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INVERSION OF EDDY-CURRENT SIGNALS USING A LEVEL-SET1

METHOD AND BLOCK KRYLOV SOLVERS∗2

LORENZO AUDIBERT‡† , HUGO GIRARDON§†‡ , HOUSSEM HADDAR‡§ , AND PIERRE3

JOLIVET¶4

Abstract. The application motivating this work is related to the identification of deposits inside5
nuclear power plant steam generators using eddy-current probes. We consider a realistic experimental6
process that relies on the scan of a domain by sweeping along a tube axis a probe made out of coils,7
playing the role of the sources/receivers. Solving the inverse shape problem associated with these8
measurements using a least squares method requires solutions to the eddy-current and the adjoint9
problems for a large number of right-hand sides at each gradient-descent iteration. Additional cost10
in the forward solver comes from the use of a potential formulation of the problem that has the11
advantage of being independent from the topology of the conductive media (that may vary during12
iterations). We use a level-set approach to avoid remeshing and handle unknown topologies. The13
crucial ingredient in our algorithm is an optimized way of handling high numbers of right-hand sides14
for iterative solvers of large-scale problems. We first benchmark various block Krylov methods, block15
GMRES and block BGCRODR, to test their effectiveness compared to their standard counterpart,16
i.e., GMRES and GCRODR. Then, we propose for BGCRODR a new implementation for recycling17
information from previously generated Krylov bases that scales better than traditional approaches.18
This part is independent from the practical inverse problem at hand. The efficiency of the overall19
inversion procedure is finally demonstrated on realistic synthetic 3D examples.20

Key words. eddy currents, domain decomposition preconditioners, block Krylov methods,21
large-scale inverse problems22
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1. Introduction. Nuclear power plants are thermal power plants using nuclear24

fuel to produce electricity: heat gave off by the nuclear reaction is transferred by water25

to a steam generator (SG) where it is used to vaporize colder water. The resulting26

vapor goes through a turbine to generate electricity. The focus here is the SG where27

hot water vaporizes cold water: it is composed of U-shaped tubes where hot water28

flows. These tubes are plunged inside cold water. Contact with the heated tube wall29

vaporizes the cold water: the vapor then streams upwards to the turbines. Over the30

course of the operation, the cold water creates metallic deposits on the tube outer31

wall [29]. These deposits deteriorate heat transfer on the tube [13], alter the flow of32

the water and may create additional mechanical constraints on the device: detection33

of such deposits is essential for the nuclear plant operator.34

As direct inspection is impossible, indirect methods are used. Since the deposit35

and the tube inside the SG are conductive, eddy-current testing (ECT) constitutes36

the most suitable approach. ECT can be applied to different problematics, for in-37

stance, crack detection inside SG [26, 24] or in a different setting [14], or paired with38

thermography by using Joule effect [40]. The detection process using ECT is the39

following. After emptying the device from the water, probes are inserted from one40

end to the other end of a tube. By pulling them out at a constant speed, the operator41

is able to make measurements at regular positions alongside the tube. The resulting42

signal contains information on the medium configuration and, after post-processing,43
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§mmAP, École Polytechnique, France
¶IRIT–ENSEEIHT, CNRS, France

1

This manuscript is for review purposes only.
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provides elements on the shape and position of deposits.44

The probes are composed of a given set of coils: when a coil, called the emitter, is45

subject to a current, it produces an incident electromagnetic field. On the surface of46

conductive materials, eddy currents generate another electromagnetic field, disturbing47

the former. Another coil, called the receiver, then measures the flow of the distorted48

field and compares it to that of the incident field: the difference of flows is called49

impedance.50

51

We propose to analyze the signals using an inverse shape problem approach. We52

formulate the inverse problem using a classical least squares functional and solve the53

resulting optimization problem using a gradient descent with adjoint state approach as54

in [17, 30]. These latter employ a boundary variation method or parametric encoding55

of the geometry to update the shape boundary. In this paper however, we choose to56

implicitly model the shape using a level-set function. The use of level-set functions in57

shape optimization is widespread in recent papers, for instance in optimal structure58

conceptions [39, 1], in electromagnetic inverse scattering [12], in optical tomography59

[34], or in fluid mechanics [25]. It handles more easily topological changes in the shape60

like merging or splitting in two connected components, while at the same time reduces61

computational costs compared to a boundary variation approach as the shape update62

does not require to re-mesh the computational domain anymore. We here adapt the63

level-set approach to the inverse problem at hand, introducing a regularization of the64

gradient descent and decoupling the mesh for the level-set function from the mesh for65

computing the solution of the forward problem.66

Computation of an impedance signal for a given configuration requires the solu-67

tion of 3D time-harmonic Maxwell equations under the eddy-current approximation.68

Since the level-set approach may lead during iterations to complex topologies of the69

conductive domain, we choose to use an equivalent (A, V ) potential formulation of the70

problem, see for instance [31] and references therein. This formulation has the advan-71

tage of depending only on the topology of the whole computational domain. In order72

to avoid adapting the mesh to different probe positions, we reformulate the problem73

in terms of scattered fields and extend the potential formulation to this setting. The74

main drawback of (A, V ) formulation is that it increases the size of the discrete sys-75

tem as compared to other classical formulations in terms of electric or magnetic fields76

[31]. In addition, for ECT, depending on the number of coils and probe positions,77

the number of problems to solve can be very large (in the order of thousands) at each78

gradient-descent iteration. Using the formulation in terms of scattered fields, we are79

then faced with a critical issue encountered in large-scale inverse problems: how to80

efficiently solve a large-scale forward problem for a large number of right-hand sides?81

For large-scale simulations, exact LU factorizations are not tractable using a82

direct solver such as MUMPS [2]. Instead, specialized iterative methods may be83

used. Indeed, they leverage the fact that the available right-hand sides, yielded by84

the different coils and their positions, are available simultaneously. Block Krylov85

methods are part of these specialized iterative methods. They have a higher arithmetic86

intensity than standard Krylov methods, and typically converge in fewer iterates since87

they generate larger Krylov subspaces at each iteration. In practice, these methods88

are already used in geophysics [8] or tomography [38], where there are similar needs89

for efficient solvers capable of dealing with multiple right-hand sides.90

We here benchmark four different iterative solvers: GMRES [33], GCRODR [27],91

block GMRES [15] and block GCRODR [23]. While GMRES and to a lesser extent92

GCRODR are widely used algorithms to solve linear systems, they turned out to be93
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non-effective for our inverse problem as they badly scale with the number of right-94

hand sides. Block iterative solvers allow the user to solve blocks of right-hand sides at95

the same time and are more adapted. However, they are more memory demanding.96

Given the size of the blocks in our problem, handling all right-hand sides (RHS) at97

the same time is not tractable. As such, we split the full block of RHS into smaller98

sub-blocks and try different sub-block size to determine an optimal parameter for our99

application. The difference between block GMRES and block GCRODR lies in the100

recycling option provided by the latter: from one block to another, we are able to101

recycle basis vectors from one sub-block solve to another. Recycling is supposed to102

provide a faster convergence. In our case, while the number of iterates indeed lowers103

with block GCRODR, we observed that the solve time increases. We thus propose a104

new redistribution scheme to increase the performance of block GCRODR.105

The effectiveness of the whole inversion procedure is tested for realistic experimen-106

tal scenarios and realistic physical parameters provided by our industrial partner. We107

simulate measurements associated with so-called SAX probe (axisymmetric probe)108

and measurements associated with so-called SMX probe (non-axisymmetric). We109

demonstrate in particular the efficiency of our algorithm in handling both scenarios.110

Thanks to block Krylov methods, inversion of data provided by SMX probe for a111

typical experiment is feasible within a reasonable time.112

The paper is organized as follows. In section 2, the (A, V ) formulation is presented113

and extended to the scattered field. In section 3, the general context of the appli-114

cation at hand is explained and the inversion algorithm for reconstructing deposits115

is described. Multiple numerical solution strategies are benchmarked in section 4.116

The optimal configuration is then used for complete inverse simulations in section 5.117

Concluding remarks are given in section 6.118

2. The direct problem.119

2.1. Problem formulation. Let Ω ⊂ R3 be the computational domain of in-120

terest inside the SG that is assumed to be with Lipschitz boundary and later will121

be assumed to be also simply connected with connected boundary and either regular122

or convex polyhedral. The medium physical parameters, namely the electric permit-123

tivity ε(x) > 0, the conductivity σ(x) ≥ 0 and the magnetic permeability µ(x) > 0124

are assumed to be piecewise constant functions. Let ΩC be the conductive domain,125

i.e., the region where σ 6= 0 and ΩI = Ω \ ΩC be the insulator domain. We denote126

Γ := ∂ΩI ∩ ∂ΩC the interface between insulator and conductor domains.127

Let J be the current density and (E,H) be the electromagnetic field induced by128

the current. Considering a time-harmonic framework, with ω being the pulsation and129

the eddy-current approximation ωε � σ, the 3D time-harmonic Maxwell equations130

lead to the following system:131

(2.1)


curl E− iωµH = 0 in Ω,

curl H− σE = J in Ω,

div (εE) = 0 in ΩI ,

132

that has to be complemented with some appropriate boundary conditions on ∂Ω and133

some compatibility conditions on ∂ΩI for the normal component of E|∂ΩI . The latter134

will not be specified since it is not needed in the adopted formulation hereafter. For135

the boundary conditions on ∂Ω, we shall impose H × n = 0 where n denotes the136

outward normal.137

Solving (2.1) can be proven to be rather difficult, as the eddy-current approxima-138
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tion introduces a different behavior of the fields in the insulator and in the conductor139

domains. For instance, when ΩI and/or its boundary are not simply connected the140

computation of (E,H) may require the introduction of cuts and associated harmonic141

functions. For the application described later, the computational domain Ω is simply142

connected with connected boundary. Therefore, in order to remove the issue related143

to the connectivity of ΩI , we propose here to formulate (2.1) using the potentials144

(A, V ) defined by (see for instance [31]):145

(2.2) µH = curl A in Ω, E = iωA + ∇V in ΩC ,146

together with the Coulomb gauge div A = 0 in Ω and the additional the boundary147

condition A · n = 0 on ∂Ω. The existence of the decomposition is motivated by the148

first equation in (2.1). Inserting these definitions into the second equation of (2.1)149

and the boundary conditions on ∂Ω yield the following system:150

(2.3)


curl (µ−1curl A)− σ(iωA + ∇V ) = J in Ω,

div A = 0 in Ω,

A · n = 0 and (µ−1curl A)× n = 0 on ∂Ω.

151

These equations allow to compute the electromagnetic field inside the conductive152

material and would be sufficient to simulate the impedance measurements we are153

interested in later.154

Remark 2.1. Note that V is defined up to an additive constant in each connected155

component of ΩC . In fact, since Ω is simply connected with connected boundary, there156

exists a function Ṽ such that E = iωA+∇Ṽ in Ω. The function Ṽ may therefore differ157

from the function V determined by (2.3) by a constant in each connected component158

of ΩC .159

In a finite element framework, when solving numerically (2.3), the gauge condition is160

difficult to implement as it requires to build a discrete function space of divergence-free161

functions. To remove the condition from the functional space, we adopt the procedure162

introduced in [9] and modify the first equation in (2.3) as163

curl (µ−1curl A)− µ−1
∗ ∇(div A)− σ(iωA + ∇V ) = J in Ω,164

where µ∗ is a positive constant. It can be chosen in practice as an average value of165

µ. By adding the penalization term, we lose the relation that links E and J inside Ω,166

namely div (σE) = −div J in Ω, that should be added to the system. Assuming that167

div J = 0 in Ω, we then obtain the following equivalent system168

(2.4)


curl (µ−1curl A)− µ−1

∗ ∇(div A)− σ(iωA + ∇V ) = J in Ω,

div (σ(iωA + ∇V )) = 0 in ΩC ,

σ(iωA + ∇V ) · n = 0 on Γ,

A · n = 0 and (µ−1curl A)× n = 0 on ∂Ω.

169

Let us introduce the function spaces

H(curl,Ω) := {A ∈ L2(Ω)3, curl A ∈ L2(Ω)3}

H0(div,Ω) := {A ∈ L2(Ω)3, div A ∈ L2(Ω), A · n = 0 on ∂Ω}
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and set X(Ω) := H(curl,Ω) ∩H0(div,Ω). Assume that ΩC has M connected compo-
nents ΩiC , i = 1, . . . ,M , then we define

H̃1(ΩC) :=

{
V ∈ H1(Ω),

∫
Ωi

C

V dx = 0, i = 1, . . . ,M

}
.

Multiplying the first equation, resp. the second equation, in (2.4) with a test function170

B ∈ X(Ω), resp. Q/iω ∈ H̃1(ΩC), integrating by parts over Ω, using the boundary171

conditions, and summing the resulting equations leads to the following variational172

formulation [31, 17]:173

(2.5) A((A, V ), (B, Q)) = L((B, Q)), ∀(B, Q) ∈ X(Ω)× H̃1(ΩC)174

with: A((A, V ), (B, Q)) :=

∫
Ω

[
µ−1curl A · curl B + µ−1

∗ (div A)(div B)
]

dx

+
1

iω

∫
ΩC

σ(iωA + ∇V ) · (iωB + ∇Q) dx,

L((B, Q)) :=

∫
Ω

J ·B dx.

We now can state the following theorem that can be deduced from a more general175

result in [31, chapter 6], see also [17].176

Theorem 2.2. Assume that Ω is simply connected with connected boundary and177

that J ∈ X(Ω)′. Then problem (2.5) admits a unique solution (A, V ) ∈ X(Ω) ×178

H̃1(ΩC). Assume in addition that div J = 0 in Ω. Then the solution of (2.5) satisfies179

(2.4) or equivalently (2.3) and the fields (E,H) defined by (2.2) verify the first two180

equations in (2.1).181

2.2. Scattered field formulation. As explained later, the goal will be to re-182

construct a deposit that appears in a reference configuration characterized by physical183

parameters σ0 and µ0, and associated conductive part Ω0
C . Let us denote by (E0,H0)184

the electromagnetic field associated with this configuration and a source term J. This185

field verifies in particular186

(2.6)


curl E0 − iωµ0H

0 = 0 in Ω,

curl H0 − σ0E
0 = J in Ω,

H0 × n = 0 on ∂Ω.

187

In order to speed up calculations in cases where a large number of different source
terms J is used and avoid remeshing (see the discussion at the end of this section), it
is more advantageous to solve for the scattered fields

(Es,Hs) := (E,H)− (E0,H0)

assuming that (E0,H0) has been computed offline. As above, one can set up equations188

for the scattering field in terms of potentials. We hereafter give an outline. Taking189

the difference between the two first equations of (2.1) and (2.6) we obtain190

(2.7) curl Es − iω(µH− µ0H
0) = 0 in Ω.191
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As previously, when Ω is simply connected with connected boundary, this equation192

implies the existence of potentials (As, V s) such that193

(2.8) µH− µ0H
0 = curl As in Ω, Es = iωAs + ∇V s in ΩC ,194

with the Coulomb gauge div As = 0 in Ω and the additional boundary condition195

As · n = 0 on ∂Ω. Inserting these definitions into the second equation of (2.1) and196

the boundary conditions on ∂Ω yield the following system:197

(2.9)


curl (µ−1curl As)− σ(iωAs + ∇V s + E0) = J0 in Ω,

div As = 0 in Ω,

As · n = 0 and (µ−1curl As)× n = 0 on ∂Ω,

198

with J0 defined by

J0 := curl

((
1− µ0

µ

)
H0

)
− σ0E

0 in Ω.

Clearly, if div J = 0 in Ω, then we also have div J0 = 0 in Ω and therefore as explained199

previously, the system (2.9) can be equivalently written as200

(2.10)
curl (µ−1curl As)− µ−1

∗ ∇(div As)− σ(iωAs + ∇V s + E0) = J0 in Ω,

div (σ(iωAs + ∇V s + E0)) = 0 in ΩC ,

σ(iωAs + ∇V s + E0) · n = 0 on Γ,

As · n = 0 and (µ−1curl As)× n = 0 on ∂Ω.

201

Similarly to (2.5), the variational formulation of this problem can be written as202

(2.11) A((As, V s), (B, Q)) = Ls((B, Q)), ∀(B, Q) ∈ X(Ω)× H̃1(ΩC)203

where the right-hand side can be expressed as

Ls((B, Q)) :=

∫
Ω

(
1− µ0

µ

)
H0 · curl B dx− 1

iω

∫
ΩC

(σ − σ0)E0 · (iωB + ∇Q) dx.

We can state the following theorem on the well-posedness of this problem and the204

equivalence with the original problem.205

Theorem 2.3. Assume that Ω is simply connected with connected boundary and206

that (E0,H0) ∈ L2(Ω)3 × L2(Ω)3. Then, problem (2.5) admits a unique solution207

(As, V s) ∈ X(Ω) × H̃1(ΩC). Assume in addition that (E0,H0) satisfies (2.6) with208

div J = 0 in Ω. Then, the solution of (2.11) satisfies (2.10) or equivalently (2.9) and209

the fields (E,H) defined by (2.8) verify the first two equations in (2.6).210

In the context of deposit detection presented below, the probe takes measures at reg-211

ular positions alongside the tube. A typical scan requires up to 140 probe positions:212

for each position, a new computation of the electromagnetic field is required. Consid-213

ering the variational formulation (2.5), as the right-hand side depends on the current214

density J located in the probe, computation of the field for each position requires215

a different mesh where the probe is at the proper position. Conversely, in (2.11),216

the right-side depends on the incident field only on the domain where σ 6= σ0 or217

µ 6= µ0, which is independent from the probe position. Consequently, assuming that218

the incident fields are computed offline for any probe position, solving (2.11) do not219

require remeshing for different probe positions and therefore is more computationally220

efficient.221
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2.3. Finite element discretization. To solve (2.5) or (2.11), we shall use222

finite elements on a tetrahedralization Th of the domain Ω, where h is the mesh223

size. A tetrahedralization of the conductive domain would be a restriction of Th224

to ΩC . Let K indicate an element of the tetrahedralization. We choose piece-225

wise affine Lagrange elements to discretize the scalar potential V . We denote by226

V 1
h (ΩC) := {vh ∈ C0(ΩC) / ∀K ⊂ Th, vh|K ∈ P1(K)} the discrete space associated227

with H1(ΩC).228

Assuming that Ω is a regular domain, the space H(curl,Ω) ∩H0(div,Ω) is iso-229

metric to H1(Ω)3 ∩H0(div,Ω). This is also the case when Ω is a convex cylinder or230

polyhedron [9], which is the case of our numerical experiments. In this case, piecewise231

affine Lagrange elements can also be used to discretize each component of the vector232

potential. The discrete space associated with X(Ω) is then233

X1
h(Ω) = {wh ∈ (C0(Ω))3/wh|K ∈ (P1(K))3 ∀K ∈ Th, wh · n = 0 on ∂Ω}.234

Since the scalar potential is assumed to a have zero mean value in each connected
component of ΩC , we enforce this condition by adding a penalization of the form∫

ΩC
δ0σV Qdx where 0 < δ0 � 1. The value of δ0 is chosen empirically using cali-

bration on a test case. To summarize, the discrete system is built by replacing the
sesquilinear form A by

A((A, V ), (B, Q)) +
1

iω

∫
ΩC

δ0σV Qdx,

and replacing the variational space X(Ω)×H̃1(Ω) with X1
h(Ω)×V 1

h (ΩC). The numer-235

ical implementation of the resulting scheme has been done using the finite element236

library FreeFEM [18].237

3. The inverse problem.238

Fig. 1: Domain Ω for the Maxwell equations

3.1. Description of the experiment. Let us specify the composition of the239

computational domain in the context of shape reconstruction inside a SG [26]. Con-240
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sider a U-shaped tube, the focus being placed here on the straight part of the tube241

which is assumed to be a cylinder around the z-axis. We denote by:242

• Ωv the vacuum domain inside and outside the tube, with physical parameters243

(σv = 0, µv);244

• Ωt the domain occupied by the tube made out of conductive material, with245

physical parameters (σt, µt);246

• Ωd the deposit domain located in the exterior of the tube, with physical247

parameters (σd, µd);248

• Ωs the domain occupied by the probe placed inside the tube.249

The current density J is considered to be compactly supported in Ωs and divergence-250

free. Figure 1 displays the main features of the domain. We assume here that the251

probe conductivity can be neglected compared to the remaining conductive materials.252

The conducting part ΩC is then made of the tube and the deposit. The insulating253

part is made of the vacuum and the probe. The computational domain Ω is a cylinder254

of height H and radius R chosen to be sufficiently large.255

The physical parameters are assumed to be known a priori and the only unknown
for the inverse problem is the domain Ωd. In this context and referring to the notation
of the previous section, the reference media is defined by (with χO denoting the
characteristic function of a domain O),

σ0 := σtχΩt
µ0 := µtχΩt

+ µvχΩv
+ µvχΩs

while

σ := σtχΩt + σdχΩd
µ := µtχΩt + µvχΩv + µvχΩs + (µd − µv)χΩd

.

(a) SAX probe

emitter
receiver1

receiver2

receiver3

receiver4

(b) SMX probe

Fig. 2: Two probes used for ECT

The data for the deposit identification is collected as follows. A probe composed256

of Nc coils is inserted inside the tube to one end. The probe is then pulled at constant257

speed to the other end. At regular positions, the coils are subjected to a current I,258

inducing an electromagnetic wave. Figure 2 displays two examples of probes used259

in ECT: while the SAX probe is composed of two coaxial coils, the SMX probe260

has two rows of coils placed around the probe axis. Note that due to its structure,261

the former provides information that is averaged on the azimuthal component. We262

denote by Np the number of probe positions. The coil l used to generate the fields263

is called the emitter, while the coil k measuring the flow is called the receiver. The264

This manuscript is for review purposes only.



RECONSTRUCTION OF CONDUCTIVE DEPOSITS AND BLOCK SOLVERS 9

corresponding measured signal, called impedance signal and denoted ∆Zkl, has the265

following expression [24]:266

∆Zkl =
1

iωI2

∫
Ωd

((
1

µ
− 1

µ0

)
(curl Ek) · (curl E0

l )− iω(σ − σ0)Ek ·E0
l

)
dx,(3.1)267

where the notation (Ek,Hk) and (E0
k,H

0
k) respectively refers to the solution of (2.1)268

and (2.6) where the source term J is supported by the coil k. Note that from this269

definition, we have the equality ∆Zkl = ∆Zlk for any k and l.270

271

In practice, the probes cannot measure ∆Zkl, but rather linear combinations of272

these quantities called modes. Consider two coils k (receiver) and l (emitter), then273

there are two main modes for these coils:274

differential mode ZF = 0.5i(∆Zll −∆Zkk);275

absolute mode ZFA = 0.5i(∆Zll + ∆Zkl).276

Experimental observations show that each of these modes has different sensitivities277

with respect to the deposit. Roughly speaking, ZF detects better sharp variations278

in the shape geometry while ZFA is more suited to identify smooth variations. To279

illustrate these observations, Figure 3 displays examples of impedance signals for an280

annular deposit between z− = −0.5 cm and z+ = 0.05 cm, at frequency 100 kHz, with281

the SAX probe. We do not elaborate here on the specifics of the acquisitions and282

refer to [26] for more details.283
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Fig. 3: Example of SAX impedance signals for an annular deposit between
z− = −0.5 cm and z+ = 0.05 cm, at frequency 100 kHz (real and imaginary parts on

rows and ZF3 and ZFA on columns).

In practice, the SAX probe can work with three different pulsations ω1 > ω2 > ω3284

and generates a differential mode for each pulsation. For the lowest pulsation, it285
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generates an additional absolute mode. The conductivity of the tube absorbs most286

of the energy delivered by the coil and this absorption increases with the frequency.287

This is why we focus here only on ω3 = 2π · 105 rad · s−1 as it ensures that some of288

the electromagnetic energy reaches the outer part of the tube. As such, a SAX probe289

provides two impedance values for each z-position.290

The SMX probe can also operate at a fourth pulsation ω4 < ω3, though we con-291

sider here only ω3. It generates absolute mode according to the following acquisition292

rule: the emitter coils are contained on the lower row. For each emitter, there are293

four associated receiver coils, as displayed in Figure 2b. Since the probe has 19 coils294

on each row, the device provides 76 impedance values for each z-position.295

3.2. Description of the inversion algorithm. We here give a description of296

the adopted inversion strategy to reconstruct the shape and position of deposits from297

measured signals. For a given z-position of the probe, let us denote by Zimeas(z)298

the measured signal and Zi(Ωd, z) the computed signal for a given shape Ωd, where299

i = 1, . . . , Ns refer to the index of the signals (Ns = 2 for SAX and Ns = 76 for SMX).300

The numerical evaluation of the impedance signal is obtained by solving (2.11). We301

now formulate the inverse problem as an optimization problem for a least squares302

misfit cost functional:303

min
Ωd

(
J (Ωd) =

1

Ns

Ns∑
i=0

∫ z+

z−

|Zi(Ωd, ζ)− Zimeas(ζ)|2 dζ

)
.304

305

This formulation has been solved [21, 17, 30] using a gradient-descent method and a306

boundary variation technique. One drawback of such an approach is that it modifies307

at each iteration the computational mesh by moving the shape boundary accordingly,308

imposing a remeshing step. A possible remedy has been proposed in [30] by the309

use of a fixed Cartesian mesh in the region containing the deposit and consider only310

boundaries that can be exactly represented by the considered mesh. Indeed, such a311

procedure imposes a strong bias on the reconstruction and cannot handle complex312

topologies. We propose here to use a level-set approach [25] where the boundary ∂Ωd313

is implicitly encoded by the zero level-set of a function ψ. Denote by D ⊂ Ω a domain314

containing all admissible shapes Ωd, called region of interest (ROI). The function ψ315

is then defined on D and verifies316

ψ(x)


< 0 if x ∈ Ωd,

= 0 if x ∈ ∂Ωd,

> 0 if x ∈ D/Ωd.
317

Since it is not directly correlated to the solution of the forward problem, the domain318

D is meshed independently from the mesh used for computing the solutions to (2.11).319

However, the two meshes are kept fixed during iterations. The following scheme then320

requires only interpolation operations from one to another.321

Following previous works on level-set-based shape optimization [1, 10], under this322

model, the shape update at each iteration is equivalent to convecting the level-set323

according to the Hamilton–Jacobi equation:324

(3.2)
∂ψ

∂t
+G|∇ψ| = 0 in D,325

where G is a deformation direction defined on D as an extension of the shape gradient326

of the cost functional J as explained below. Note that the convection time is a step327
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that needs to be adjusted at each iteration in order to ensure a fast convergence. In328

our numerical algorithm, (3.2) is solved using a backward method of characteristics329

as proposed in [6].330

Evaluation of the descent direction G:. The computation of the descent direc-331

tion uses the solution of an additional variational problem for so-called adjoint state.332

Following [21, 30], it is defined as the field (P,W ) ∈ X(D)× H̃1(ΩC), solution of:333

A∗((P,W ), (B, Q)) = A((B, Q), (P,W )) = L∗((B, Q)), ∀(B, Q) ∈ X(Ω)× H̃1(ΩC),

(3.3)

334

335

with L∗((B, Q)) :=

∫
Ωd

(
−1

iω

(
1

µ
− 1

µ0

)
curl B · curl E0336

+
1

iω
(σ − σ0)(iωB + ∇Q) ·E0

)
dx.337

338

These fields can be seen as the Lagrange multiplier of the optimization problem339

where the constraint is the variational formulation (2.5). Using these fields, we are340

able to write the shape derivative of the cost function as (see [21] for more details on341

the calculations):342

J ′(Ωd)(θ) = − 1

Ns

Ns∑
i=1

ω

I2

∫
∂Ωd

(θ · n) gi ds.343

For a signal i, let us denote by ki (resp. li) the index of the receiver (resp. emitter)344

coil. The vector g = (g1, . . . , gNs) of gradients is then defined by:345

gi =

{
glili − gkiki differential mode

glili + gkili absolute mode,
346

where, for a given emitter coil l and receiver coil k,347

gkl :=

∫ zmax

zmin

<
(

(Z(Ωd, ζ)− Zmeas(ζ))

{[
1

µ

]
(n · curl Ak)(n · curl Pl − n · curl A0

l )

− [µ]

(
1

µ
(curl Ak)× n

)
·
(

1

µ0
(curl (Pl)+)× n− 1

µ0
(curl A0

l )× n

)
+

[σ]

iω
(iω(Ak)τ + ∇τVk) · (iω(Pl)τ + ∇τWl + (E0

l )τ )

}∣∣∣∣
ζ

)
dζ.

(3.4)

348

The notation A|ζ refers to the solution of the direct problem with the source term349

generated by the coils at position ζ. For a vector field a, aτ = a− (a ·n)n denotes the350

tangential part of a on a surface Γ with normal vector n. ∇τV denotes the tangential351

part of ∇V .352

If one chooses a descent θ such that,353

(3.5) θ = γ
1

Ns

Ns∑
i=1

gin on ∂Ωd,354
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12 L. AUDIBERT, H. GIRARDON, H. HADDAR AND P. JOLIVET

where γ is a positive constant sufficiently small, then θ is a descent direction for J .355

Note that under a level-set approach, the role of γ is replaced by the length ∆t of the356

time interval that we use to convect ψ between two iterations using (3.2), see Figure 4.357

358

In order to solve the convection problem (3.2), from an initial state defined by359

ψ0 (where ψ0 is a level-set encoding ∂Ωd), the deformation direction G needs to be360

specified for any point in D. We first define a H1(D) shape gradient associated with361

J by considering G ∈ H1(D)3, solution of, ∀θ ∈ H1(D)3,362

(3.6)

∫
D

(
3∑
i=1

α∇Gi · ∇θi + Giθi

)
dx = −J ′(Ωd)(θ) =

1

Ns

Ns∑
i=1

ω

I2

∫
∂Ωd

(θ ·n) gi ds363

where α > 0 is chosen empirically and can be seen as a regularization parameter for
the descent direction. Obviously, taking θ = G provides a descent direction for J .
We then set G = |G| in D. The right-hand side of (3.6) requires in principle explicit
identification of ∂Ωd which we would like to avoid during iterations. This is done by
observing that∫

∂Ωd

(θ · n) gi ds =
1

2

∫
D

∇(sgn(ψ0)) · θ gi dx ∀θ ∈ H1(D)3,

where the right-hand side is to be understood as a duality product and sgn(ψ0)) :=364

ψ0/|ψ0|. The resulting complete inversion algorithm is summarized in Figure 4.365

1: input: Np ×Nc impedance measurements on a z interval
2: incident fields (E0), for each coil at each probe position
3: initialize ψ = ψ0, the gradient speed G and choose ∆t and α
4: while J > η do
5: J0 = J
6: compute the gradient G on D
7: convect level-set ψ for a time interval ∆t and a deformation speed G
8: use ψ(∆t) to encode the functions σ and µ
9: solve the direct problem for each probe position and coil

10: compute J
11: if J < J0 then
12: solve the adjoint problem for each probe position and coil
13: compute gradient g for each signal
14: ψ0 = ψ(∆t)
15: else
16: decrease time-step ∆t = ∆t/2
17: end if
18: end while

Fig. 4: Reconstruction algorithm

As indicated in Figure 4, for one loop iteration, the number of finite element366

problems to solve is p = Np × Nc (resp. Np × Nc/2) for the direct (resp. adjoint)367

problem. For the adjoint problem, problems are solved only for the emitters. We368

denote by n the number of degrees of freedom of the problem: n = nA +nV , with nA369

(resp. nV ) the number of degrees of freedom for As (resp. V s).370
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Let us consider the direct problem. Using the scattered field formulation (2.11),371

from one problem to another, the sesquilinear form A remains the same. Only the372

right-hand side changes. Solving for all probe positions is equivalent to solving a block373

system of the form:374

(3.7)

(
MAA MAV

MV A MV V

)(
XA

XV

)
=

(
BA

BV

)
,375

where MAA ∈ MnA,nA
(C), MAV ∈ MnA,nV

(C), MV A ∈ MnV ,nA
(C), MV V ∈376

MnV ,nV
(C), XA and BA ∈MnA,p(C), and XV and BV ∈MnV ,p(C).377

378

Depending on the nature of the probe and the length of the tube scanning, the379

number of RHS p can greatly increase. With the SAX probe containing two coils,380

the number of RHS may remain fairly low. However, using it in ECT may prove381

to be inefficient to reconstruct deposit as it averages the configuration around the382

azimuthal angle. The best strategy would be to use the SMX probe. As a standard383

probe contains 38 coils, the number of RHS increases quite rapidly. Considering that384

a typical scan may span up to 140 positions, p is expected to exceed 1,000.385

Note that measures can be taken to reduce the RHS block size for the SMX probe.386

Indeed, as explained before, to generate all signals, one needs to compute the elec-387

tromagnetic potentials for each coil at each probe position, cf. the definition of ∆Zkl388

in (3.1). However, unlike the SAX probe, the SMX generates only absolute modes.389

Thus, by using the equality ∆Zkl = ∆Zlk for any coil numbers k and l, we are able390

bring down the size of the RHS block from Nc × Np to Nc/2 × Np as we only need391

the direct fields of the emitters, that is to say the lower row.392

393

The choice to implicitly define the deposit shape Ωd with a level-set function ψ394

impose to use a fine mesh in the region containing Ωd. Furthermore, for the potential395

formulation, one has four unknowns for each mesh node inside the conductor region.396

As a result, the total number of degrees of freedom may exceed one million in a397

typical configuration for the direct problem. These constraints combined with the398

high number of RHS motivate the investigation of efficient solution strategies. Being399

able to tackle this task efficiently is critical as it directly impacts the performance of400

the reconstruction algorithm as a whole.401

4. Efficient solution strategies. It was shown in the previous section that402

most of the computational burden of the reconstruction algorithm 4 is the successive403

solutions of linear systems with large number of right-hand sides, see lines 9 and 12.404

Given the size of the discrete problem, exact LU factorizations are not tractable. We405

therefore use iterative solvers. The main issue is how to efficient handle a large number406

or RHS. It will be shown in particular that block Krylov methods can efficiently407

fix this difficulty. We also propose some adaptations that significantly speedup the408

proposed reconstruction algorithm from section 3. Since this step is the most critical409

in our inversion algorithm and may apply to other large-scale inverse problems, more410

technical details will be provided on some practical implementations.411

4.1. Problem formulation. For simplicity, the notations from (3.7) are cast412

into the following condensed form:413

(4.1) AX = B,414
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14 L. AUDIBERT, H. GIRARDON, H. HADDAR AND P. JOLIVET

with A ∈ Mn,n(C), and both X and B ∈ Mn,p(C). This is done using PETSc [3,415

4], the linear algebra backend used in our numerical tests, which can convert the416

coefficient matrix from (3.7) stored using a MatNest, into the more general matrix417

format MatAIJ. As it is common with high-dimensional problems, a first step for418

setting up an efficient solver is the definition of a preconditioner. This preconditioner419

must also be able to deal with multiple right-hand sides efficiently. A commonly420

used method in this context is the restricted additive Schwarz method [7] (RAS) as421

implemented in PETSc. In a distributed-memory parallel context, given a number of422

processes N , this preconditioner may be written algebraically as:423

(4.2) M−1 =

N∑
i=1

R̃Ti (RiAR
T
i )−1Ri,424

where {Ri}Ni=1 are restriction operators from a global to local vectors on each sub-425

domain (or process), possibly with some overlap. {R̃i}Ni=1 are similar operators for426

which coefficients on the overlap are set to 0 instead. Readers interested in do-427

main decomposition methods are referred to one of the many available monographs428

on this matter [35, 37, 11]. An appealing feature of domain decomposition meth-429

ods is that the action of local subdomain solvers {(RiARTi )−1}Ni=1 are usually com-430

puted using exact factorizations with libraries such as MUMPS or MKL PARDISO.431

These libraries provide optimized routines for forward eliminations and backward432

substitutions on blocks of multiple vectors. Thus, they are good candidates for433

our solver which has to deal with thousands of right-hand sides. To conclude this434

section, the command line options provided next can be used to setup a PETSc435

preconditioner as defined mathematically above: -pc type asm -sub pc type lu436

-sub pc factor mat solver type mkl pardiso. The following results were obtained437

on Irène, a system composed of 1,656 nodes with two 24-core Intel Xeon Platinum438

8168 clocked at 2.7 GHz.439

4.2. Benchmark of available strategies. PETSc, through its KSPHPDDM440

[22] interface to HPDDM [23], implements multiple block Krylov methods. In partic-441

ular, the following methods will be considered:442

• standard GMRES [33];443

• standard GCRODR [27];444

• pseudo-block GMRES;445

• pseudo-block GCRODR;446

• block GMRES [15];447

• block GCRODR recalled Figure 7 in order to keep the paper self-contained.448

Here, standard means that the method is not able to deal with multiple right-hand449

sides available simultaneously. Pseudo-block means that the method is mathemati-450

cally equivalent to the standard one, in the sense that it generates the same Krylov451

subspace, but it fuses similar operations together, e.g., multiple simultaneous sparse452

matrix–vector multiplications become a single sparse matrix–dense matrix multipli-453

cation. As said in the introduction paragraph of this section, block Krylov methods454

generate different subspaces than their standard counterpart. Throughout this sec-455

tion, the relative convergence tolerance is set to 10−3 and the overlapping Schwarz456

preconditioner defined in subsection 4.1 is applied on the right. A restart parameter457

of size 40 is used for standard and pseudo-block methods, and it is set to 30 for block458

methods, which require more memory.459

For standard GMRES and GCRODR, instead of solving the full system (4.1), we460

consider only the first column of B and X. Results for the complete block of p columns461
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may be extrapolated by multiplying the timings obtained by p, since it is expected that462

the number of GMRES and GCRODR iterations will be similar as B is traversed col-463

umn by column. These standard solvers could solve the full system, but as highlighted464

next, they are extremely inefficient so it would only be a waste of resources. Indeed,465

for only the first column of B, GMRES (resp. GCRODR) converges in 197 (resp. 125)466

iterations. This shows an advantage of such a recycling Krylov method, which also467

translates to runtime: 8.6 sec against 6.3 sec. However, these timings are not satisfac-468

tory, since by extrapolation, it would approximately take 1.8 h (resp. 1.4 h) to solve the469

full system with p = 779 right-hand sides. The command line options provided next470

can be used to setup a PETSc Krylov method as described above: -ksp rtol 1e-3471

-ksp pc side right -ksp type hpddm -ksp gmres restart 40 -ksp hpddm type472

gmres. With GCRODR, five vectors are recycled throughout the restarts. The last473

option has to be switched with -ksp hpddm type gcrodr -ksp hpddm recycle 5.474

For pseudo-block methods, again, it will be shown next that the timings are475

not satisfactory. Again, GCRODR has the edge over GMRES, both in terms of476

iterates, 130 against 171, and in terms of runtime, 20.7 min against 26.3 min. This is477

a significant improvement compared to the standard methods, with approximately a478

4x speedup. The previous command line options remain unchanged, as HPDDM will479

by default switch to the pseudo-block variants when solving systems with multiple480

right-hand sides.481

Eventually, the performance of BGMRES and BGCRODR are evaluated. Block482

Krylov methods have higher arithmetic intensities and require more involved kernels483

such as block orthogonalizations. They are also more memory demanding, since, for484

example, the block Arnoldi process generates block Hessenberg matrices, whose QR485

factorizations are costlier to compute using Householder reflectors than plain Hessen-486

berg matrices factorized with Givens rotations [16]. For that reason, solving the full487

system (4.1) with p = 779 right-hand sides is not tractable. Instead, the complete488

block of right-hand sides is decomposed into contiguous sub-blocks which are then489

solved in sequence. At the beginning of each new cycle, deflation is performed us-490

ing a tolerance of 10−10. That is, a rank-revealing QR factorization of the block of491

initial residuals is computed, and the Arnoldi process only iterates on blocks of size492

i ∈ J1; pK such that Rii ≤ 10−10R11. This is achieved in PETSc using the option493

-ksp matsolve block size p′, which will then successively solve
⌊
p
p′

⌋
subsystems494

with at most p′ right-hand sides. The complete set of options now reads -ksp rtol495

1e-3 -ksp pc side right -ksp type hpddm -ksp gmres restart 30 -ksp hpddm496

deflation tol 1e-10 -ksp matsolve block size p′ -ksp hpddm type bgmres.497

Four different values of p′ are used: 390, 195, 98, and 49. This corresponds to re-498

spectively 2, 4, 8, and 16 successive subsystem solves. The number of iterations,499

summed over all subsystem solves, is respectively 42, 101, 263, and 900. Looking500

at these numbers, the configuration p′ = 390 is the most efficient numerically, as501

expected, since it is the one that enlarges the generated Krylov subspace the most502

per block Arnoldi iteration. However, this numerical efficiency does not transpose to503

algorithmic efficiency. Indeed, the time to solution for the previous four block sizes is504

respectively 4.7 min, 3.9 min, 3.8 min, and 5.6 min. This highlights the fact that one505

has to carefully pick the number of right-hand sides treated simultaneously. On the506

one hand, the higher this number, the faster the convergence. On the other hand, the507

lower this number, the cheaper block Krylov kernels are, e.g., block orthogonaliza-508

tions. BGCRODR has the advantage of handling both blocking and recycling. This509

is of great interest here, since multiple solves with the same coefficient matrix A are510
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performed while traversing all sub-blocks of B. For one of the two near-optimal con-511

figurations with BGMRES, p′ = 98, we instead now switch to BGCRODR. A single512

basis vector is recycled throughout successive solves. However, it is important to513

keep in mind that a basis vector in the block Krylov sense is in practice a set of p′514

vectors. This is achieved by replacing -ksp hpddm type bgmres by -ksp hpddm type515

bgcrodr -ksp hpddm recycle 1 in the previous set of options. As expected, the516

number of iterations, summed over all subsystem solves, is lowered with respect to517

BGMRES. It becomes 166 instead of 263. One could then expect faster timings than518

with BGMRES, but this is in practice not the case. The time to solution is indeed519

7.0 min, which is a great deterioration of the BGMRES timing: almost 3 min slower.520

This will be investigated in the next paragraph.521

All the obtained results are gathered in Table 1. Results that are extrapolated522

are typeset in gray, just to highlight that the figures may slightly vary if complete but523

wasteful runs were performed instead. Clearly, the use of block Krylov methods is524

highly beneficial for solving efficiently (4.1). The most effective methods, BGMRES525

with block size of 98 or 195, exhibit a near 28x speedup with respect to a standard526

GMRES implementation which does not use either blocking or recycling. For the527

sake of thoroughness, we also report the time needed to setup the restricted additive528

Schwarz preconditioner: 1.6 sec. Since the coefficient matrix does not change while529

solving (4.1), the preconditioner is only computed once, so this timing, compared to530

the ones from Table 1, is negligible.531

Krylov method # of blocks # of RHS/block
∑

(# of iterates)

GMRES(40) 779 1 153,463
GCRODR(40, 5) 779 1 97,375
P-BGMRES 1 779 171
P-BGCRODR 1 779 130

16 49 900
8 98 263
4 195 101

BGMRES(30)

2 390 42
BGCRODR(30, 1) 8 98 166

Krylov method Time /RHS Speedup

GMRES(40) 1.8 h 8.3 sec —
GCRODR(40, 5) 1.4 h 6.4 sec 1.3
P-BGMRES 26.3 min 2.0 sec 4.1
P-BGCRODR 20.7 min 1.6 sec 5.2

5.6 min 0.43 sec 19.3
3.8 min 0.29 sec 28.6
3.9 min 0.30 sec 27.6

BGMRES(30)

4.7 min 0.36 sec 23.0
BGCRODR(30, 1) 7.0 min 0.53 sec 15.7

Table 1: Comparison of GMRES, GCRODR, their pseudo-block variant, and their
block variant, for solving (4.1) on 960 processes using a restricted additive Schwarz

preconditioner
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4.3. Pushing forward recycling block Krylov methods. Though recycling532

block Krylov methods have been used successfully in the past [32], results shown533

in the previous section are not encouraging. There is at least one explanation for534

this discrepancy. Previous studies, e.g., [8, 38], deal with rather moderate num-535

bers of right-hand sides, in the hundreds. In the present work, there is one order536

of magnitude more vectors, in the thousands. Thus, all algebraic operations from537

BGCRODR that scale superlinearly with the dimension of the Krylov subspace are538

difficult to amortize. Indeed, these operations are often done redundantly by each539

process. Similar considerations apply to, for example, GMRES, where Hessenberg540

matrices generated by the Arnoldi process are stored redundantly by each process,541

at least as implemented in PETSc, Trilinos [20] and more specifically its Belos pack-542

age [5], and HPDDM. In order to alleviate this severe limitation, we propose to redis-543

tribute the standard (resp. generalized) eigenvalue problem from BGCRODR line 14544

(resp. 31) on a small subset of N ′ < N processes. This is achieved using the PETSc545

option -ksp hpddm recycle redistribute N ′. Then, the “small” dense distributed546

operators are passed to SLEPc [19], which is used to solve the problem instead of547

using sequential LAPACK routines redundantly. The computed eigenvectors are then548

broadcast to the other N −N ′ processes.549

Krylov method # of blocks # of RHS/block

GMRES(40) 779 1
8 98

BGMRES(30)
4 195

Naive BGCRODR(30, 1) 8 98
8 98

BGCRODR(30, 1) + N ′ = 9
4 195

Krylov method Time /RHS Speedup

GMRES(40) 1.8 h 8.3 sec —
3.8 min 0.29 sec 28.6

BGMRES(30)
3.9 min 0.30 sec 27.6

Naive BGCRODR(30, 1) 7.0 min 0.53 sec 15.7
2.6 min 0.20 sec 41.5

BGCRODR(30, 1) + N ′ = 9
3.1 min 0.24 sec 34.6

Table 2: Improvements of the proposed methodology over previous results
from Table 1

This redistribution scheme has the advantage that not all N processes used for550

solving (4.1) will be involved in the eigensolves. The parallel granularity of this551

workload is way too fine: solving dense eigenproblems with a few thousand un-552

knowns on thousands of processes is likely to perform very poorly due to the very553

high communication-to-computation ratio. There is also no available computational554

routine in distributed dense linear algebra libraries such as ScaLAPACK for nonsym-555

metric eigenproblems. With SLEPc, we instead use the Krylov–Schur method [36],556

coupled either by a shift or a shift-and-invert spectral transformation. In this spectral557

transformation, an exact distributed LU factorization is computed by Elemental [28]558

with the following option -ksp hpddm recycle mat type elemental. This strategy559
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is investigated next with a small communicator of size N ′ = 9. In the previous section,560

calls to LAPACK for recycling information took 4.5 min, which explains why the naive561

BGCRODR implementation was not competitive against BGMRES. With this new562

distributed strategy, again with p′ = 98, only 6.4 sec are spent in EPSSolve, SLEPc563

computational routine for solving eigenproblems. Even if the recycled information is564

now computed iteratively, instead of directly with LAPACK, the overall convergence565

of BGCRODR is not impacted, and it still takes 166 iterations to solve all sub-blocks.566

However, the time to solution is now 2.6 min. This is more competitive than the pre-567

vious BGMRES timing of 3.8 min, and it also makes recycling much more affordable568

than in the naive BGCRODR implementation which converged in 7.0 min. The most569

efficient strategy has a 41x speedup with respect to a standard GMRES implementa-570

tion which does not use blocking. With this efficient BGCRODR implementation, the571

case p′ = 195 is also investigated. The time spent in EPSSolve now becomes 18.0 sec,572

so the effect of the number of right-hand sides in the sub-block is clearly highlighted.573

The number of iterations (resp. time to solution) is now 70 (resp. 3.1 min), which is574

indeed less than with BGMRES, but still does not beat BGCRODR with p′ = 98.575

These results are gathered in Table 2, where the first, sixth, seventh, and last row576

of Table 1 are recalled first.577

(a) Axisymmetric
initialization

(b) Non-axisymmetric
initialization

(c) Optimal solution for
axisymmetric initialization

(11 iterations)

(d) Optimal solution for
non-axisymmetric

initialization (14 iterations)

Fig. 5: Convergence results for the SAX probe (in blue) for a target of four ellipsoids
(in green) on 960 processes and different shapes of deposits (in red)

5. Deposit reconstruction. In the previous section, we defined block iterative578

solvers that efficiently deal with the direct problem (2.5) for a large number of source579

terms. These strategies are investigated now inside the full inverse algorithm. Indeed,580

at each iteration, two block systems have to be solved: one for the direct and one for581

the adjoint state. Given the large numbers of right-hand sides and of finite element582
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unknowns, the solution phase is bound to be limiting factor per iteration. Let us583

illustrate this point with the following test case.584

We consider synthetic input data, generated numerically. To avoid any bias in the585

measurements, the deposit is explicitly defined in the computational mesh to generate586

the input data. The target shape here is composed of four ellipsoids at angles 0, π/2, π,587

and 3π/2, of z-radius 3.25 mm, r-radius 2.5 mm, and θ-radius 5 mm. We consider here588

that the probe scans 41 positions in the z-axis. For solving all systems from Figure 4,589

we use the optimal parameters found in the previous section, i.e., BGRODDR with a590

single recycled multivector and sub-blocks of size at most 98, see the before last line591

from Table 2.592

Let us first recall the algorithm using a SAX probe. It has only two probes593

and generates two signals: one differential and one absolute mode. Therefore, for594

one inversion iteration, there are 82 source terms for the direct problem, and as595

many terms for the adjoint problem. As such, we expect the resolution of the finite596

element problems to be faster than for the SMX probe. We consider two initializations,597

displayed in Figure 5.598

(a) Axisymmetric
initialization

(b) Non-axisymmetric
initialization

(c) Optimal solution for
axisymmetric initialization

(12 iterations)

(d) Optimal solution for
non-axisymmetric

initialization (13 iterations)

Fig. 6: Convergence results for the SMX probe (in blue) for a target of four
ellipsoids (in green) on 960 processes and different shapes of deposits (in red)

The convergence plots demonstrate the limits of the SAX probe. As the two coils599

of the probe have the same revolution axis as the tube, the information computed600

is averaged on the azimuthal component. As a consequence, when initializing the601

algorithm with an axisymmetric deposit like in Figure 5a, the optimal shape remains602

axisymmetric, see Figure 5c, and does not correspond to the target shape. However,603

by choosing a more accurate initialization, e.g., Figure 5b, where we limit the initial-604

ization on a domain around the target shape, the inversion loop reconstructs valid605

deposits in Figure 5d. Indeed, the optimal solution is now non-axisymmetric. In606
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an industrial context, where we do not now much a priori about the deposit, non-607

axisymmetric initializations cannot be considered as they might miss some deposits.608

Axisymmetric initializations are preferred as they do not introduce bias in the target609

shape. Note that the optimal solution contains small artefacts due to the initialization610

that does not vanish through the convergence. However, these artefacts barely influ-611

ence the impedance signal. Furthermore, they could be removed by adding constraints612

to the optimization problem, for instance surface penalization.613

Type of probe SAX SMX

Level-set convection 214 sec 2.9 min
Direct solve 14 sec 2.6 min
Adjoint solve 14 sec 2.6 min
Gradient computation 151 sec 7.5 min
Total 436 sec 17 min

Table 3: Different operations for one iteration in the inversion algorithm on 960
processes. The most time-consuming operation is typeset in bold

Let us now compare these results with the reconstruction algorithm using the614

SMX probe. The probe is made of 38 coils and generates 76 signals: the emitters are615

coils on the lower row, each emitter is associated with four receivers on both rows.616

As such, the direct problem has 779 source terms, for a problem with approximately617

two million finite element unknowns. These figures are the same as in section 4. We618

test the same initializations as displayed in Figure 6.619

In terms of performance, the method with SMX (resp. SAX) converged in about620

5 hours (resp. 1 hour and 27 minutes), in 13 iterations, at a rate of about 27 (resp. 8)621

minutes per iteration when the descent is accepted, and 7 (resp. 4) minutes per iter-622

ation when the descent is rejected. In the latter case, the computation of the adjoint623

state and the gradient is skipped. Table 3 summarizes the computational time of the624

most demanding operations for one iteration of the inversion algorithm for the two625

types of probe.626

627

Thanks to the use of block Krylov methods, the time spent in both solves is628

roughly similar to the time spent in other operations. Compared to the computational629

time of about one hour with standard methods like GMRES or GCRODR, see Table 1,630

this is a substantial improvement.631

When comparing the results with the SAX and SMX probes, it appears quite632

easily that the computations with the former are faster since the number of source633

terms does not exceed a hundred, compared to the 779 RHS of the latter. However,634

when comparing the convergence results, it appears that the SMX probe provides635

more interesting information on the target deposit.636

Note that due to the fast resolution of the finite element problems, the remaining637

limiting operations are the level-set convection and the gradient computation. The638

first operation is currently done sequentially, but can be easily parallelized. For the639

second operation, the gradient is computed directly inside FreeFEM domain-specific640

language. It could be made more efficient by offloading this operation to a specific641

kernel written in a lower-level language, e.g., C++, but this goes beyond the scope of642

this paper.643
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6. Conclusion. We proposed a complete efficient strategy to solve realistic ECT644

for the reconstruction of deposits inside SG. Using a classical least squares formulation645

of the inverse problem, the main challenges are:646

• use a formulation of the eddy-current problem that does not require remeshing647

and is independent from the topology of the conductor;648

• use an adapted topological shape optimization method;649

• design an efficient solution strategy that allows for a reasonable inversion650

time.651

We proposed for the first one the use of a potential formulation combined with rewrit-652

ing the problem in terms of scattered field. For the second point, a level-set method653

is used combined with appropriate regularization of the descent direction. The bot-654

tleneck of the inversion algorithm is the third point where the issue was to efficiently655

handle large-scale problems with a large number of RHS. Domain decomposition-656

preconditioned Krylov methods proved to be a tool of choice in this case. We com-657

pared two different block Krylov algorithms: BGMRES and BGCRODR. We proposed658

for the latter a new redistribution scheme to increase its performance. This part is659

quite general and may be applied to other large-scale inverse problems. In terms660

of deposit reconstructions, though the SAX probe offers less costly computations, it661

may fail to reconstruct properly the deposit. In contrast, the SMX probe contains662

more information and leads to satisfying results. Thanks to block Krylov methods,663

we are able to converge in less than 5 h for a typical industrial problem. Additional664

accelerations of the inversion scheme can be obtained by further optimizing the shape665

convection step or the computation of the gradient with FreeFEM. These issues will666

be explored in a future work where we would like to apply the inversion scheme on667

experimental data. Reconstructing at the same time the deposit shape, the material668

properties and other possible defects (manufacturing defects, cracks, etc.) is also a669

future perspective of this work where the use of a larger set of data may be needed.670
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1: R0 = Bi −AX0

2: if Uk is defined (from solving a previous sub-block) then
3: [Q,R] = distributed qr(AUk)
4: Ck = Q
5: Uk = UkR

−1

6: X1 = X0 + UkC
H
k R0

7: R1 = R0 − CkCHk R0

8: else
9: [V1, S1] = distributed qr(R0)

10: perform m steps of BGMRES, thus generating Vm+1 and [Q,R] =
qr(Hm) (Arnoldi basis and Hessenberg matrix)

11: find Ym such that RYm = Q−1

[
S1

0p·(m−1)×p

]
12: X1 = X0 + VmYm
13: R1 = Bi −AX1

14: solve

(
Hm +QR−H

[
0p·(m−1)×p·(m−1) 0p·(m−1)×p

0p×p·(m−1) hHm+1,mhm+1,m

])
zλ = θλzλ

15: store the k eigenvectors zλ associated to the smallest eigenvalues in
magnitude in Pk

16: [Q,R] = qr(HmPk)
17: Ck = Vm+1Q
18: Uk = VmPkR

−1

19: end if
20: j = 1
21: while convergence not reached do
22: [Vk, Sk] = distributed qr(Rj)
23: j += 1
24: perform m−k steps of BGMRES with the linear operator (I−CkCHk )A,

thus generating Vm+1−k, [Q,R] = qr(Hm−k), and Ek = CkAVm−k

25: find Ym−k such that RYm−k = Q−1

[
Sk

0p·(m−k−1)×p

]
26: Yk = CHk Rj−1 − EkYm−k
27: Xj = Xj−1 + UkYk + Vm−kYm−k
28: Rj = Bi −AXj

29: scale the columns of Uk so that they are of unit norm and store the
scaling coefficients in Dk

30: define Gm =

[
Dk Ek

0p·(m−k+1)×p·k Hm−k

]
31: solve GHmGmzλ = θλG

H
m

([
CHk Uk 0p·k×p·(m−k)

V Hm−k+1Uk Ip·(m−k+1)×p·(m−k)

])
zλ

32: store the k eigenvectors zλ associated to the smallest eigenvalues in
magnitude in Pk

33: [Q,R] = qr(HmPk)
34: Ck =

[
Ck Vm−k+1

]
Q

35: Uk =
[
UkPk Vm−kPk

]
R−1

36: end while

Fig. 7: BGCRODR as written by Jolivet and Tournier [23]
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