n) ≤ g(k, n) ≤ C f (k, n) for all k and n.

123

Author's personal copy



Foundations of Computational Mathematics (2020) 20:753–781 757

x ⊕ y = max{x, y}, x � y = x + y.

A tropical (or max-plus) monomial in variables �x = (x1, . . . , xn) is defined as

m(�x) = c � x�i1
1 � · · · � x�in

n , (1)

where c is an element of the semiring K and i1, . . . , in are nonnegative integers. In
the usual notation, the monomial is the linear function

m(�x) = c + i1x1 + · · · + inxn .

For �x = (x1, . . . , xn) and I = (i1, . . . , in), we introduce the notation

�x I = x�i1
1 � · · · � x�in

n = i1x1 + · · · + inxn .

The degree of the monomial m is defined as the sum i1 +· · ·+ in . We denote this sum
by |I |.

A tropical polynomial is the tropical sum of tropical monomials

p(�x) =
⊕

i

mi (�x)

or in the usual notation p(�x) = maxi mi (�x). The degree of the tropical polynomial
p denoted by deg(p) is the maximal degree of its monomials. A point �a ∈ K

n is
a root of the polynomial p if the maximum maxi {mi (�a)} is attained on at least two
distinct monomials among mi (see, e.g., [34] for the motivation of this definition).
A polynomial p vanishes on the set S ⊆ K

n if all the points of S are roots of p. A
polynomial p is vanishing identically if it has no monomials.

Geometrically, a tropical polynomial p(�x) is a convex piecewise linear function
and the roots of p are non-smoothness points of this function.

By the product of two tropical polynomials p(�x) = ⊕
i mi (�x) and q(�x)

= ⊕
j m

′
j (�x), we naturally call a tropical polynomial p � q that has as monomi-

als tropical products mi (�x) � m′
j (�x) for all i, j . We will make use of the following

simple observation.

Lemma 1 A point �a ∈ K
n is a root of p � q iff it is a root of p(�x) or q(�x).

Proof Suppose �a is a root of p. Let mi1(�x),mi2(�x) be two distinct monomials of p
such that mi1(�a) = mi2(�a) = maxi mi (�a). Let m′

j1
(�x) be a monomial of q such that

m′
j1
(�a) = max j m′

j (�a). Then mi1 �m′
j1
and mi2 �m′

j1
are two distinct monomials of

p�q with themaximal value on �a among all themonomials of p�q. The symmetrical
argument shows that any root of q is a root of p � q.

Iff �a is not a root neither of p nor of q, then there are unique i1 and j1 such that
mi1(�a) = maxi mi (�a) and m′

j1
(�a) = max j m′

j (�a). Then the maximal value on �a
among all the monomials of p � q is attained on a single monomial mi1 � m′

j1
, and

thus, �a is not a root of p � q. 
�
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For two vectors �a, �b ∈ R
n throughout the paper, we will denote by 〈�a, �b〉 their inner

product.

3 Tropical Combinatorial Nullstellensatz

For a polynomial p, denote by Supp(p) the set of all J = ( j1, . . . , jn) such that the
monomial �x J occurs in p.

Consider two finite sets S, R ⊆ R
n such that |S| = |R|. We call S and R non-

singular if there is a bijection f : S → R such that
∑

x∈S〈�x, f (�x)〉 is greater than the
corresponding sum for all other bijections from S to R. Otherwise, we say that R and
S are singular. Note that the notion of singularity is symmetrical.

First we formulate a general criterion for vanishing polynomials with a given sup-
port.

Theorem 1 Consider a (finite) support S ⊆ N
n and a (finite) set of points R ⊆ K

n.
There are three cases.

(i) If |R| < |S|, then there is a polynomial p with support in S vanishing on R.
(ii) If |R| = |S|, then there is a polynomial p with support in S vanishing on R iff S

and R are singular.
(iii) If |R| > |S|, then there is a polynomial p with support in S vanishing on R iff

for any subset R′ ⊂ R such that |R′| = |S| we have that R′ and S are singular.

Remark 1 Before we proceed to the proof of the theorem, we observe that in Theo-
rem1(i)we can have not only a polynomial pwith Supp(p) ⊆ S, but also a polynomial
with the property Supp(p) = S. Indeed, if some monomials with exponent vector in
S are missing in Supp(p), we can add them with small enough coefficients, so that
the value of this monomial is smaller than the maximal values of monomials in p on
all points of R (recall that R is finite).

Proof Consider a polynomial

p(�x) =
⊕

J∈S
cJ � �x J

with support S. The claim that p has a root in �a ∈ R means that the maximum in

max
J∈S (cJ + 〈J , �a〉)

is attained on at least two monomials J1 and J2. Note that once S and R are fixed, this
claim is a linear tropical equation on the coefficients {cJ }J∈S of p.

The claim that p has a root in all the points of R thus means that the coefficients of
p satisfy a tropical linear system with the matrix

(〈J , �a〉)J∈S,�a∈R ∈ R
|S|×|R|.
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It is well known that if the number of rows |R| in such system is less than the number
of columns |S|, then there is always a solution (implicit in, e.g., [34, Lemma 5.1]).2

Thus, in this case there is a polynomial with roots in all the points of R.
If thematrix is square, that is, |R| = |S|, then it is known [34, Lemma 5.1] that there

is a solution iff the tropical determinant of thematrix is singular. Tropical determinant is
a tropicalization of the classical one, that is, for our matrix it is given by the expression

⊕

f : S→R

(
⊙

J∈S
〈J , f (J )〉

)
= max

f : S→R

(
∑

J∈S
〈J , f (J )〉

)
,

where f ranges over all bijections from S to R. Its singularitymeans that themaximum
is attained on at least two different monomials. This means that there are two bijections
f , g : S → R with equal maximum sum

∑
J∈S〈J , f (J )〉 = ∑

J∈S〈J , g(J )〉. Note
that this is precisely the singularity of S and R.

If the number of rows |R| in the matrix is greater than the number of columns |S|
in it, then it is known [1,13,14,24] that the system has a nontrivial solution iff the
tropical determinant of each square submatrix of size |S|× |S| is singular. This means
precisely that for any subset R′ ⊂ R such that |R′| = |S| the sets R′ and S are singular.


�
Now we will derive corollaries of this general criterion.
Suppose we have a set S ⊆ N

n . Suppose also we have a set of reals {αi
j } for

i = 1, . . . , n, j ∈ N such that for each i we have

αi
0 < αi

1 < αi
2 < · · · .

For J = ( j1, . . . , jn), we introduce the notation �αJ = (α1
j1
, . . . , αn

jn
). Consider the

set RS = {�αJ | J ∈ S}.
Remark 2 The key example for this definition is the case αi

j = j for all j and i . In
this case, RS = S. For S = N

n , this set is just the set of vertices of integer lattice in
n-dimensional space. In the general case, the set RNn is just a distorted version of this
grid, where the distortion is performed in each dimension independently.

We consider the following question. Suppose we have a polynomial p with the
support Supp(p) ⊆ S. For which sets S′ ⊆ N

n is it possible that p vanishes on RS′?
A natural question is the case of S = S′. We show the following theorem:

Theorem 2 For any S and for any nonvanishing identically tropical polynomial p such
that Supp(p) ⊆ S, there is �r ∈ RS such that �r is a non-root of p.
2 For the sake of completeness, we show how to deduce this fact from Lemma 5.1 in [34]. If the number
of rows in the system is less than the number of columns in it, we add several copies of one of equations
to make the matrix of the system square. Clearly, this square matrix is singular, and by Lemma 5.1 in [34]
(applied to the transposed matrix), the points whose coordinates form the rows of the matrix lie on some
tropical hyperplane. The coefficients of this hyperplane form a solution to our linear system.
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An interesting case of this theorem is S = {0, 1, . . . , k}n . Then the result states
that any nonzero polynomial of individual degree at most k w.r.t. each variable xi ,
i = 1, . . . , n, does not vanish on a lattice of size k + 1.

Theorems 1(i) and 2 answer some customary cases of our first question. We note
that the situation here is quite different from the classical case. The classical analog
of Theorem 2 for the case of S = ∏n

i=1{0, 1, . . . , ki } is a simple observation. In the
tropical setting, it already requires some work. On the other hand, in the classical case
it is known that for such S the domain of the polynomial can be substantially larger
than S and still the polynomial remains nonvanishing on RS (see Combinatorial Null-
stellensatz [4]). In tropical case, however, if we extend the domain of the polynomial
even by one extra monomial, then due to Theorem 1(i) there is a vanishing nonzero
polynomial.

In the proof of Theorem 2, we will use the following simple technical lemma that
is essentially from [21, p. 261]. We provide a proof for the sake of completeness.

Lemma 2 Consider two sequences of reals v1 ≤ v2 ≤ · · · ≤ vl and u1 ≤ u2 ≤ · · · ≤
ul . Consider any permutation σ ∈ Syml on l element set. Then

∑

i

vi ui ≥
∑

i

vi uσ(i).

Moreover, the inequality is strict iff there are i, j such that vi < v j , uσ( j) < uσ(i).

Proof We count the number of inversions in σ : D = |{(i, j) | i < j, σ ( j) < σ(i)}|.
We show the lemma by induction on D. For the step of induction, we pick one inversion
(i, j) and swap it. We observe that by this we do not introduce new inversions.

We then use the following observation: if a ≤ b and c ≤ d, then

bd + ac ≥ bc + da.

This inequality holds since it is equivalent to (b − a)(d − c) ≥ 0.
We also observe that the inequality is strict iff both inequalities a ≤ b and c ≤ d

are strict.
So, after the swap of i and j the sum in the statement of the lemma does not

decrease. Thus, the inequality follows.
To prove the second part of the lemma, if there is a pair i, j as stated in the lemma,

just switch i and j on the first step. By this, we get the strict inequality. If there is no
such a pair i, j , note that we do not introduce one during the process above since we
do not introduce new inversions. 
�
Proof of Theorem 2 ByTheorem 1, it is enough to show that S and RS are non-singular.

Consider the bijection f : S → RS given by f (J ) = �αJ . We claim that the
maximum over all possible bijections g of the sum

∑
J∈S〈J , g(J )〉 is attained on the

bijection f and only on it.
Consider an arbitrary bijection g : S → RS . Since RS ⊆ R

n , it is convenient to
denote g(J ) = (g1(J ), . . . , gn(J )) and f (J ) = ( f1(J ), . . . , fn(J )). Consider the
sum
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∑

J∈S
〈J , g(J )〉 =

∑

J∈S

n∑

i=1

ji gi (J ) =
n∑

i=1

∑

J∈S
ji gi (J )

We will show that for each i

∑

J∈S
ji gi (J ) ≤

∑

J∈S
ji fi (J ) (2)

and for at least one i

∑

J∈S
ji gi (J ) <

∑

J∈S
ji fi (J ) (3)

From these inequalities, the theorem follows.
Take an arbitrary i and consider projections of all the points in the set S on the i th

coordinate. Enumerate these projections in the nondecreasing order:

j1,1 = · · · = j1,k1 < j2,1 = · · · = j2,k2 < · · · < jl,1 = · · · = jl,kl .

Different points in S can have the same i th coordinate, so we split points into blocks
according to their i th coordinate. Due to the definition of RS , the projections of its
points on the i th coordinate will have the same structure:

r1,1 = · · · = r1,k1 < r2,1 = · · · = r2,k2 < · · · < rl,1 = · · · = rl,kl .

Both bijections f and g induce bijections f ′ and g′ from the sequence �j to the
sequence �r . Moreover, f induces a natural bijection: f ′( ji1,i2) = ri1,i2 . The inequal-
ity (2) thus follows from the first part of Lemma 2.

For inequality (3), note that since g �= f , there is J ∈ S such that g(J ) �= �αJ . This
means that there is i such that

gi (J ) �= αi
ji .

Thus, for the bijection induced by g on the coordinate i we have that g′( ji1,i2) = ri ′1,i ′2 ,
where i1 �= i ′1. Without loss of generality, assume that i1 < i ′1, the opposite case is
symmetrical. Consider the subsequence

�j ′ = ji ′1,1, . . . , ji ′1,ki ′1
, . . . , jl,1, . . . , jl,kl .

Since ji1,i2 is mapped by g′ into the sequence �j ′ and g′ is a bijection, there is ji3,i4 in�j ′ that is mapped outside of this sequence, that is, g( ji3,i4) = ri ′3,i ′4 , where i
′
3 < i ′1.

Denoting a = ji1,i2 and b = ji3,i4 , we obtain that a < b, but g′(a) > g′(b). By
Lemma 2, this gives inequality (3). 
�
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4 Tropical Analog of Schwartz–Zippel Lemma

Using the results of the previous section, we can prove an analog of Schwartz–Zippel
Lemma for tropical polynomials.

Theorem 3 Let S1, S2, . . . , Sn ⊆ K, denote |Si | = ki . Then, for any d ≤ mini ki the
maximal number of roots a nonvanishing identically tropical polynomial p of degree
d can have in S1 × · · · × Sn is equal to

n∏

i=1

ki −
n∏

i=1

(ki − d) .

Exactly the same statement is true for polynomials with the individual degree in each
variable at most d.

In particular, we have the following corollary.

Corollary 1 Let S ⊆ K be a set of size k. Then, for any d ≤ k the maximal number of
roots a nonvanishing identically tropical polynomial p of degree d can have in Sn is
equal to

kn − (k − d)n .

Exactly the same statement is true for polynomials with the individual degree in each
variable at most d.

Proof of Theorem 3 The upper bound is achieved on the product of d linear polyno-
mials. Indeed, denote Si = {si,1, si,2, . . . , si,ki }, where si,1 > si,2 > · · · > si,ki . For
j = 1, . . . , d denote by p j the following linear polynomial:

p j (�x) = (−s1, j � x1) ⊕ · · · ⊕ (−si, j � xi ) ⊕ · · · ⊕ (−sn, j � xn) ⊕ 0.

Observe that �a ∈ S1 × · · · × Sn is a root of p j if for some i ai = si, j and for the rest
of i we have ai ≤ si, j .

Consider a degree d polynomial p(�x) = ⊙d
j=1 p j (�x). Then from Lemma 1 we

have that �a ∈ S1 × · · · × Sn is a non-root of p iff for all i ai < si,d . Thus, the number
of non-roots of p is

∏n
i=1 (|Si | − d) . This proves the upper bound.

For the lower bound, suppose there is a polynomial p with the individual degrees d
that has more than

∏n
i=1 ki − ∏n

i=1 (ki − d) roots in S1 × · · · × Sn . Then the number
of its non-roots in this set is at most

∏n
i=1 (ki − d)−1. Denote the set of all non-roots

by R.
Consider a family of all the polynomials of the individual degree at most ki −d −1

in variable xi for all i . Then their (common) support is of size
∏n

i=1 (ki − d). Since
the size of the support is greater than R, by Theorem 1(i) there is a polynomial q with
this support that vanishes on R.

Then, by Lemma 1 the nonzero polynomial p�q vanishes on S1 ×· · ·× Sn and on
the other hand has support {0, . . . , k1 − 1} × . . . × {0, . . . , kn − 1}. This contradicts
Theorem 2. Thus, there is no such polynomial p and the theorem follows. 
�
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5 Tropical Universal Testing Set

In this section, we study the minimal size of a universal testing set for sparse tropical
polynomials. It turns out that in the tropical case there is a big difference between
testing sets over R and Q. Thus, we consider these two cases separately below.

Throughout this section, we denote by n the number of variables in the polynomials,
by k the number of monomials in them and by s the number of points in a universal
testing set.

5.1 Testing Sets OverRRR

In this section, we will show that the minimal size s of the universal testing set over
R is equal to k.

Theorem 4 For tropical polynomials overR, the minimal size s of the universal testing
set for polynomials with at most k monomials is equal to k.

Proof First of all, it follows from Theorem 1(i) that for any set of s points there is a
polynomial with an arbitrary support having k = s + 1 monomials that has roots in
all s points. Thus, the universal testing set has to contain at least as many points as
there are monomials, and we have the inequality s ≥ k.

Next we show that s ≤ k. Consider a set of s points S = {�a1, . . . , �as} ∈ R
n that

have linearly independent over Q coordinates. Suppose we have a polynomial p with
k monomials that has roots in all the points �a1, . . . , �as . We will show that k ≥ s + 1.
Thus, we will establish that S is a universal set for k = s monomials.

Suppose the monomials of p are m1, . . . ,mk , where mi (�x) = ci � �x Ji . Introduce
the notation p(�a j ) = maxi (mi (�a j )) = p j . Since a j is a root, the value p j is achieved
on at least two monomials.

Note that the monomial mi has the value p j in the point �a j iff

〈�a j , Ji 〉 + ci = p j .

Now, consider a bipartite undirected graphG. The vertices in the left part correspond
to monomials of p (k vertices). The vertices in the right part correspond to the points
in S (s vertices). We connect vertex mi in the left part to the vertex �a j in the right part
iff mi ( �a j ) = p j .

Observe that the degree of vertices in the right part is at least 2 (this means exactly
that they are roots of p).

Now, we will show that there are no cycles in G. Indeed, suppose there is a cycle.
For the sake of convenience of notation, assume the sequence of the vertices of the
cycle is

m1, �a1,m2, �a2, . . . ,ml , �al .
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Note that since the graph is bipartite, the cycle is of even length. In particular, for all
i = 1, . . . , l we have mi ( �ai ) = pi , that is,

〈�ai , Ji 〉 + ci = pi . (4)

Also for all i = 1, . . . , l we have mi+1( �ai ) = pi (for convenience of notation assume
here ml+1 = m1), that is,

〈�ai , Ji+1〉 + ci+1 = pi . (5)

Let us sum up all equations in (4) for all i = 1, . . . , l and subtract from the result all
the equations in (5). It is easy to see that all ci ’s and pi ’s will cancel out, and thus, we
will have

〈�a1, J1〉 − 〈�a1, J2〉 + 〈�a2, J2〉 − 〈�a2, J3〉 + . . . + 〈�al , Jl〉 − 〈�al , J1〉 = 0.

Since J1 �= J2, we have a nontrivial linear combination with integer coefficients of the
coordinates of vectors �a1, . . . , �al . Since the coordinates of these vectors are linearly
independent over Q, this is a contradiction. Thus, we have shown that there are no
cycles in G.

Therefore, the graphG is a forest. Consider each of the trees of the forest separately.
We will show that in each of these trees T the number L of vertices in the left part
is greater than the number R of vertices in the right part. Indeed, since the degree of
each vertex in the right side is at least 2, the number of edges in T is at least 2R. The
number of vertices in a tree is by one greater than the number of edges. Thus, there
are at least 2R + 1 vertices in T , that is,

R + L ≥ 2R + 1,

and thus, L ≥ R + 1. Since this holds for each tree, summing up these inequalities
over all the trees we have

k ≥ s + 1.

Thus, the set S is a universal set against polynomials with k = s monomials and
the theorem follows. 
�

5.2 Testing Sets OverQQQ

The main difference of the problem over the semiring Q compared to the semiring R
is that now the points of the universal set have to be rational.

In this section, we consider, somewhat more generally, tropical polynomials with
rational (possibly negative) powers of variables. We note that this does not actually
affect the questions under consideration: for each such polynomial, there is another
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polynomial with natural exponents with the same set of roots and the same number of
monomials. Indeed, suppose p is a polynomial with rational exponents. Recall that

p(�x) = max(m1(�x), . . . ,mk(�x)), (6)

wherem1, . . . ,mk are monomials. Recall that each monomial is a linear function over
�x . Note that if we multiply the whole expression (6) by some positive constant and
add the same linear form m(�x) to all monomials, the resulting polynomial will have
the same set of roots. Therefore, we can get rid of rational degrees in p by multiplying
p by large enough integer, and then, we can get rid of negative degrees by adding to
p a linear form m with large enough coefficients.

Thus, throughout this section we consider polynomials with rational exponents.
It will be convenient to state the results of this section using the following notation.

Let k(s, n) be the minimal number such that for any set S of s points in Q
n there is

a tropical polynomial on n variables with at most k(s, n) monomials having roots in
all the points of S. Note that there is a universal testing set of size s for polynomials
with k monomials iff k < k(s, n). Thus, we can easily obtain bounds on the size of
the minimal universal testing set from the bounds on k(s, n).

We start with the following upper bound on k(s, n).

Theorem 5 We have k(s, n) ≤
⌈

2s
(n+1)

⌉
+ 1.

Equivalently, for the size of theminimal universal testing set the following inequality

holds: s ≥ (k−1)(n+1)+1
2 .

We note that this theorem already shows the difference between universal testing
sets over R and Q semirings.

Proof Observe that two statements of the theorem are equivalent. Indeed, by our

definition of k(s, n) the first statement is equivalent to the inequality k <
⌈

2s
(n+1)

⌉
+1,

where s is the size of the minimal testing set for polynomials with k monomials. It
is easy to see that this is true iff s > (k − 1)(n + 1)/2. The minimal integer s for

which this inequality holds is s = � (k−1)(n+1)+1
2 �. Thus, the inequality is equivalent

to s ≥ (k−1)(n+1)+1
2 . Thus, it remains to prove the first statement of the theorem.

We will show that for any set S = {�a1, . . . , �as} ⊆ Q
n of size s there is a nontrivial

polynomial with at most k = � 2s
(n+1)�+ 1 monomials that has roots in all of the points

in S. From this, the inequalities in the theorem follow.
Throughout this proof, we will use the following standard facts about (classical)

affine functions on Q
n . 
�

Claim Suppose π is an (n − 1)-dimensional hyperplane in Q
n . Let P1 be a finite set

of points in one of the (open) halfspaces w.r.t. π and P2 be a finite set of points in the
other (open) halfspace. Let C1 and C2 be some constants. Then the following is true.

1. If �a1, . . . , �an ∈ π are points in a general position in π (that is, not lying in (n−2)-
dimension linear space) and p1, . . . , pn are some constants in Q, then there is an
affine function f on Q

n such that f (�ai ) = pi for all i , f (�x) > C1 for all �x ∈ P1
and f (�x) < C2 for all �x ∈ P2.
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2. If g is an affine function onQn , then there is another affine function f onQn such
that f (�x) = g(�x) for all �x ∈ π , f (�x) > C1 for all �x ∈ P1 and f (�x) < C2 for all
�x ∈ P2.

The proof of the theorem is by induction on s. The base is s = 0. In this case, one
monomial is enough (and is needed since we require polynomial to be nontrivial).

Consider the convex hull of points of S. Take a maximal dimension face P of this
convex hull. If S is of dimension n, then P is (n − 1)-dimensional and if S is of
dimension less than n we consider P to be just the convex hull of S. For simplicity
of notation, assume that the points from S belonging to P are �a1, . . . , �al . Consider a
((n − 1)-dimensional) hyperplane π passing through �a1, . . . , �al . Since P is a face of
the convex hull of S all the points in S′ = {�al+1, . . . , �as} lie in one (open) halfspace
w.r.t. π (if S is of dimension less than n, then l = s).

Applying the induction hypothesis, we obtain a polynomial p′(�x) = maxi m′
i (�x)

that has roots in all the points of S′. For j = 1, . . . , l introduce the notation p j =
p′(�a j ) = maxi mi (�a j ).

We consider three cases: P contains all the points of S; P contains not all the points
of S and l ≤ n; P contains not all the points of S and l > n.

If P contains all the points of S, then the polynomial p′ is obtained from the base
of induction and consists of one monomialm′

1. Recall that a monomial is just an affine
function on Q

n . Consider a new monomial m(�x) such that m(�x) = m′
1(�x) on the

hyperplane π , but m(�b) �= m′
1(

�b) for some �b /∈ π . Then the polynomial p = p′ ⊕ m
has roots in all the points of the hyperplane π and thus in all the points of S. This

polynomial has 2 ≤
⌈

2s
(n+1)

⌉
+ 1 monomials.

If P contains not all the points of S, then the dimension of P is n − 1 (indeed,
otherwise P is not a face).

If additionally l ≤ n, it follows that l = n. Thus, �a1, . . . , �an are points in the
general position in π . Thus, due to the claim above we can pick a new monomial m
such that m(�a j ) = p j for all j = 1, . . . , l and m(�a j ) < p′(�a j ) for all j > l. Then,
the polynomial p = p′ ⊕ m has roots in all the points of S. This polynomial has

1 +
⌈
2(s−n)
(n+1)

⌉
+ 1 ≤

⌈
2s

(n+1)

⌉
+ 1 monomials.

Now, if l ≥ n + 1, let p0 = max j≤l p j . Applying the claim above take a pair of
new distinct monomials m1 and m2 such that m1(�x) = m2(�x) = p0 for all �x ∈ π

and m1(�a j ),m2(�a j ) < p′(�a j ) for all j > l. Then the polynomial p = p′ ⊕m1 ⊕m2

has roots in all the points of S. This polynomial has at most 2 +
⌈
2(s−n−1)

(n+1)

⌉
+ 1

=
⌈

2s
(n+1)

⌉
+ 1 monomials.

In all three cases, we constructed a polynomial with the desired number of mono-
mials. 
�

The construction above leaves the room for improvement. For example, for the case
of n = 2 we can show the following.

Theorem 6 For n = 2, we have k(s, 2) ≤ ⌈ s
2

⌉+1. For the size of a minimal universal
set for polynomials in 2 variables, the following inequality holds: s ≥ 2(k − 1) + 1.
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Proof The proof of equivalence of two statements in the theorem is analogous to the
proof of the similar equivalence in Theorem 5.

For the proof of the first statement again, we use the same strategy as in the proof
of Theorem 5. We perform the same case analysis on the induction step. Note that in
the first two cases the step of induction works.

Thus, the only remaining case is l > 2 and P contains not all the points of S.
There is a line π in Q

2 containing points �a1, . . . , �al and such that all the points in
S \ {�a1, . . . , �al} are in one halfspace w.r.t. π . Consider the point of S \ {�a1, . . . , �al}
that is the closest one to the line π . Draw the line π ′ parallel to π through this point.
If there are several points of S on π ′, consider the one that does not lie between two
others. To simplify the notation, let this vertex be �al+1. Denote the set of remaining
vertices by S′ = {�al+2, . . . , �as}, and apply the induction hypothesis to S′. As before,
let p j = p′(�a j ).

Consider a new monomial m1 (recall that the monomial is just an affine function
on Q

2) such that m1(�al+1) = pl+1, m1(�a j ) ≤ p j for all �a j ∈ S ∩ π ′, m1(�a j ) ≤ p j

for all �a j ∈ S′ \ π and m1(�a j ) ≥ p j for all j ≤ l. Note that this is possible by
Claim 5.2 since �a1, . . . , �al and S′ \ π are situated in the opposite halfplanes w.r.t. π ′.
Finally, pick yet another new monomial m2 such that m1(�x) = m2(�x) for all �x ∈ π

and m2(�a j ) ≤ p j for all j > l. Then the polynomial p = p′ ⊕ m1 ⊕ m2 has roots in
all the points of S. This polynomial has at most

2 +
⌈
s − 4

2

⌉
+ 1 =

⌈ s
2

⌉
+ 1

monomials. 
�
Later we will show that this bound is tight.
We now proceed to lower bounds on k(s, n). We start with the following non-

constructive lower bound.

Theorem 7 We have k(s, n) ≥
⌈

s
n+1

⌉
.

Equivalently, for the minimal size of the universal testing set over Q we have
s ≤ k(n + 1) + 1.

Proof Observe that two statements of the theorem are equivalent. Indeed, by our
definition of k(s, n) the first statement is equivalent to the fact that for any k and s

if k <
⌈

s
n+1

⌉
, then there is a testing set of size s for polynomials with at most k

monomials. The inequality in this statement can be rewritten as s ≥ k(n + 1) + 1.
The statement then is equivalent to the fact that the minimal size of a testing set s for
polynomials with at most k monomials satisfies the inequality s ≤ k(n + 1) + 1.

Next we prove the first statement of the theorem. Within this proof, we will tem-
porarily switch to polynomials over R. We also for the sake of this proof generalize
powers of monomials to be real. Suppose for any set S = {�a1, . . . , �as} ∈ R

n , there is
always a polynomial with k monomials that has roots in all s points.

The set of all tuples �a1, . . . , �as of s points inRn forms an sn-dimensional space over
R. Suppose a polynomial p with monomials m1, . . . ,mk has roots in all the points
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�a1, . . . , �as . This means that on each point �a j there are two monomials that have two
equal values. By a configuration, we call an assignment to each point �a j of a pair of
monomials mi1,mi2 and a coordinate l such that mi1(�a j ) = mi2(�a j ) and the power of
xl in mi1 is greater than the power of xl in mi2 by at least 1 (we need this to ensure
thatmi1 andmi2 are distinct monomials). Any configuration is given by a set of tuples
( j, i1, i2, p), where 1 ≤ j ≤ s, 1 ≤ i1, i2 ≤ k and 1 ≤ l ≤ n, so there are finitely
many configurations.

Consider the (sn + k(n + 1))-dimensional space formed by tuples �a1, . . . , �as and
J1, c1, . . . , Jk, ck , where Ji is the vector of powers ofmi and ci is its constant term. For
each configuration, we can consider a semialgebraic set (a set given by a finite Boolean
combination of algebraic equations and inequalities) given by equations mi1(�a j )

= mi2(�a j ) and inequalities Ji1,l − Ji2,l ≥ 1 for all tuples ( j, i1, i2, l) in the con-
figuration. By our assumption, each point (�a1, . . . , �as) lies in the projection of one of
these semialgebraic sets.

Note that in each point any of these semialgebraic sets have dimension at most
k(n + 1) + s(n − 1). Indeed, we can consider the following set of local coordinates.
We include in this set all coordinates of J1, c1, . . . , Jk, ck (there are k(n+1) of them).
For each a j , we can consider the corresponding tuple ( j, i1, i2, l) and include in the set
of local coordinates all coordinates of a j except the lth coordinate. The lth coordinate
can be expressed from the others via the equation mi1(�a j ) = mi2(�a j ) thanks to the
inequality Ji1,l − Ji2,l ≥ 1.

Thus, each of our semialgebraic sets is of dimension at most k(n + 1) − s(n − 1).
By Tarski’s theorem, a projection of a semialgebraic set is also a semialgebraic set
(see, e.g., [5]) and the dimension does not increase after the projection. Thus, by our
assumption we can cover all points (�a1, . . . , �as) of sn-dimensional space by a finite
number of sets of dimension at most k(n + 1) − s(n − 1). If there is an inequality

k(n + 1) + s(n − 1) < sn

between the dimensions, this is impossible, and so there is a tuple S (overR) such that
for any polynomial p with at most k monomials there is a non-root for p in S. Our
next goal is to prove that there exists a tuple S over Q satisfying the latter property.

For this, consider our semialgebraic sets in coordinates �a1, . . . , �as and consider
their closures. These are still semialgebraic sets, and they are still of dimension a most
k(n+1)+ s(n−1). So the complement of their union inRsn (that is, nonempty due to
the inequality between dimensions) is an open set and contains each point (�a1, . . . , �as)
with a neighborhood. It remains to observe that this neighborhood contains a point
with rational coordinates. 
�

The lower bound on k(s, n) in Theorem 7 is not constructive. In the next section,
we present some constructive lower bounds. For this, we establish a connection of our
problem to certain questions in discrete geometry.
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5.3 Constructive Lower Bounds

Suppose for some set of points S = {�a1, . . . , �as} ⊆ Q
n , there is a polynomial p with

monomials m1, . . . ,mk that has roots in all the points of S.
Recall that the graph of p in (n+1)-dimensional space is a piecewise linear convex

function. Each linear piece being a polyhedron corresponds to a monomial and roots
of the polynomial are the points of non-smoothness of this function, so the roots of
p are the boundaries of these polyhedra. Consider the set of all the roots of p in Q

n .
They partition the space Qn into at most k convex (possibly unbounded) polyhedra.
Each polyhedron corresponds to one of the monomialsm and consists of all the points
�a ∈ Q

n such that m(�a) = p(�a). Note that any two of these polyhedra are separated
by a hyperplane: if the polyhedra correspond to monomials mi and m j , then the first
one lies in the halfspace mi (�x) ≤ m j (�x) and the second one lies in the halfspace
mi (�x) ≥ m j (�x).

Consider the polyhedron corresponding to themonomialmi . Consider all the points
in S that lie on its boundary and consider their convex hull. We obtain a smaller
(bounded) convex polyhedron that we will denote by Pi .

Thus, starting from pwearrive at the set of pairwise separated polyhedra P1, . . . , Pk
with vertices in S and not containing any points of S in the interior (here we consider
polyhedra in n-dimensional space and their n-dimensional interiors, that is, �a is in the
interior if its n-dimensional ε-neighborhood is contained in the polyhedron for small
enough ε > 0; it might be that some polyhedra have empty interior). The statement
that p has roots in all the points of S means that each point in S belongs to at least
two of the polyhedra P1, . . . , Pk .

Motivated by this analysis, we introduce the following definition. Given a set of s
points in n-dimensional space by a double covering of points of S by bounded convex
polyhedra, we call a collection of polyhedra P1, . . . , Pk such that they are pairwise
separated and each point in S lies on the boundary of at least two polyhedra (if a
polyhedron lies in (n − 1)-dimensional subspace itself, its boundary coincides with
the polyhedron). Here we say that the polyhedra P and Q are separated if there is a
hyperplaneπ , such that P and Q lie in different closed halfspacesw.r.t.π . In particular,
P and Q can intersect only by the points of π and thus only by their boundary. The
size of the covering is the number k of the polyhedra in it.

From the discussion above, we have that if we will construct a set S of points that
does not have a double covering of size k, it will follow that S is a universal set for k
monomials.

The similar notion of single covering has been studied in the literature [9, page 367].
Given a set of s points in n-dimensional space by a single covering of points of S by
bounded convex polyhedra, we call a collection of polyhedra P1, . . . , Pk , they are
pairwise separated, and each point in S lies on the boundary of one of the polyhedra.
The size of the single covering is the number k of the polyhedra in it.

Denote by k1(s, n) the minimal number of polyhedra that is enough to single cover
any s points in n-dimensional space. Denote by k2(s, n) the minimal number of poly-
hedra that is enough to double cover any s points in n-dimensional space.

The above analysis results in the following theorem.
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Theorem 8 k(s, n) ≥ k2(s, n) ≥ k1(s, n).

For single coverings, the following results are known. Let f (n) be the maximal
number such that any large enough n-dimensional set of points S contains a set of
f (n) points that lie on the boundary of some convex polyhedron, and on the other
hand, there are no other points in S in the interior of this polyhedron. The function
f (n) was studied but is not well understood yet. It is known [46] that the function is
at most factorial in n. We can, however, observe the following.

Lemma 3 For large enough s, we have that k1(s, n) ≥ s/ f (n).

Remark 3 We observe that our definitions of f (n) and k1(s, n) slightly differ from the
ones of [46] and [9]. On the one hand, in [46] and [9] it is required that the points in
S are in the general position. On the other hand, it is required that the points lie not
only on the boundary of the polyhedra, but in its vertices and polyhedra in the single
covering are not allowed to intersect. However, our definitions are equivalent to the
definitions of [46] and [9]. Indeed, on the one hand, our notions are not more general
for the case when the points in S are in the general position, since we can always
restrict polyhedra to their convex hulls (and in case some point is covered more than
once in the covering by polyhedra, just remove it from all of the polyhedra but one).
On the other hand, the same values of f (n) and k1(s, n) as for the points in general
position can be achieved for arbitrary set of points. Indeed, having the set S of points
not in the general position, we can move them slightly to make them to be in the
general position, find the desired polyhedra, restrict them to the convex hulls of points
they are covering and move the points back (along with their convex hulls). It is easy
to see that if the movement of points was small enough, the polyhedra will satisfy all
the desired properties (points remain on the boundary of polyhedra and the polyhedra
remain separated).

Proof of Lemma 3 Consider a large enough set of s points in general position with no
empty polyhedra of size f (n)+ 1. Then in any covering each polyhedron can contain
at most f (n) points; hence, the lower bound follows. 
�

It is known [46] that f (3) ≥ 22. Thus, we get that k1(s, 3) ≥ s/22 for large enough
s.

It is also known [45] that �s/2(log2 s + 1)� ≤ k1(s, 3) ≤ �2s/9�. For n = 2, there
are linear upper and lower bounds known [44]. For an arbitrary n in [45], an upper
bound k1(s, n) ≤ 2s/(2n + 3) is shown and k1(s, n) = �s/2n� is conjectured.

As a trivial corollary of Lemma 3, we obtain the following.

Corollary 2 For large enough s, we have that k(s, n) ≥ s/ f (n).

Remark 4 We note that although Corollary 2 gives a lower bound on k(s, n) for large
enough s, it can be restated for all s. Suppose s0 is the smallest s for which the
inequality in the lemma holds. Note that there is a trivial bound k(s, n) ≥ 1. Consider
g(n) = max ( f (n), s0). Then we have k(s, n) ≥ s/g(n).

Lemma 4 k1((n + 2)s, n) ≥ k2(s, n).
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Proof Consider a set of s points and substitute each point by the set of vertices of a
small enough n-dimensional simplex and by its center. Thus, we substitute each point
by n + 2 points and obtain (n + 2)s points as a result. Consider a single covering of
these points of size k1((n + 2)s, n). None of the polyhedra in this cover can contain
the whole simplex and its center. Thus, each simplex contains vertices of at least two
polyhedra. Merging all the points of each simplex back into one point results in a
double covering of the original set of the same size (assuming the simplices are small
enough). 
�

Overall, we have a sequence of inequalities k(s, n) ≥ k2(s, n) ≥ k1(s, n) ≥
k2(

s
n+2 , n).Wedonot knowhow large k(s, n) can be compared to k1(s, n) and k2(s, n).

However, this connection helps us to show that the lower bound on the size of
universal testing set we have established before for the case of n = 2 is tight.

Theorem 9 We have k(s, 2) ≥ k2(s, 2) ≥ ⌈ s
2

⌉ + 1.
Therefore, for n = 2 the size of the minimal universal testing set is equal to s

= 2k − 1.

The remaining part of this section is devoted to the proof of Theorem 9.
The second part of the theorem follows from the first part and Theorem 6 immedi-

ately.
Thus, it remains to show that k2(s, 2) ≥ ⌈ s

2

⌉ + 1.
As a universal set with s points inQ2, we will pick the set of vertices of an arbitrary

convex polygon M .
Suppose we have some double covering of the vertices of M by k polygons. Among

these polygons, let us distinguish the set E of those that are edges of M and the set T
of other polygons. Denote |E | = k1 and |T | = k2; thus, k = k1 + k2. Denote by W
the sum of the number of vertices in all polygons in T .

We will show the following lemma:

Lemma 5 For s ≥ 2, we have W ≤ s + 2k2 − 2.

First let us show why this lemma is enough to finish the proof of the lower bound
on k2(s, 2).

Note that each polygon from E has two vertices. Thus, the sum of the number of
vertices in all polygons in E is 2k1. The sum of the number of vertices in all polygons
in T by definition isW . Each vertex of M should be a vertex for at least two polygons
in E and T . Thus, the sum of the numbers of vertices in all the polygons in E and T
is at least 2s. Thus, we get that

2s ≤ 2k1 + W ≤ 2k1 + s + 2k2 − 2,

where the second inequality follows from Lemma 5. From this, we get

k = k1 + k2 ≥ s

2
+ 1.

Since k is an integer, we have k ≥ ⌈ s
2

⌉ + 1 and the theorem follows.
Thus, it remains to prove the lemma.
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Proof of Lemma 5 The proof is by induction on s.
The base case is s = 2 (a degenerate polygon). Then T = ∅, k2 = 0, W = 0 and

the inequality follows.
Consider s ≥ 3. If k2 = 0, thenW = 0 and the inequality obviously holds. Suppose

k2 ≥ 1, and pick an arbitrary polygon P in T . Suppose there are r vertices in P . Then
P splits the remaining part ofM into r separate convex polygons (possibly degenerate,
that is, with just 2 vertices) M1 . . . , Mr . Denote the number of vertices in them by
s1, . . . , sr , respectively. Note that

s1 + . . . + sr = s + r . (7)

Suppose in polygons M1, . . . , Mr there are t1, . . . , tr polygons in T , respectively.
Denote the sets of these polygons by T1, . . . , Tr , respectively. Then

t1 + . . . + tr = k2 − 1. (8)

Suppose the sum of the numbers of vertices in Ti is Wi for 1 ≤ i ≤ r . Then

W1 + . . . + Wr = W − r . (9)

By the induction hypothesis for any polygon Mi , we have the following inequality:

Wi ≤ si + 2ti − 2. (10)

Adding up inequality (10) for all i = 1, . . . , r and using (7)-(9), we get

W − r ≤ (s + r) + 2(k2 − 1) − 2r ,

i. e.

W ≤ s + 2k2 − 2

and the lemma follows. 
�

6 Tropical �-Conjecture

Since in the max-plus semiring the distributivity holds (a � (b⊕ c) = a � b⊕ a � c)
and since the definition of the root does not depend on the specific representation
of a polynomial, we can consider representation of polynomials by arbitrary tropical
formulae. Even more, we can consider its representation by tropical circuit.

A tropical circuit C in variables x1, . . . , xn is a directed acyclic graph each vertex
of which is of in-degree 0 or 2. Each vertex of in-degree 0 is labeled by either a
variable, or a constant in the semiring. Each vertex of in-degree 2 is labeled by one
of the operations ⊕ or �. Labeled vertices of a circuit are called gates. Each gate
computes a tropical polynomial defined inductively in the natural way. One of the
gates is distinguished as the output gate. The circuit computes a polynomial that
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is computed by its output gate. The size of the circuit |C | is the number of gates
in it.

A formula is a special case of a circuit in which every (not output) gate has out-
degree 1. A standard observation is that this definition of a formula is equivalent to a
common definition of a formula as an expression consisting of variables, constants,
operations and brackets.

The classical τ -conjecture addresses the question of how many integer roots can a
classical polynomial of one variable have in terms of the size of the minimal classical
algebraic circuit computing this polynomial [8]. In the tropical case, however, roots
of any polynomial can be made integer by a simple modification of the polynomial.

Lemma 6 For any tropical polynomial p of one variable computable by a circuit (or
a formula) of size s, there is a tropical polynomial p′ of one variable computable by
a circuit (a formula) of size s that has the same number of roots as p and all roots of
p′ are integer.

Proof Consider a tropical circuit C of size s computing the tropical polynomial p(x)
of one variable x . We first show that there is a tropical circuit of size s computing a
tropical polynomial with the same number of roots such that all constants used in the
circuit are rational.

Consider all constants a1, . . . , ak used in C and substitute them by fresh formal
variables c1, . . . , ck . We are going to construct a system of linear inequalities with
rational coefficients on c1, . . . , ck that reflects that the root structure of the polynomial
(in variable x) computed by the circuit is the same as for p. We then observe that this
system has rational solution.

We can view the output of the circuit as a tropical polynomial over x whose coef-
ficients are tropical polynomials over c1, . . . , ck (basically, we are considering the
decomposition over the variable x of the polynomial over the variables x, c1, . . . , ck),
that is, each monomial of this polynomial over x is bi · x + qi (c1, . . . , ck) for
i = 1, . . . ,m, some integers bi ’s as tropical exponents of x and some tropical polyno-
mials qi ’s as coefficients. For each qi (c1, . . . , ck), consider itsmonomial li (c1, . . . , ck)
on which the minimum of qi is attained in the point (a1, . . . , ak). Add to our system of
inequalities all inequalities, stating that li (c1, . . . , ck) is less or equal that each of the
other monomials of qi . Since each monomial is a linear form with integer coefficients,
each inequality is a linear inequality with integer coefficients.

Next, consider linear forms

gi (x, c1, . . . , ck) = bi x + li (c1, . . . , ck)

for i = 1, . . . ,m with integer coefficients. For (c1, . . . , ck) = (a1, . . . , ak), these
expressions in variable x form linear pieces of the graph of the function computed by
the circuit. For each pair of forms gi and g j , we have that either intersection point
of gi (x, a1, . . . , ak) and g j (x, a1, . . . , ak) (as linear functions in one variable x) lies
below some linear function gi ′(x, a1, . . . , ak), and then, this point is not a root of the
output of the circuit C(x), or the intersection point lies above (or lies on) all other
linear functions gi ′(x, a1, . . . , ak), and then, it is a root of C(x). We add all these
relations between all triples of linear forms gi (x, c1, . . . , ck), g j (x, c1, . . . , ck) and
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gi ′(x, c1, . . . , ck). Each of these relations can be clearly expressed as a linear inequality
in variables c1, . . . , ck with rational coefficients. Indeed, the intersection point of gi
and g j has x coordinate

x = li (c1, . . . , ck) − l j (c1, . . . , ck)

b j − bi
.

Substituting it into gi and gi ′ and fixing an inequality≤ or≥ between them depending
on which one should be above the other, we obtain the desired linear inequality in
c1, . . . , ck .

Overall, we obtain the system of linear inequalities with rational coefficients with
variables (c1, . . . , ck) such that if some vector (c1, . . . , ck) ∈ K

k satisfies them, the
function computed by C(x) with constants (c1, . . . , ck) has the same number of roots
as p. This linear system has a solution: (c1, . . . , ck) = (a1, . . . , ak). Thus, it has a
rational solution as well. Substitute this rational solution as constants in C .

Observe that once all coefficients in the polynomial of one variable are rational, the
roots are rational as well (as intersection points of two linear functions with rational
coefficients).

Finally, consider a tropical circuit C computing the polynomial p and construct a
new circuitC ′ of size s that differs fromC in that every constant used inC is multiplied
by the same factor α. Denote by p′ the polynomial computed by C ′. Then we claim
that for any x

p′(α · x) = α · p(x). (11)

In particular, a is a root of p iff α · a is a root of p′.
The proof of (11) is by simple induction on the size of the circuit: the equation is

trivial for variables and constant, and all operations allowed in the circuit preserve the
equation.

To finish the proof of the lemma, consider a circuit C with rational coefficients and
multiply all constants in it by a suitable factor to make all roots integer. 
�

By Lemma 6, studying the number of integer roots of tropical formulae and circuits
is equivalent to studying the number of arbitrary roots in them.

Let # f denote the number of roots of a tropical univariate polynomial f .

Lemma 7 For any tropical univariate polynomials f and g, we have

– # f ⊕ g ≤ # f + #g + 1;
– # f � g ≤ # f + #g;
– # f �k = # f .

Proof Recall that a tropical polynomial of one variable is a piecewise linear convex
function on the set R and the roots of the polynomial are the non-smoothness points
of this function, that is, the number of linear pieces minus 1.

Note that f ⊕ g is just max ( f , g) in classical terms, so we have that f ⊕ g can
have as its linear pieces only the parts of linear pieces of f and g. Thus, the number
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of linear pieces of f ⊕ g is at most the sum of the number of linear pieces of f and g
and the inequality for the number of roots follows.

Note that f � g is just f + g in classical terms. So, each point of non-smoothness
of f � g must be a point of non-smoothness of at least one of the functions f and g.
So the inequality for the number of roots follows.

Finally, observe that f �k is just k · f in the classical terms and this function has
exactly the same set of non-smoothness points. 
�
Lemma 8 If a polynomial f is given by a formula C, then # f ≤ |C |.
Proof The proof of this lemma is a trivial induction on the size of the formula. The
step of induction easily follows from Lemma 7. 
�

Thus, we have shown that tropical polynomials computable by polynomial size
formulae have at most polynomially many roots (and thus at most polynomially many
integer roots).

Remark 5 Note that Lemma 8 extends to the setting in which there are exponentiation
gates in the formula that do not add to the size of the circuit.

Now we proceed to the case of max-plus polynomial circuits. It turns out that
the answer to the question here is opposite (with respect to formulae) and we will
construct an example of a circuit with exponentially many integer roots. To do this,
it is convenient to extend the notion of tropical polynomials and consider tropical
rational functions.

For this, we introduce operation of tropical division: for x, y ∈ K let

x � y = x − y.

Definition 1 A function f : Kn → K is a tropical rational function if it can be
expressed as a well-formed formula with variables x1, . . . , xn , constants in K and
operations ⊕,� and �.

The next two lemmas are not new [11,33], but we present the proofs for the sake
of completeness.

Lemma 9 Any nontrivial tropical rational function is a piecewise linear function.

Proof The statement of the lemma is true for variables and constant, and piecewise
linearity is clearly preserved under the operations ⊕,� and �. 
�

A point �a ∈ K
n is a root of the tropical rational function f if it is the point of

non-smoothness of f , that is, if p belongs to at least two linear pieces of f .

Remark 6 We note that for the case of tropical rational functions of one variables there
is usually a distinction between points of non-smoothness in which the change of slope
is positive and points in which the change of slope is negative. The former are usually
called roots, and the latter are called poles (see, e.g., [20]). This distinction is not
important for us, so we prefer to use the word ‘roots’ for both cases.
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It is not hard to see that tropical rational functions can be expressed as a tropical
division of two tropical polynomials.

Lemma 10 For any tropical rational function f (with arbitrary number of variables),
there are tropical polynomials p and q such that

f = p � q.

For tropical rational function f of one variable for any root a of f , consider the
intervals (b, a) and (a, c) on which f is linear. If the slope of f on (a, c) is greater
than the slope on (b, a), then a is a root of p. If on the other hand the slope of f on
(a, c) is smaller than the slope on (b, a), then a is a root of q.

Proof The proof of the first statement of the lemma is by the simple induction.
If f is a variable or a constant, then just let p = f and q = 0.
If f is obtained by one of the operations from tropical rational functions f1 and f2,

we can prove the statement of the lemma just translating usual operationswith fractions
to tropical setting.More specifically, consider tropical polynomials p1, p2, q1, q2 such
that f1 = p1 � q1 = p1 − q1 and f2 = p2 � q2 = p2 − q2.

If we have that f = f1 � f2, then

f = f1 + f2 = p1 − q1 + (p2 − q2) = (p1 + p2) − (q1 + q2)

and we can let p = p1 � p2 and q = q1 � q2.
If f = f1 � f2, then analogously we can let p = p1 � q2 and q = q1 � p2.
If f = f1 ⊕ f2, then we have

f = max ( f1, f2) = max (p1 − q1, p2 − q2)

= max (p1 + q2 − (q1 + q2), p2 + q1 − (q1 + q2))

= max (p1 + q2, p2 + q1) − (q1 + q2)

and we can let p = p1 � q2 ⊕ p2 � q1 and q = q1 � q2.
For the second part of the proof, we argue by a contradiction. Assume that the

slope of f on (a, c) is greater than the slope of f on (b, a), but a is not a root of p.
Then, for small enough ε we have that on (a− ε, a+ ε) the function p is linear. Note,
however, that on this interval q is convex and f is concave. This contradicts equation
f = p − q. The case when the slope of f on (a, c) is smaller than the slope of f on
(b, a) is completely analogous. 
�
Remark 7 We note that the representation of the tropical rational function f (with
arbitrary number of variables) in the form as in Lemma 10 is not unique.

Remark 8 Wenote that it is not hard to show that if in Lemma 9we additionally assume
that f is continuous and all slopes of f are integer, then the converse is also true, that
is, any continuous piecewise linear function with integer slopes can be expressed as a
difference of tropical polynomials (see, e.g., [11,33]).
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Analogously to tropical circuits, we can introduce rational tropical circuits. The
only difference is that now the operation � is also allowed, and thus, the circuit
computes a tropical rational function.

There is a close connection between tropical rational circuits and tropical circuits.

Lemma 11 Suppose a tropical rational circuit C computes a tropical rational function
f . Then there are tropical polynomials p and q such that f = p�q and p and q can
be computed by tropical circuits (without � operation) of size at most 4|C |.
Proof Enumerate gates of C in arbitrary topological order, that is, in such a way that
inputs to each gate g have smaller numbers than g in this enumeration.

Each gate g of C computes some tropical rational function fg . A simple inductive
argument shows thatwe can introduce pg andqg such that fg = pg�qg and reconstruct
a circuit in such a way that for each gate the circuit computes pg and qg and the circuit
does not use � operation.

Indeed, this is trivial for input gates. For the step of induction, consider a gate g
and assume that the statement is established for all previous gates (in the introduced
enumeration). The gate g has two inputs h1 and h2. By induction hypothesis in the
reconstructed circuit, we have gates ph1 , qh1 , ph2 and qh2 such that h1 = ph1 � qh1
and h2 = ph2 �qh2 . To construct pg and qg , we can just use simulations of operations
with rational functions from the proof of Lemma 10. For example, if g = h1 ⊕ h2, we
can immediately set qg = qh1 � qh2 . To compute pg , we introduce intermediate gates
g1 = ph1 � qh2 and g2 = ph2 � qh2 . Then pg = g1 ⊕ g2. The cases g = h1 � h2 and
g = h1 � h2 are even simpler. Note that to simulate each gate of the original circuit
at most four operations ⊕ and � are required. 
�

Now we are ready to provide an example of tropical rational functions in one
variable that can be computed by small circuits and on the other hand have many
roots. This example is an adaptation of the construction from [31].

Consider

f0(x) = max(−2x + 1, 2x − 1). (12)

For i = 1, 2, . . . define the function iteratively:

fi = f0 ◦ fi−1 = max(−2 fi−1 + 1, 2 fi−1 − 1). (13)

Note that f0, f1, . . . are tropical rational functions.

Lemma 12 The function fn can be computed by a rational tropical circuit of size
O(n).

Proof The proof of this lemma is by simple induction: just note that due to (13) to
compute each next fn from the previous one, we need constantly many operations. 
�

On the other hand, the function fn(x) has many roots.
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Theorem 10 The function fn(x) is equal to 1 in all points of the set S1,n = { k
2n |

k = 0, 1, . . . , 2n} and is equal to 0 in all points of the set S0,n = { k
2n + 1

2n+1 | k
= 0, . . . , 2n − 1}. The function is linear between each of the two consecutive points
of S1,n ∪ S0,n. Thus, fn(x) has 2n+1 − 1 roots on the interval (0, 1); namely, the roots
are (0, 1) ∩ (S1,n ∪ S0,n).

Proof The proof is by induction on n. For n = 0, the theorem is easy to check directly.
Suppose the statement of the theorem is true for fn and consider fn+1. Observe that

the function g = 2 fi−1 − 1 is equal to 1 on S1,n , is equal to −1 on S0,n and is linear
in between of the points S1,n ∪ S0,n . The function h = −2 fi−1 + 1 is symmetrical to
g: it is equal to −1 on S1,n , is equal to 1 on S0,n and is linear in between of the points
S1,n ∪ S0,n .

We have that fn+1 = max (g, h), and thus, it is equal to 1 in the points of S1,n ∪
S0,n = S1,n+1. On each interval between the consecutive points of S1,n∪S0,n one of the
two functions g andh goes from thevalue−1 to1 and theother goes from1 to−1.Thus,
they intersect in themiddle of the interval,where both functions are equal to 0. Thus,we
have that fn+1 is equal to 0 in all points { k

2n+1 + 1
2n+2 | k = 0, . . . , 2n+1−1} = S0,n+1

and is linear on each interval between consecutive points of S1,n+1 ∪ S0,n+1. 
�
Remark 9 Another example of a tropical rational function with a number of roots
exponential in the circuit size can be found in [3].

Now we are ready to prove the main result of this section.

Theorem 11 There is a sequence of tropical polynomials r1(x), . . . , rn(x), . . . of one
variable such that they are computable by a tropical circuit of size O(n), and on the
other hand, rn(x) has at least 2n roots.

Proof Consider the function fn . This function is computable by a tropical rational
circuit of size O(n). By Lemma 11, there are two polynomials pn and qn such that
fn = pn � qn and pn and qn are computable by a tropical circuit of size O(n).

ByTheorem10, fn has roots at eachpoint in {1/2n+1, 2/2n+1, 3/2n+1, . . . , (2n+1−
1)/2n+1}. By Lemma 10 qn has roots at each point in {1/2n+1, 3/2n+1, 5/2n+1, . . . ,

(2n+1 − 1)/2n+1}, while pn has roots at each point in {2/2n+1, 4/2n+1, 6/2n+1, . . . ,

(2n+1 − 2)/2n+1}. So, for rn one can pick qn . 
�
Recall that by Lemma 6 it follows that there is also a sequence of polynomials with

the same circuit size and with the same number of roots that are all integer (it is enough
to substitute constant 1 in (12), (13) by 2n+1).
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