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INVERSION OF EDDY-CURRENT SIGNALS USING A LEVEL-SET1

METHOD AND BLOCK KRYLOV SOLVERS∗2

LORENZO AUDIBERT† , HUGO GIRARDON†‡ , HOUSSEM HADDAR‡ , AND PIERRE3

JOLIVET§4

Abstract. The application motivating this work is related to the identification of deposits inside5
nuclear power plant steam generators using eddy-current probes. We consider a realistic experimental6
process that relies on the scan of a domain by sweeping along a tube axis a probe consisting of coils,7
playing the role of the sources/receivers. Solving the inverse shape problem associated with these8
measurements using a least squares method requires solutions to the eddy-current and the adjoint9
problems for a large number of right-hand sides at each gradient-descent iteration. Additional cost10
in the forward solver comes from the use of a potential formulation of the problem that provides11
independence from the conductive media topology (that may vary during iterations). We use a12
level-set approach to avoid remeshing and handle unknown topologies. The crucial ingredient in13
our algorithm is an optimized way of handling high numbers of right-hand sides for iterative solvers14
of large-scale problems. We first benchmark various block Krylov methods, block GMRES and15
block BGCRODR, to test their effectiveness compared to their standard counterpart, i.e., GMRES16
and GCRODR. Then, we propose for BGCRODR a new implementation for recycling information17
from previously generated Krylov bases that scales better than traditional approaches. This part18
is independent from the practical inverse problem at hand. The efficiency of the overall inversion19
procedure is finally demonstrated on realistic synthetic 3D examples.20

Key words. eddy currents, domain decomposition preconditioners, block Krylov methods,21
large-scale inverse problems22

AMS subject classifications. 35Q61, 49Q10, 78A46, 65F1023

1. Introduction. Nuclear power plants are thermal power plants using nuclear24

fuel to produce electricity: heat given off by the nuclear reaction is transferred by25

water to a steam generator (SG) where it is used to vaporize colder water. The26

resulting vapor goes through a turbine to generate electricity. The focus here is the27

SG where hot water vaporizes cold water: it is composed of U-shaped tubes where28

hot water flows. These tubes are plunged inside cold water. Contact with the heated29

tube wall vaporizes the cold water: the vapor then streams upwards to the turbines.30

Over the course of the operation, the cold water creates metallic deposits on the tube31

outer wall [30]. These deposits deteriorate heat transfer on the tube [13], alter the32

flow of the water and may create additional mechanical constraints on the device:33

detection of such deposits is essential for the nuclear plant operator.34

As direct inspection is impossible, indirect methods are used. Since the deposit35

and the tube inside the SG are conductive, eddy-current testing (ECT) constitutes the36

most suitable approach. ECT can be applied to different problematics, for instance,37

crack detection inside SG [28, 24] or in a different setting [14], or paired with thermog-38

raphy by using Joule effect [43]. The detection process using ECT is the following.39

After emptying the device from the water, probes are inserted from one end to the40

other end of a tube. By pulling them out at a constant speed, the operator is able41

to make measurements at regular positions alongside the tube. The resulting signal42

contains information on the medium configuration and, after some post-processing43
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2 L. AUDIBERT, H. GIRARDON, H. HADDAR AND P. JOLIVET

steps, provides information on the shape and position of deposits.44

The probes are composed of a given set of coils: when a coil, called the emitter, is45

subject to a current, it produces an incident electromagnetic field. On the surface of46

conductive materials, eddy currents generate another electromagnetic field, disturbing47

the former. Another coil, called the receiver, then measures the flow of the distorted48

field and compares it to that of the incident field: the difference between the different49

flows is called impedance.50

51

We propose to analyze the impedance signals using an inverse shape problem52

approach. We formulate the inverse problem using a classical least squares functional53

and solve the resulting optimization problem using a gradient descent with adjoint54

state approach as in [17, 31]. These latter employ a boundary variation method or55

parametric encoding of the geometry to update the shape boundary. In this paper56

however, we choose to implicitly model the shape using a level-set function. The use57

of level-set functions in shape optimization is widespread in recent papers, for instance58

in optimal structure conceptions [42, 1], in electromagnetic inverse scattering [12], in59

optical tomography [35], or in fluid mechanics [25]. It handles more easily topological60

changes in the shape like merging or splitting in two connected components, while61

at the same time reduces computational costs compared to a boundary variation62

approach as the shape update does not require to re-mesh the computational domain63

anymore. We adapt here the level-set approach to the inverse problem at hand,64

introducing a regularization of the gradient descent and decoupling the mesh for the65

level-set function from the mesh for computing the solution of the forward problem.66

Computation of an impedance signal for a given configuration requires the solu-67

tion of 3D time-harmonic Maxwell equations under the eddy-current approximation.68

Since the level-set approach may lead during iterations to complex topologies of the69

conductive domain, we choose to use an equivalent (A, V ) potential formulation of70

the problem, see for instance [32] and references therein. This formulation has the71

advantage of depending only on the topology of the whole computational domain.72

In order to avoid adapting the mesh to different probe positions, we reformulate the73

problem in terms of scattered fields and extend the potential formulation to this set-74

ting. The main drawback of (A, V ) formulation is that it increases the size of the75

discrete system as compared to other classical formulations in terms of electric or76

magnetic fields [32]. In addition, for ECT, depending on the nature of the probe and77

the scan witdh, the number of problems to solve can be very large (about a thousand)78

at each gradient-descent iteration. Using the formulation in terms of scattered fields,79

we are then faced with a critical issue encountered in large-scale inverse problems:80

how to efficiently solve a large-scale forward problem for a large number of right-hand81

sides?82

For large-scale simulations, exact LU factorizations are not tractable using a83

direct solver such as MUMPS [2]. Instead, specialized iterative methods may be84

used. Indeed, they leverage the fact that the available right-hand sides, yielded by85

the different coils and their positions, are available simultaneously. Block Krylov86

methods are part of these specialized iterative methods. They have a higher arithmetic87

intensity than standard Krylov methods, and typically converge in fewer iterates since88

they generate larger Krylov subspaces at each iteration. In practice, these methods89

are already used in geophysics [8] or tomography [41], where there are similar needs90

for efficient solvers capable of dealing with multiple right-hand sides.91

We here benchmark four different iterative solvers: GMRES [34], GCRODR [26],92

block GMRES [15], and block GCRODR, first implemented in Belos [5] and then93
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independently formalized in [23] and [27]. While GMRES and to a lesser extent94

GCRODR are widely used algorithms to solve linear systems, they turned out to be95

non-effective for our inverse problem as they badly scale with the number of right-96

hand sides. Block iterative solvers allow the user to solve blocks of right-hand sides at97

the same time and are more adapted. However, they are more memory demanding.98

Given the size of the blocks in our problem, handling all right-hand sides (RHS) at99

the same time is not tractable. As such, we split the full block of RHS into smaller100

sub-blocks and try different sub-block size to determine an optimal parameter for101

our application. The difference between block GMRES and block GCRODR lies in102

the recycling option provided by the latter: from one block to another, we are able103

to recycle basis vectors from one sub-block solve to another. Recycling is supposed104

to provide a faster convergence, interested readers are referred to [37] for a survey105

on recycling methods. In our case, while the number of iterates indeed lowers with106

block GCRODR, we observed that the solve time increases. We thus propose a new107

redistribution scheme to increase the performance of block GCRODR.108

The effectiveness of the whole inversion procedure is tested for realistic experimen-109

tal scenarios and realistic physical parameters provided by our industrial partner. We110

simulate measurements associated with so-called SAX probe (axisymmetric probe)111

and measurements associated with so-called SMX probe (non-axisymmetric). We112

demonstrate in particular the efficiency of our algorithm in handling both scenarios.113

Thanks to block Krylov methods, inversion of data provided by SMX probe for a114

typical experiment is feasible within a reasonable time.115

The paper is organized as follows. In section 2, the (A, V ) formulation is presented116

and extended to the scattered field. In section 3, the general context of the appli-117

cation at hand is explained and the inversion algorithm for reconstructing deposits118

is described. Multiple numerical solution strategies are benchmarked in section 4.119

The optimal configuration is then used for complete inverse simulations in section 5.120

Concluding remarks are given in section 6.121

2. The forward problem.122

2.1. Problem formulation. Let Ω ⊂ R3 be the computational domain of in-123

terest inside the SG that is assumed to be with Lipschitz boundary and later will124

be assumed to be also simply connected with connected boundary and either regular125

or convex polyhedral. The medium physical parameters, namely the electric permit-126

tivity ε(x) > 0, the conductivity σ(x) ≥ 0 and the magnetic permeability µ(x) > 0127

are assumed to be piecewise constant functions. Let ΩC be the conductive domain,128

i.e., the region where σ ̸= 0 and ΩI = Ω \ ΩC be the insulator domain. We denote129

Γ := ∂ΩI ∩ ∂ΩC the interface between insulator and conductor domains.130

Let J be the current density and (E,H) be the electromagnetic field induced by131

the current. Considering a time-harmonic framework, with ω being the pulsation and132

the eddy-current approximation ωε ≪ σ, the 3D time-harmonic Maxwell equations133

lead to the following system:134

(2.1)


curlE− iωµH = 0 in Ω,

curlH− σE = J in Ω,

div (εE) = 0 in ΩI ,

135

that has to be complemented with some appropriate boundary conditions on ∂Ω and136

some compatibility conditions on ∂ΩI for the normal component of E|∂ΩI . The latter137

will not be specified since it is not needed in the adopted formulation hereafter. For138
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4 L. AUDIBERT, H. GIRARDON, H. HADDAR AND P. JOLIVET

the boundary conditions on ∂Ω, we shall impose H × n = 0 where n denotes the139

outward normal.140

Solving (2.1) can be proven to be rather difficult, as the eddy-current approxima-141

tion introduces a different behavior of the fields in the insulator and in the conductor142

domains. For instance, when ΩI and/or its boundary are not simply connected the143

computation of (E,H) may require the introduction of cuts and associated harmonic144

functions. For the application described later, the computational domain Ω is simply145

connected with connected boundary. Therefore, in order to remove the issue related146

to the connectivity of ΩI , we propose here to formulate (2.1) using the potentials147

(A, V ) defined by (see for instance [32]):148

(2.2) µH = curlA in Ω, E = iωA+∇V in ΩC ,149

together with the Coulomb gauge divA = 0 in Ω and the additional the boundary150

condition A · n = 0 on ∂Ω. The existence of the decomposition is motivated by the151

first equation in (2.1). Inserting these definitions into the second equation of (2.1)152

and the boundary conditions on ∂Ω yield the following system:153

(2.3)


curl (µ−1curlA)− σ(iωA+∇V ) = J in Ω,

divA = 0 in Ω,

A · n = 0 and (µ−1curlA)× n = 0 on ∂Ω.

154

These equations allow to compute the electromagnetic field inside the conductive155

material and would be sufficient to simulate the impedance measurements we are156

interested in later.157

Remark 2.1. Note that V is defined up to an additive constant in each connected158

component of ΩC . In fact, since Ω is simply connected with connected boundary, there159

exists a function Ṽ such thatE = iωA+∇Ṽ in Ω. The function Ṽ may therefore differ160

from the function V determined by (2.3) by a constant in each connected component161

of ΩC .162

In a finite element framework, when solving numerically (2.3), the gauge condition is163

difficult to implement as it requires one to build a discrete function space of divergence-164

free functions. To remove the condition from the functional space, we adopt the165

procedure introduced in [9] and modify the first equation in (2.3) as166

curl (µ−1curlA)− µ−1
∗ ∇(divA)− σ(iωA+∇V ) = J in Ω,167

where µ∗ is a positive constant. It can be chosen in practice as an average value of168

µ. By adding the penalization term, we lose the relation that links E and J inside Ω,169

namely div (σE) = −divJ in Ω, that should be added to the system. Assuming that170

divJ = 0 in Ω, we then obtain the following equivalent system171

(2.4)


curl (µ−1curlA)− µ−1

∗ ∇(divA)− σ(iωA+∇V ) = J in Ω,

div (σ(iωA+∇V )) = 0 in ΩC ,

σ(iωA+∇V ) · n = 0 on Γ,

A · n = 0 and (µ−1curlA)× n = 0 on ∂Ω.

172

Let us introduce the function spaces173

H(curl,Ω) := {A ∈ L2(Ω)3, curlA ∈ L2(Ω)3}174
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175
H0(div,Ω) := {A ∈ L2(Ω)3, divA ∈ L2(Ω), A · n = 0 on ∂Ω}176

and set X(Ω) := H(curl,Ω) ∩H0(div,Ω). Assume that ΩC has M connected compo-177

nents Ωi
C , i = 1, . . . ,M , then we define178

H̃1(ΩC) :=

{
V ∈ H1(Ω),

∫
Ωi

C

V dx = 0, i = 1, . . . ,M

}
.179

Multiplying the first equation, resp. the second equation, in (2.4) with a test function180

B ∈ X(Ω), resp. Q/iω ∈ H̃1(ΩC), integrating by parts over Ω, using the boundary181

conditions, and summing the resulting equations leads to the following variational182

formulation [32, 17]:183

(2.5) A((A, V ), (B, Q)) = L((B, Q)), ∀(B, Q) ∈ X(Ω)× H̃1(ΩC)184
185

with: A((A, V ), (B, Q)) :=

∫
Ω

[
µ−1curlA · curlB+ µ−1

∗ (divA)(divB)
]
dx

+
1

iω

∫
ΩC

σ(iωA+∇V ) · (iωB+∇Q) dx,

L((B, Q)) :=

∫
Ω

J ·Bdx.

186

We now can state the following theorem that can be deduced from a more general187

result in [32, chapter 6], see also [17].188

Theorem 2.2. Assume that Ω is simply connected with a connected boundary189

and that J ∈ X(Ω)′. Then problem (2.5) admits a unique solution (A, V ) ∈ X(Ω) ×190

H̃1(ΩC). Assume in addition that div J = 0 in Ω. Then the solution of (2.5) satisfies191

(2.4) or equivalently (2.3) and the fields (E,H) defined by (2.2) verify the first two192

equations in (2.1).193

2.2. Scattered field formulation. As explained later, the goal is to reconstruct194

a deposit that appears in a reference configuration characterized by the physical pa-195

rameters σ0 and µ0, and the associated conductive part Ω0
C . Let us denote by (E0,H0)196

the electromagnetic field associated with this configuration and a source term J. This197

field verifies in particular198

(2.6)


curlE0 − iωµ0H

0 = 0 in Ω,

curlH0 − σ0E
0 = J in Ω,

H0 × n = 0 on ∂Ω.

199

In order to speed up calculations in cases where a large number of different source200

terms J is used and avoid remeshing (see the discussion at the end of this section), it201

is more advantageous to solve for the scattered fields202

(Es,Hs) := (E,H)− (E0,H0)203

assuming that (E0,H0) has been computed offline. As above, one can set up equations204

for the scattering field in terms of potentials. We hereafter give an outline. Taking205

the difference between the two first equations of (2.1) and (2.6) we obtain206

curlEs − iω(µH− µ0H
0) = 0 in Ω.207
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6 L. AUDIBERT, H. GIRARDON, H. HADDAR AND P. JOLIVET

As previously, when Ω is simply connected with connected boundary, this equation208

implies the existence of potentials (As, V s) such that209

(2.7) µH− µ0H
0 = curlAs in Ω, Es = iωAs +∇V s in ΩC ,210

with the Coulomb gauge divAs = 0 in Ω and the additional boundary condition211

As · n = 0 on ∂Ω. Inserting these definitions into the second equation of (2.1) and212

the boundary conditions on ∂Ω yield the following system:213

(2.8)


curl (µ−1curlAs)− σ(iωAs +∇V s +E0) = J0 in Ω,

divAs = 0 in Ω,

As · n = 0 and (µ−1curlAs)× n = 0 on ∂Ω,

214

with J0 defined by215

J0 := curl

((
1− µ0

µ

)
H0

)
− σ0E

0 in Ω.216

Clearly, if divJ = 0 in Ω, then we also have divJ0 = 0 in Ω and therefore as explained217

previously, the system (2.8) can be equivalently written as218

(2.9)
curl (µ−1curlAs)− µ−1

∗ ∇(divAs)− σ(iωAs +∇V s +E0) = J0 in Ω,

div (σ(iωAs +∇V s +E0)) = 0 in ΩC ,

σ(iωAs +∇V s +E0) · n = 0 on Γ,

As · n = 0 and (µ−1curlAs)× n = 0 on ∂Ω.

219

Similarly to (2.5), the variational formulation of this problem can be written as220

(2.10) A((As, V s), (B, Q)) = Ls((B, Q)), ∀(B, Q) ∈ X(Ω)× H̃1(ΩC)221

where the right-hand side can be expressed as222

Ls((B, Q)) :=

∫
Ω

(
1− µ0

µ

)
H0 · curlBdx− 1

iω

∫
ΩC

(σ − σ0)E
0 · (iωB+∇Q) dx.223

As an immediate corollary of Theorem 2.2, we can state the following theorem on the224

well-posedness of this problem and the equivalence with the original problem.225

Theorem 2.3. Assume that Ω is simply connected with connected boundary and226

that (E0,H0) ∈ L2(Ω)3 × L2(Ω)3. Then, problem (2.10) admits a unique solution227

(As, V s) ∈ X(Ω) × H̃1(ΩC). Assume in addition that (E0,H0) satisfies (2.6) with228

divJ = 0 in Ω. Then, the solution of (2.10) satisfies (2.9) or equivalently (2.8) and229

the fields (E,H) defined by (2.7) verify the first two equations in (2.6).230

In the context of deposit detection presented below, the probe takes measurements at231

regular positions alongside the tube. A typical scan requires up to 140 probe positions:232

for each one, a new computation of the electromagnetic field is required. Considering233

the variational formulation (2.5), as the right-hand side depends on the current density234

J located in the probe, computation of the field for each position requires a different235

mesh where the probe is at the proper position. Conversely, in (2.10), the right-side236

depends on the incident field only on the domain where σ ̸= σ0 or µ ̸= µ0, which is237

independent from the probe position. Consequently, assuming that the incident fields238

are computed offline for any probe position, solving (2.10) do not require remeshing239

for different probe positions and therefore is more computationally efficient.240
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2.3. Finite element discretization. To solve (2.5) or (2.10), we shall use241

finite elements on a tetrahedralization Th of the domain Ω, where h is the mesh242

size. A tetrahedralization of the conductive domain would be a restriction of Th243

to ΩC . Let K indicate an element of the tetrahedralization. We choose piece-244

wise affine Lagrange elements to discretize the scalar potential V . We denote by245

V 1
h (ΩC) := {vh ∈ C0(ΩC) / ∀K ⊂ Th, vh|K ∈ P1(K)} the discrete space associated246

with H1(ΩC).247

Assuming that Ω is a regular domain, the space H(curl,Ω) ∩ H0(div,Ω) is iso-248

metric to H1(Ω)3 ∩H0(div,Ω). This is also the case when Ω is a convex cylinder or249

polyhedron [9], which is the case of our numerical experiments. In this case, piecewise250

affine Lagrange elements can also be used to discretize each component of the vector251

potential. The discrete space associated with X(Ω) is then252

X1
h(Ω) = {wh ∈ (C0(Ω))3/wh|K ∈ (P1(K))3 ∀K ∈ Th, wh · n = 0 on ∂Ω}.253

Since the scalar potential is assumed to a have zero mean value in each connected254

component of ΩC , we enforce this condition by adding a penalization of the form255 ∫
ΩC
δ0σV Qdx where 0 < δ0 ≪ 1. The value of δ0 is chosen empirically using cali-256

bration on a test case merely used to ensure the zero mean value constraint. It may257

be chosen arbitrarly low as long as solvers can handle it numerically when solving258

the corresponding discrete system. To summarize, the discrete system is built by259

replacing the sesquilinear form A by260

A((A, V ), (B, Q)) +
1

iω

∫
ΩC

δ0σV Qdx,261

and replacing the variational space X(Ω)×H̃1(Ω) with X1
h(Ω)×V 1

h (ΩC). The numer-262

ical implementation of the resulting scheme has been done using the finite element263

library FreeFEM [18].264

3. The inverse problem.265

Fig. 1: Domain Ω for the Maxwell equations
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3.1. Description of the experiment. Let us specify the composition of the266

computational domain in the context of shape reconstruction inside a SG [28]. Con-267

sider a U-shaped tube, the focus being placed here on the straight part of the tube268

which is assumed to be a cylinder around the z-axis. We denote by:269

• Ωv the vacuum domain inside and outside the tube, with physical parameters270

(σv = 0, µv);271

• Ωt the domain occupied by the tube consisting of a conductive material, with272

physical parameters (σt, µt);273

• Ωd the deposit domain located in the exterior of the tube, with physical274

parameters (σd, µd);275

• Ωs the domain occupied by the probe placed inside the tube.276

The current density J is considered to be compactly supported in Ωs and divergence-277

free. Figure 1 displays the main features of the domain. We assume here that the278

probe conductivity can be neglected compared to the remaining conductive materials.279

The conducting part ΩC consists of the tube and the deposit while the insulating part280

consists of the vacuum and the probe. The computational domain Ω is a cylinder of281

height H and radius R chosen to be sufficiently large.282

283

The physical parameters are assumed to be known a priori and the only unknown284

for the inverse problem is the deposit Ωd. In this context and referring to the notation285

of the previous section, the reference media is defined by (with χO denoting the286

characteristic function of a domain O),287

σ0 := σtχΩt
µ0 := µtχΩt

+ µvχΩv
+ µvχΩs

288

while289

σ := σtχΩt
+ σdχΩd

µ := µtχΩt
+ µvχΩv

+ µvχΩs
+ (µd − µv)χΩd

.290

(a) SAX probe

emitter
receiver1

receiver2

receiver3

receiver4

(b) SMX probe

Fig. 2: Two probes used for ECT

The data for the deposit identification is collected as follows. A probe composed291

of Nc coils is inserted inside the tube to one end. The probe is then pulled at constant292

speed to the other end. At regular positions, the coils are subjected to a current I,293

inducing an electromagnetic wave. Figure 2 displays two examples of probes used294

in ECT: while the SAX probe is composed of two coaxial coils, the SMX probe295

has two rows of coils placed around the probe axis. Note that due to its structure,296

This manuscript is for review purposes only.



BLOCK SOLVERS FOR EDDY-CURRENT SIGNALS INVERSION 9

the former provides information that is averaged on the azimuthal component. We297

denote by Np the number of probe positions. The coil l used to generate the fields298

is called the emitter, while the coil k measuring the flow is called the receiver. The299

corresponding measured signal, called impedance signal and denoted ∆Zkl, has the300

following expression [24]:301

∆Zkl =
1

iωI2

∫
Ωd

((
1

µ
− 1

µ0

)
(curlEk) · (curlE0

l )− iω(σ − σ0)Ek ·E0
l

)
dx,(3.1)302

where the notation (Ek,Hk) and (E0
k,H

0
k) respectively refers to the solution of (2.1)303

and (2.6) where the source term J is supported by the coil k. Note that from this304

definition, we have the equality ∆Zkl = ∆Zlk for any k and l.305

306

In practice, the probes cannot measure ∆Zkl, but rather linear combinations of307

these quantities called modes. Consider two coils k and l, then there are two main308

modes for these coils:309

differential mode ZF = 0.5i(∆Zll −∆Zkk);310

absolute mode ZFA = 0.5i(∆Zll +∆Zkl).311

−1 0 1
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1

z-position (cm)
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3
)
(c
Ω
)

ZF3 impedance

−1 0 1

−1

0

1

z-position (cm)

ℑ
(Z

F
3
)
(c
Ω
)

ZF3 impedance

−1 0 1

−3

−2

−1

0

z-position (cm)

ℜ
(Z

F
A
)
(c
Ω
)

ZFA impedance

−1 0 1

−8

−6

−4

−2

z-position (cm)

ℑ
(Z

F
A
)
(c
Ω
)

ZFA impedance

Fig. 3: Example of SAX impedance signals for an annular deposit between
z− = −0.5 cm and z+ = 0.5 cm, at frequency 100 kHz.

Experimental observations show that each of these modes has different sensitivi-312

ties with respect to the deposit. Roughly speaking, ZF better detects sharp variations313

in the shape geometry while ZFA is more suited to identify smooth variations. To314

illustrate these observations, Figure 3 displays examples of impedance signals for an315

annular deposit between z− = −0.5 cm and z+ = 0.5 cm, at frequency 100 kHz, with316

the SAX probe. We do not elaborate here on the specifics of the acquisitions and317

refer to [28] for more details.318

This manuscript is for review purposes only.



10 L. AUDIBERT, H. GIRARDON, H. HADDAR AND P. JOLIVET

In practice, the SAX probe can work with three different pulsations ω1 > ω2 > ω3319

and generates a differential mode for each pulsation. Note that for the lowest, it320

generates an additional absolute mode. The conductivity of the tube absorbs most321

of the energy delivered by the coil, the absorption rate increasing with the frequency.322

This is why we focus here only on ω3 = 2π · 105 rad/sec as it ensures that some of323

the electromagnetic energy reaches the outer part of the tube. As such, a SAX probe324

provides two impedance values for each z-position in this paper.325

The SMX probe can also operate at a fourth pulsation ω4 < ω3, though we326

consider here only ω3. It generates absolute mode signals according to the following327

acquisition rule: the emitter coils are contained on the lower row. For each emitter,328

there are four associated receiver coils, as displayed in Figure 2b. Since the probe has329

19 coils on each row, the device provides 76 impedance values for each z-position in330

this paper.331

3.2. Description of the inversion algorithm. We here give a description of332

the adopted inversion strategy to reconstruct the shape and position of deposits from333

measured signals. For a given z-position of the probe, let us denote by Zi
meas(z)334

the measured signal and Zi(Ωd, z) the computed signal for a given shape Ωd, where335

i = 1, . . . , Ns refer to the index of the signals (Ns = 2 for SAX and Ns = 76 for SMX).336

The numerical evaluation of the impedance signal is obtained by solving (2.10). We337

now formulate the inverse problem as an optimization problem for a least squares338

misfit cost functional:339

min
Ωd

(
J (Ωd) =

1

Ns

Ns∑
i=0

∫ z+

z−

|Zi(Ωd, ζ)− Zi
meas(ζ)|2 dζ

)
.340

341

This formulation has been solved [21, 17, 31] using a gradient-descent method and a342

boundary variation technique. One drawback of such an approach is that it modifies343

at each iteration the computational mesh by moving the shape boundary accordingly,344

imposing a remeshing step. A possible remedy has been proposed in [31] by the345

use of a fixed Cartesian mesh in the region containing the deposit and consider only346

boundaries that can be exactly represented by the considered mesh. Indeed, such a347

procedure imposes a strong bias on the reconstruction and cannot handle complex348

topologies. We propose here to use a level-set approach [25] where the boundary ∂Ωd349

is implicitly encoded by the zero level-set of a function ψ. Denote by D ⊂ Ω a domain350

containing all admissible shapes Ωd, called Region Of Interest (ROI). The function ψ351

is then defined on D and verifies352

ψ(x)


< 0 if x ∈ Ωd,

= 0 if x ∈ ∂Ωd,

> 0 if x ∈ D/Ωd.

353

Since it is not directly correlated to the solution of the forward problem, the domain354

D is meshed independently from the mesh used for computing the solutions to (2.10).355

However, the two meshes are kept fixed during iterations. The following scheme then356

requires only interpolation operations from one mesh to another.357

Following previous works on level-set-based shape optimization [1, 10], the shape358

update at each iteration under this model is equivalent to convecting the level-set359

according to the Hamilton–Jacobi equation:360

(3.2)
∂ψ

∂t
+G|∇ψ| = 0 in D,361
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where G is a deformation direction defined on D as an extension of the shape gradient362

of the cost functional J as explained below. Note that the convection time is a step363

that needs to be adjusted at each iteration in order to ensure a fast convergence. In364

our numerical algorithm, (3.2) is solved using a backward method of characteristics365

as proposed in [6].366

Evaluation of the descent direction G. The computation of the descent direc-367

tion uses the solution of an additional variational problem for so-called adjoint state.368

Following [21, 31], it is defined as the field (P,W ) ∈ X(D)× H̃1(ΩC), solution of:369

A∗((P,W ), (B, Q)) = A((B, Q), (P,W )) = L∗((B, Q)), ∀(B, Q) ∈ X(Ω)× H̃1(ΩC),370

with L∗((B, Q)) :=

∫
Ωd

(
−1

iω

(
1

µ
− 1

µ0

)
curlB · curlE0371

+
1

iω
(σ − σ0)(iωB+∇Q) ·E0

)
dx.372

373

These fields can be seen as the Lagrange multiplier of the optimization problem374

where the constraint is the variational formulation (2.5). Using these fields, we are375

able to write the shape derivative of the cost function as (see [21] for more details on376

the calculations):377

J ′(Ωd)(θ) = − 1

Ns

Ns∑
i=1

ω

I2

∫
∂Ωd

(θ · n) gi ds.378

For a signal i, let us denote by ki (resp. li) the index of the receiver (resp. emitter)379

coil. The vector g = (g1, . . . , gNs) of gradients is then defined by:380

gi =

{
glili − gkiki

differential mode

glili + gkili absolute mode,
381

where, for a given emitter coil l and receiver coil k,382

gkl :=

∫ zmax

zmin

ℜ
(
(Z(Ωd, ζ)− Zmeas(ζ))

{[
1

µ

]
(n · curlAk)(n · curlPl − n · curlA0

l )

− [µ]

(
1

µ
(curlAk)× n

)
·
(

1

µ0
(curl (Pl)+)× n− 1

µ0
(curlA0

l )× n

)
+
[σ]

iω
(iω(Ak)τ +∇τVk) · (iω(Pl)τ +∇τWl + (E0

l )τ )

}∣∣∣∣
ζ

)
dζ.

383

The notation A|ζ refers to the solution of the forward problem with the source term384

generated by the coils at position ζ. For a vector field a, aτ = a− (a ·n)n denotes the385

tangential part of a on a surface Γ with normal vector n. ∇τV denotes the tangential386

part of ∇V .387

If one chooses a descent direction θ such that,388

θ = γ
1

Ns

Ns∑
i=1

gin on ∂Ωd,389

where γ is a positive constant sufficiently small, then θ is a descent direction for J .390

Note that under a level-set approach, the role of γ is replaced by the length ∆t of the391
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time interval that we use to convect ψ between two iterations using (3.2), see Figure 4.392

393

In order to solve the convection problem (3.2), from an initial state defined by394

ψ0 (where ψ0 is a level-set encoding ∂Ωd), the deformation direction G needs to be395

specified for any point in D. We first define a H1(D) shape gradient associated with396

J by considering G ∈ H1(D)3, solution of, ∀θ ∈ H1(D)3,397

(3.3)

∫
D

(
3∑

i=1

α∇Gi · ∇θi +Giθi

)
dx = −J ′(Ωd)(θ) =

1

Ns

Ns∑
i=1

ω

I2

∫
∂Ωd

(θ ·n) gi ds398

where α > 0 is chosen empirically and can be seen as a regularization parameter for399

the descent direction. Obviously, taking θ = G provides a descent direction for J .400

We then set G = |G| in D. The right-hand side of (3.3) requires in principle explicit401

identification of ∂Ωd which we would like to avoid during iterations. This is done by402

observing that403 ∫
∂Ωd

(θ · n) gi ds = 1

2

∫
D

∇(sgn(ψ0)) · θ gi dx ∀θ ∈ H1(D)3,404

where the right-hand side is to be understood as a duality product and sgn(ψ0)) :=405

ψ0/|ψ0|. The resulting complete inversion algorithm is summarized in Figure 4.406

1: input: Np ×Nc impedance measurements on a z interval
2: incident fields (E0), for each coil at each probe position
3: initialize ψ = ψ0, the gradient speed G and choose ∆t and α
4: while J > η do
5: J0 = J
6: compute the gradient G on D
7: convect level-set ψ for a time interval ∆t and a deformation speed G
8: use ψ(∆t) to encode the functions σ and µ
9: solve the forward problem for each probe position and coil

10: compute J
11: if J < J0 then
12: solve the adjoint problem for each probe position and coil
13: compute gradient g for each signal
14: ψ0 = ψ(∆t)
15: else
16: decrease time-step ∆t = ∆t/2
17: end if
18: end while

Fig. 4: Reconstruction algorithm

As indicated in Figure 4, for one loop iteration, the number of finite element407

problems to solve is p = Np × Nc (resp. Np × Nc/2) for the forward (resp. adjoint)408

problem. Note that for the adjoint problem, problems are solved only for the emitters.409

We denote by n the number of degrees of freedom of the problem: n = nA+nV , with410

nA (resp. nV ) the number of degrees of freedom for As (resp. V s).411

Let us consider the forward problem. Using the scattered field formulation (2.10),412

from one problem to another, the sesquilinear form A remains the same. Only the413
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right-hand side changes. Solving for all probe positions is equivalent to solving a block414

system of the form:415

(3.4)

(
MAA MAV

MV A MV V

)(
XA

XV

)
=

(
BA

BV

)
,416

where MAA ∈ MnA,nA
(C), MAV ∈ MnA,nV

(C), MV A ∈ MnV ,nA
(C), MV V ∈417

MnV ,nV
(C), XA and BA ∈ MnA,p(C), and XV and BV ∈ MnV ,p(C).418

419

Depending on the nature of the probe and the length of the tube scanning, the420

number of RHS p can greatly increase. With the SAX probe containing two coils,421

the number of RHS may remain fairly low. However, using it in ECT may prove422

to be inefficient to reconstruct deposit as it averages the configuration around the423

azimuthal angle. The best strategy would be to use the SMX probe. As a standard424

probe contains 38 coils, the number of RHS increases quite rapidly. Considering that425

a typical scan may span up to 140 positions, p is expected to exceed 1,000.426

Note that measures can be taken to reduce the RHS block size for the SMX probe.427

Indeed, as explained before, to generate all signals, one needs to compute the elec-428

tromagnetic potentials for each coil at each probe position, cf. the definition of ∆Zkl429

in (3.1). However, unlike the SAX probe, the SMX generates only absolute modes.430

Thus, by using the equality ∆Zkl = ∆Zlk for any coil numbers k and l, we are able431

bring down the size of the RHS block from Nc × Np to Nc/2 × Np as we only need432

the direct fields of the emitters, that is to say the lower row.433

434

The choice to implicitly define the deposit shape Ωd with a level-set function435

ψ requires using a fine mesh in the region containing Ωd. Furthermore, due to the436

potential formulation each mesh node inside the conductor region has four unknowns.437

As a result, the total number of degrees of freedom may exceed one million in a438

typical configuration for the forward problem. These constraints combined with the439

high number of RHS motivate the investigation of efficient solution strategies. Being440

able to tackle this task efficiently is critical as it directly impacts the performance of441

the reconstruction algorithm as a whole.442

4. Efficient solution strategies. It was shown in the previous section that443

most of the computational burden of the reconstruction algorithm 4 is the successive444

solutions of linear systems with large number of right-hand sides, see lines 9 and 12.445

Given the size of the discrete problem, exact LU factorizations are not tractable. We446

therefore use iterative solvers. The main issue is how to efficient handle a large number447

or RHS. It will be shown in particular that block Krylov methods can efficiently448

fix this difficulty. We also propose some adaptations that significantly speedup the449

proposed reconstruction algorithm from section 3. Since this step is the most critical450

in our inversion algorithm and may apply to other large-scale inverse problems, more451

technical details will be provided on some practical implementations.452

4.1. Problem formulation. For simplicity, the notations from (3.4) are cast453

into the following condensed form:454

(4.1) AX = B,455

with A ∈ Mn,n(C), and both X and B ∈ Mn,p(C). This is done using PETSc [3,456

4], the linear algebra backend used in our numerical tests, which can convert the457
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14 L. AUDIBERT, H. GIRARDON, H. HADDAR AND P. JOLIVET

coefficient matrix from (3.4) stored using a MatNest, into the more general matrix458

format MatAIJ. As it is common with high-dimensional problems, a first step for459

setting up an efficient solver is the definition of a preconditioner. This preconditioner460

must also be able to deal with multiple right-hand sides efficiently. A commonly461

used method in this context is the restricted additive Schwarz method [7] (RAS) as462

implemented in PETSc. In a distributed-memory parallel context, given a number of463

processes N , this preconditioner may be written algebraically as:464

(4.2) M−1 =

N∑
i=1

R̃T
i (RiAR

T
i )

−1Ri,465

where {Ri}Ni=1 are restriction operators from a global to local vectors on each sub-466

domain (or process), possibly with some overlap. {R̃i}Ni=1 are similar operators for467

which coefficients on the overlap are set to 0 instead. Readers interested in do-468

main decomposition methods are referred to one of the many available monographs469

on this matter [36, 40, 11]. An appealing feature of domain decomposition meth-470

ods is that the action of local subdomain solvers {(RiAR
T
i )

−1}Ni=1 are usually com-471

puted using exact factorizations with libraries such as MUMPS or MKL PARDISO.472

These libraries provide optimized routines for forward eliminations and backward473

substitutions on blocks of multiple vectors. Thus, they are good candidates for our474

solver which has to deal with thousands of right-hand sides. To conclude this sub-475

section, the command line options provided next can be used to setup a PETSc476

preconditioner as defined mathematically above: -pc type asm -sub pc type lu477

-sub pc factor mat solver type mkl pardiso. The results in this section were478

obtained on Irène, a system composed of 1,656 nodes with two 24-core Intel Xeon479

Platinum 8168 clocked at 2.7GHz.480

4.2. Benchmark of available strategies. PETSc, through its KSPHPDDM481

[22] interface to HPDDM [23], implements multiple block Krylov methods. In partic-482

ular, the following methods will be considered:483

• standard GMRES [34];484

• standard GCRODR [26];485

• pseudo-block GMRES;486

• pseudo-block GCRODR;487

• block GMRES [15];488

• block GCRODR recalled Figure 7 in order to keep the paper self-contained.489

Here, standard means that the method is not able to deal with multiple right-hand490

sides available simultaneously. Pseudo-block means that the method is mathemati-491

cally equivalent to the standard one, in the sense that it generates the same Krylov492

subspace, but it fuses similar operations together, e.g., multiple simultaneous sparse493

matrix–vector multiplications become a single sparse matrix–dense matrix multipli-494

cation. Such blocked operations, also used in block Krylov methods, have higher495

arithmetic intensities. In Figure 2 of [23], authors compare the cost of doing multi-496

ple sparse matrix–vector products versus a single sparse matrix–dense matrix product497

and show that it can be up to 400% more efficient with 64 columns. In Figure 6 of [22],498

authors compare the cost of doing multiple forward eliminations and backward substi-499

tutions with a single column vector versus a single forward elimination and backward500

substitution with a block of column vectors and show that it can be up to 250%501

more efficient with 128 columns. In KSPHPDDM, QR factorizations are computed502

using the CholeskyQR method which was thoroughly studied in [38]. Users are free503
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to manipulate PETSc built-in types or provide their own preconditioned operator,504

but the data structure provided by PETSc and expected by KSPHPDDM assumes505

that blocks of vectors are stored in a standard contiguous column-major dense format506

distributed following a one-dimensional row partitioning among MPI processes. As507

said in the introduction paragraph of this section, block Krylov methods generate508

different subspaces than their standard counterpart. Throughout this section, the rel-509

ative convergence tolerance is set to 10−3 and the overlapping Schwarz preconditioner510

defined in subsection 4.1 is applied on the right. A restart parameter of size 40 is511

used for standard and pseudo-block methods, and it is set to 30 for block methods,512

which require more memory.513

4.2.1. Performance of non-block Krylov methods. For standard GMRES514

and GCRODR, instead of solving the full system (4.1), we consider only the first515

column of B and X. Results for the complete block of p columns may be extrapolated516

by multiplying the timings obtained by p, since it is expected that the number of517

GMRES and GCRODR iterations will be similar as B is traversed column by column.518

These standard solvers could solve the full system, but as highlighted next, they are519

extremely inefficient so it would only be a waste of resources. Indeed, for only the520

first column of B, GMRES (resp. GCRODR) converges in 197 (resp. 125) iterations.521

This shows an advantage of such a recycling Krylov method, which also translates522

to runtime: 8.6 s against 6.3 s. However, these timings are not satisfactory, since by523

extrapolation, it would approximately take 1.8 h (resp. 1.4 h) to solve the full system524

with p = 779 right-hand sides. The command line options provided next can be used525

to setup a PETSc Krylov method as described above: -ksp rtol 1e-3 -ksp pc side526

right -ksp type hpddm -ksp gmres restart 40 -ksp hpddm type527

gmres. With GCRODR, five vectors are recycled throughout the restarts. The last528

option has to be switched with -ksp hpddm type gcrodr -ksp hpddm recycle 5.529

4.2.2. Performance of (pseudo-)block Krylov methods. For pseudo-block530

methods, again, it will be shown next that the timings are not satisfactory. Again,531

GCRODR has the edge over GMRES, both in terms of iterates, 130 against 171,532

and in terms of runtime, 20.7min against 26.3min. This is a significant improvement533

compared to the standard methods, with approximately a 4x speedup. The previous534

command line options remain unchanged, as HPDDM will by default switch to the535

pseudo-block variants when solving systems with multiple right-hand sides.536

Eventually, the performance of BGMRES and BGCRODR are compared. Block537

Krylov methods have higher arithmetic intensities and require more involved kernels538

such as block orthogonalizations. They are also more memory demanding, since, for539

example, the block Arnoldi process generates block Hessenberg matrices, whose QR540

factorizations are costlier to compute using Householder reflectors than plain Hessen-541

berg matrices factorized with Givens rotations [16]. For that reason, solving the full542

system (4.1) with p = 779 right-hand sides is not tractable. Instead, the complete543

block of right-hand sides is decomposed into contiguous sub-blocks which are then544

solved in sequence. At the beginning of each new cycle, deflation is performed us-545

ing a tolerance of 10−10. That is, a rank-revealing QR factorization of the block of546

initial residuals is computed, and the Arnoldi process only iterates on blocks of size547

i ∈ J1; pK such that Rii ≤ 10−10R11. This is achieved in PETSc using the option548

-ksp matsolve batch size p′, which will then successively solve
⌊

p
p′

⌋
subsystems549

with at most p′ right-hand sides. The complete set of options now reads -ksp rtol550

1e-3 -ksp pc side right -ksp type hpddm -ksp gmres restart 30 -ksp hpddm551
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deflation tol 1e-10 -ksp matsolve batch size p′ -ksp hpddm type bgmres.552

Four different values of p′ are used: 390, 195, 98, and 49. This corresponds to respec-553

tively 2, 4, 8, and 16 successive subsystem solves. The number of iterations, summed554

over all subsystem solves, is respectively 42, 101, 263, and 900. Looking at these num-555

bers, the configuration p′ = 390 is the most efficient numerically, as expected, since556

it is the one that enlarges the generated Krylov subspace the most per block Arnoldi557

iteration. However, the higher rate of convergence does not translate into faster run-558

times. Indeed, the time to solution for the previous four block sizes is respectively559

4.7min, 3.9min, 3.8min, and 5.6min. This highlights the fact that one has to care-560

fully pick the number of right-hand sides treated simultaneously. On the one hand,561

the higher this number, the faster the convergence. On the other hand, the lower this562

number, the cheaper block Krylov kernels are, e.g., block orthogonalizations.563

4.2.3. The special case of BGCRODR. BGCRODR has the advantage of564

handling both blocking and recycling. This is of great interest here, since multiple565

solves with the same coefficient matrix A are performed while traversing all sub-566

blocks of B. For one of the two near-optimal configurations with BGMRES, p′ = 98,567

we instead now switch to BGCRODR. A single basis vector is recycled throughout568

successive solves. However, it is important to keep in mind that a basis vector in the569

block Krylov sense is in practice a set of p′ vectors. This is achieved by replacing570

-ksp hpddm type bgmres by -ksp hpddm type bgcrodr -ksp hpddm recycle 1 in571

the previous set of options. As expected, the number of iterations, summed over all572

subsystem solves, is lowered with respect to BGMRES. It becomes 166 instead of573

263. One could then expect faster timings than with BGMRES, but this is in practice574

not the case. The time to solution is indeed 7.0min, which is a great deterioration575

of the BGMRES timing: almost 3min slower. Indeed, BGCRODR solves eigenvalue576

problems at the end of each cycle, see lines 14 and 31 of Figure 7. The dimension of577

these problems scales linearly with p′, the number of right-hand sides per sub-block.578

The runtime with a single OpenMP thread of the zgeev routine as implemented in579

Intel oneAPI is 26.9 s and 314.1 s with sub-blocks of dimensions 49 and 98, respectively.580

Clearly, one can see that these timings are not acceptable for large p′ since the cost of581

this LAPACK routine scales superlinearly with the dimension of the block Hessenberg582

matrix generated by the block Arnoldi process. The decrease of total number of583

iterations does not compensate the high cost of the BGCRODR eigenvalue problems.584

This will be further investigated in the next paragraph.585

All the obtained results are gathered in Table 1. Results that are extrapolated586

are typeset in gray, just to highlight that the figures may slightly vary if complete but587

wasteful runs were performed instead. Clearly, the use of block Krylov methods is588

highly beneficial for solving efficiently (4.1). The most effective methods, BGMRES589

with block size of 98 or 195, exhibit a near 28x speedup with respect to a standard590

GMRES implementation which does not use either blocking or recycling. For the591

sake of thoroughness, we also report the time needed to setup the restricted additive592

Schwarz preconditioner: 1.6 s. Since the coefficient matrix does not change while593

solving (4.1), the preconditioner is only computed once, so this timing, compared to594

the ones from Table 1, is negligible.595

4.3. Increasing the efficiency of recycling block Krylov methods. Though596

recycling block Krylov methods have been used successfully in the past [33], results597

shown in the previous section are not encouraging. There is at least one explana-598

tion for this discrepancy. Previous studies, e.g., [8, 41], deal with rather moderate599

numbers of right-hand sides, in the hundreds. In the present work, there is one order600
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Krylov method # of blocks # of RHS/block
∑

(# of iterates) Time /RHS Speedup

GMRES(40) 779 1 153,463 1.8 h 8.3 s —
GCRODR(40, 5) 779 1 97,375 1.4 h 6.4 s 1.3
P-BGMRES 1 779 171 26.3min 2.0 s 4.1
P-BGCRODR 1 779 130 20.7min 1.6 s 5.2

16 49 900 5.6min 0.43 s 19.3
8 98 263 3.8min 0.29 s 28.6
4 195 101 3.9min 0.30 s 27.6

BGMRES(30)

2 390 42 4.7min 0.36 s 23.0
BGCRODR(30, 1) 8 98 166 7.0min 0.53 s 15.7

Table 1: Comparison of GMRES, GCRODR, their pseudo-block and block variants,
for solving (4.1) on 960 processes using a restricted additive Schwarz preconditioner

of magnitude more vectors, in the thousands. Thus, all algebraic operations from601

BGCRODR that scale superlinearly with the dimension of the Krylov subspace are602

difficult to amortize. Indeed, these operations are often done redundantly by each603

process. Similar considerations apply to, for example, GMRES, where Hessenberg604

matrices generated by the Arnoldi process are stored redundantly by each process,605

at least as implemented in PETSc, Trilinos [20] and more specifically its Belos pack-606

age [5], and HPDDM.607

4.3.1. Redistribution algorithm for the extraction of information. In608

order to alleviate this severe limitation, we propose to redistribute the standard609

(resp. generalized) eigenvalue problem from BGCRODR line 14 (resp. 31) of Figure 7610

on a small subset of N ′ < N processes. This is achieved using the PETSc option611

-ksp hpddm recycle redistribute N ′. Then, the “small” dense distributed opera-612

tors are passed to SLEPc [19], which is used to solve the problem instead of using se-613

quential LAPACK routines redundantly. The computed eigenvectors are then broad-614

cast to the other N−N ′ processes. This redistribution scheme has the advantage that615

not all N processes used for solving (4.1) will be involved in the eigensolves. The par-616

allel granularity of this workload is way too fine: solving dense eigenproblems with a617

few thousand unknowns on thousands of processes is likely to perform very poorly due618

to the very high communication-to-computation ratio. There is also no available com-619

putational routine in distributed dense linear algebra libraries such as ScaLAPACK620

for nonsymmetric eigenproblems. With SLEPc, we instead use the Krylov–Schur621

method [39], coupled either by a shift or a shift-and-invert spectral transformation.622

In this spectral transformation, an exact distributed LU factorization is computed by623

Elemental [29] with the following option -ksp hpddm recycle mat type elemental.624

4.3.2. Performance of the proposed algorithm. This strategy is investi-625

gated next with a small communicator of size N ′ = 9. In the previous section, calls626

to LAPACK for recycling information took 4.5min, which explains why the naive627

BGCRODR implementation was not competitive against BGMRES. With this new628

distributed strategy, again with p′ = 98, only 6.4 s are spent in EPSSolve, SLEPc629

computational routine for solving eigenproblems. Even if the recycled information is630

now computed iteratively, instead of directly with LAPACK, the overall convergence631

of BGCRODR is not impacted, and it still takes 166 iterations to solve all sub-blocks.632
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However, the time to solution is now 2.6min. This is more competitive than the pre-633

vious BGMRES timing of 3.8min, and it also makes recycling much more affordable634

than in the naive BGCRODR implementation which converged in 7.0min. The most635

efficient strategy has a 41x speedup with respect to a standard GMRES implementa-636

tion which does not use blocking. With this efficient BGCRODR implementation, the637

case p′ = 195 is also investigated. The time spent in EPSSolve now becomes 18.0 s,638

so the effect of the number of right-hand sides in the sub-block is clearly highlighted.639

The number of iterations (resp. time to solution) is now 70 (resp. 3.1min), which is640

indeed less than with BGMRES, but still does not beat BGCRODR with p′ = 98.641

These results are gathered in Table 2, where the first, sixth, seventh, and last row642

of Table 1 are recalled first.643

Krylov method # of blocks # of RHS/block Time /RHS Speedup

GMRES(40) 779 1 1.8 h 8.3 s —
8 98 3.8min 0.29 s 28.6

BGMRES(30)
4 195 3.9min 0.30 s 27.6

Naive BGCRODR(30, 1) 8 98 7.0min 0.53 s 15.7
8 98 2.6min 0.20 s 41.5

BGCRODR(30, 1) + N ′ = 9
4 195 3.1min 0.24 s 34.6

Table 2: Improvements of the proposed method over previous results from Table 1

To summarize this section, in Table 3, the computational cost of the best BGM-644

RES and BGCRODR configurations from Table 2, i.e., the second and fifth lines, is645

broken down by major components. These include: operator and preconditioner ap-646

plications (third and fourth columns), orthogonalizations and QR factorizations (fifth647

column), and for BGCRODR, computation of recycling information using EPSSolve648

(sixth column). The total computational time from the previous table, which includes649

all other miscellaneous costs, is repeated in the last and seventh column. Again, one650

may notice that the decrease in total number of iterates for sub-blocks of dimension651

p′ = 98 with BGCRODR plus the low cost of recycling information thanks to our652

redistribution scheme allows for a significant improvement over BGMRES.653

Krylov method
∑

(# of iterates) A M−1 ⊥ Recycling Total

BGMRES(30) 263 58.1 s 104.3 s 60.1 s — 3.8min
BGCRODR(30, 1) + N ′ = 9 166 37.8 s 70.4 s 32.2 s 6.5 s 2.6min

Table 3: Most time-consuming operations of the linear solvers for sub-blocks of
dimension p′ = 96. Column A: multiplication by the operator from (4.1); M−1:
application of the preconditioner from (4.2); ⊥: orthogonalizations and QR

factorizations; Recycling: SLEPc eigenvalue solves for BGCRODR

5. Deposit reconstruction. In the previous section, we defined block iterative654

solvers which efficiently deal with the forward problem (2.5) for a large number of655

source terms. These strategies are investigated now for the full inverse algorithm.656

Indeed, at each iteration, two block systems have to be solved: one for the forward657
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and one for the adjoint state. Given the large number of right-hand sides and degrees658

of freedom, we expect the resolution of the finite element problems to be the limiting659

factor at each reconstruction interation. Let us illustrate this point with the following660

test case.661

We consider synthetic input data, generated numerically. To avoid any bias in the662

measurements, the deposit is explicitly defined in the computational mesh to generate663

the input data. The target shape here is composed of four ellipsoids at angles 0, π/2,664

π, and 3π/2, of z-radius 3.25mm, r-radius 2.5mm, and θ-radius 5mm. Assume here665

that the probe scans 41 positions in the z-axis. For the resolution of the different666

systems in Figure 4, the optimal parameters found in the previous section are used,667

i.e., BGCRODR with a single recycled multivector and sub-blocks of size at most 98668

(see the before last line from Table 2).669

(a) Axisymmetric
initialization

(b) Non-axisymmetric
initialization

(c) Optimal solution for
axisymmetric initialization

(11 iterations)

(d) Optimal solution for
non-axisymmetric

initialization (14 iterations)

Fig. 5: Convergence results for the SAX probe (in blue) for a target of four ellipsoids
(in green) on 960 processes and different shapes of deposits (in red)

Let us first recall the algorithm using a SAX probe. It has only two probes and670

generates two signals: one differential and one absolute mode. Hence, there are 82671

source terms for the forward problem for one inversion iteration, and as many terms for672

the adjoint problem. As such, we expect the resolution of the finite element problems673

to be faster than for the SMX probe. We consider two initializations, displayed in674

Figure 5.675

The convergence figures demonstrate the limits of the SAX probe. As the two676

coils of the probe have the same revolution axis as the tube, the information com-677

puted is averaged on the azimuthal component. As a consequence, when initializing678

the algorithm with an axisymmetric deposit like in Figure 5a, the optimal shape re-679

mains axisymmetric, see Figure 5c, and does not match the target shape. However,680

by choosing a more accurate initialization, e.g., Figure 5b, where we limit the initial-681

This manuscript is for review purposes only.



20 L. AUDIBERT, H. GIRARDON, H. HADDAR AND P. JOLIVET

ization on a domain around the target shape, the algorithm reconstructs more valid682

deposits in Figure 5d i.e. the optimal solution is now non-axisymmetric. Note that683

the optimal solution contains small artefacts due to the initialization that does not684

completely vanish through the convergence as they barely influence the impedance685

signal. They could be removed by adding constraints to the optimization problem,686

for instance surface penalization.687

In an industrial framework, where little information on the deposit shape can688

be provided a priori, non-axisymmetric initializations shall not be considered as they689

might disregard some solutions. Axisymmetric initializations shall be preferred as690

they do not introduce bias in the target shape.691

(a) Axisymmetric
initialization

(b) Non-axisymmetric
initialization

(c) Optimal solution for
axisymmetric initialization

(12 iterations)

(d) Optimal solution for
non-axisymmetric

initialization (13 iterations)

Fig. 6: Convergence results for the SMX probe (in blue) for a target of four
ellipsoids (in green) on 960 processes and different shapes of deposits (in red)

Let us now compare these SAX reconstruction results with those of the SMX692

probe. The probe is made of 38 coils and generates 76 signals: the emitters are taken693

on the lower row, each emitter being associated with four receivers on both rows. As694

such, the forward problem has 779 source terms, for a problem with approximately695

two million finite element unknowns. These numbers are the same as in section 4.696

The same initializations displayed in Figure 6 are tried with the SMX probe.697

In terms of performance, the method with SMX (resp. SAX) converged in about698

5 hours (resp. 1 hour and 27 minutes), in 13 iterations, at a rate of about 27 (resp. 8)699

minutes per iteration when the descent direction is accepted, and 7 (resp. 4) minutes700

per iteration when the descent direction is rejected. The rejection of a descent direc-701

tion is faster as there is no computation of the adjoint state or the gradient. Table 4702

summarizes the computational time of the most time-consuming operations for one703

iteration of the inversion algorithm for the two types of probe.704

Thanks to the use of block Krylov methods, the time spent in both solves is705
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roughly similar to the time spent in other operations. Compared to the computational706

time of about one hour with standard methods like GMRES or GCRODR, see Table 1,707

this is a substantial improvement.708

Type of probe SAX SMX

Level-set convection 214 s 2.9min
Direct solve 14 s 2.6min
Adjoint solve 14 s 2.6min
Gradient computation 151 s 7.5min
Total 436 s 17min

Table 4: Different operations for one iteration in the inversion algorithm on 960
processes. The most time-consuming operation is typeset in bold

When comparing the results with the SAX and SMX probes, it appears quite709

easily that the computations with the former are faster since the number of source710

terms does not exceed a hundred, compared to the 779 RHS of the latter. However,711

when comparing the reconstruction results, it appears that the SMX probe provides712

more interesting information on the target deposit.713

Note that due to the fast resolution of the finite element problems, the remaining714

limiting operations are the level-set convection and the gradient computation. The715

first operation is currently done sequentially, but can be easily parallelized. For the716

second operation, the gradient is computed directly inside FreeFEM domain-specific717

language. It could be made more efficient by offloading this operation to a specific718

kernel written in a lower-level language, e.g., C++, but this goes beyond the scope of719

this paper.720

6. Conclusion. We proposed a complete efficient strategy to solve realistic ECT721

for the reconstruction of deposits inside SG. Using a classical least squares formulation722

of the inverse problem, the main challenges are:723

• use a formulation of the eddy-current problem that does not require remeshing724

and is independent from the topology of the conductor;725

• use an adapted topological shape optimization method;726

• design an efficient solution strategy that allows a reasonable inversion time.727

We proposed for the first one the use of a potential formulation combined with rewrit-728

ing the problem in terms of scattered field. For the second point, a level-set method729

is used combined with appropriate regularization of the descent direction. The bot-730

tleneck of the inversion algorithm is the third point where the issue was to efficiently731

handle large-scale problems with a large number of RHS. Domain decomposition-732

preconditioned Krylov methods proved to be a tool of choice in this case. We com-733

pared two different block Krylov algorithms: BGMRES and BGCRODR.We proposed734

for the latter a new redistribution scheme to increase its performance. This part is735

quite general and may be applied to other large-scale inverse problems. In terms736

of deposit reconstructions, though the SAX probe offers less costly computations, it737

may fail to reconstruct properly the deposit. In contrast, the SMX probe contains738

more information and leads to satisfying results. Thanks to block Krylov methods,739

we are able to converge in less than 5 h for a typical industrial problem. Additional740

accelerations of the inversion scheme can be obtained by further optimizing the shape741

convection step or the computation of the gradient with FreeFEM. These issues will742
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be explored in a future work where we would like to apply the inversion scheme on743

experimental data. Reconstructing at the same time the deposit shape, the material744

properties and other possible defects (manufacturing defects, cracks, etc.) is also a745

future perspective of this work where the use of a larger set of data may be needed.746
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1: R0 = Bi −AX0

2: if Uk is defined (from solving a previous sub-block) then
3: [Q,R] = distributed qr(AUk)
4: Ck = Q
5: Uk = UkR

−1

6: X1 = X0 + UkC
H
k R0

7: R1 = R0 − CkC
H
k R0

8: else
9: [V1, S1] = distributed qr(R0)

10: perform m steps of BGMRES, thus generating Vm+1 and [Q,R] = qr(Hm)
(Arnoldi basis and Hessenberg matrix)

11: find Ym such that RYm = Q−1

[
S1

0p·(m−1)×p

]
12: X1 = X0 + VmYm
13: R1 = Bi −AX1

14: solve

(
Hm +QR−H

[
0p·(m−1)×p·(m−1) 0p·(m−1)×p

0p×p·(m−1) hHm+1,mhm+1,m

])
zλ = θλzλ

15: store the k eigenvectors zλ associated to the smallest eigenvalues in magnitude
in Pk

16: [Q,R] = qr(HmPk)
17: Ck = Vm+1Q
18: Uk = VmPkR

−1

19: end if
20: j = 1
21: while convergence not reached do
22: [Vk, Sk] = distributed qr(Rj)
23: j += 1
24: perform m−k steps of BGMRES with the linear operator (I−CkC

H
k )A, thus

generating Vm+1−k, [Q,R] = qr(Hm−k), and Ek = CkAVm−k

25: find Ym−k such that RYm−k = Q−1

[
Sk

0p·(m−k−1)×p

]
26: Yk = CH

k Rj−1 − EkYm−k

27: Xj = Xj−1 + UkYk + Vm−kYm−k

28: Rj = Bi −AXj

29: scale the columns of Uk so that they are of unit norm and store the scaling
coefficients in Dk

30: define Gm =

[
Dk Ek

0p·(m−k+1)×p·k Hm−k

]
31: solve GH

mGmzλ = θλG
H
m

([
CH

k Uk 0p·k×p·(m−k)

V H
m−k+1Uk Ip·(m−k+1)×p·(m−k)

])
zλ

32: store the k eigenvectors zλ associated to the smallest eigenvalues in magnitude
in Pk

33: [Q,R] = qr(HmPk)
34: Ck =

[
Ck Vm−k+1

]
Q

35: Uk =
[
UkPk Vm−kPk

]
R−1

36: end while

Fig. 7: BGCRODR as written by Jolivet and Tournier [23]
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