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ABSTRACT Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the
response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life
history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has
become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide
inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon
which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential
interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population
means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability.
We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or
integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of
latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an
implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and
Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing
methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by
simulation and apply our approach to data from a wild pedigreed vertebrate population.

KEYWORDS quantitative genetics; generalized linear model; statistics; theory; evolution; additive genetic variance; G matrix

ADDITIVE genetic variances and covariances of pheno-
typic traits determine the response to selectionand so are

key determinants of the processes of adaptation in response to
natural selection and of genetic improvement in response to
artificial selection (Fisher 1918; Falconer 1960; Lynch and

Walsh 1998; Walsh and Lynch 2003). While the concept of
additive genetic variance (Fisher 1918; Falconer 1960) is
very general, being applicable to any type of character with
any arbitrary distribution, including, for example, fitness
(Fisher 1930), techniques for estimating additive genetic var-
iances and covariances are best developed for Gaussian traits
[i.e., traits that follow a normal distribution (Henderson
1950; Lynch and Walsh 1998)]. Furthermore, quantitative
genetic theory for predicting responses to selection is also
best developed and established for Gaussian characters
(Walsh and Lynch 2003; but see Morrissey 2015). Conse-
quently, although many characters of potential evolutionary
interest are not Gaussian (e.g., survival or number of off-
spring), they are not well handled by existing theory and
methods. Comprehensive systems for estimating genetic
parameters and predicting evolutionary trajectories of
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non-Gaussian traits will hence be very useful for quantitative
genetic studies of adaptation.

For the analysis of Gaussian traits, linear mixed model
(LMM)-based inferences of genetic parameters, using the
“animal model,” have become common practice in animal
and plant breeding (Thompson 2008; Hill and Kirkpatrick
2010), but also in evolutionary studies on wild populations
(Kruuk 2004; Wilson et al. 2010). Recently, the use of gener-
alized linear mixed models (GLMMs) to analyze non-Gaussian
traits has been increasing (e.g., Milot et al. 2011; Wilson et al.
2011;Morrissey et al. 2012; de Ayers et al. 2013; Villemereuil
et al. 2013). Whereas LMM analysis directly estimates addi-
tive genetic parameters on the scale on which traits are
expressed and selected, and upon which we may most natu-
rally consider their evolution, this is not the case for GLMMs.
In this article, we offer a comprehensive description of the
assumptions of GLMMs and their consequences in terms of
quantitative genetics and a framework to infer quantitative
genetic parameters from GLMMs output. This work applies
and extends theory in Morrissey (2015), to handle the effects
of (nonlinear) relationships among the scale upon which in-
ference is conducted in a GLMM and the scale of data and to
accommodate the error structures that arise in GLMM analysis.
These results generalize existing expressions for specific models
[threshold model and Poisson with a log link (Dempster and
Lerner 1950; Robertson 1950; Foulley and Im 1993)].We show
that fixed effects in GLMMs raise special complications and we
offer some efficient approaches for dealing with this issue.

While it will undoubtedly be desirable to develop a com-
prehensive method for making data-scale inferences of quan-
titative genetic parameters with GLMMs, such an endeavor
will not yield a system for predicting evolution in response to
natural or artificial selection, even if a particular empirical
system is verywell served by the assumptions of aGLMM.This
is because systems for evolutionary prediction, specifically the
breeder’s equation (Fisher 1924; Lush 1937) and the Lande
equation (Lande 1979; Lande and Arnold 1983), assume that
breeding values (and in most applications, phenotypes) are
multivariate normal or make assumptions such as linearity of
the parent–offspring regression, which are unlikely to hold
for nonnormal traits (Walsh and Lynch 2003). Even if it is
possible to estimate additive genetic variances of traits on the
scale upon which traits are expressed, we show that these
quantities are not strictly usable for evolutionary prediction.
However, we will see that the scale on which estimation is
performed in a GLMMdoes, by definition, satisfy the assump-
tions of the breeder’s and Lande equations. Thus, for the
purpose of predicting evolution, it may be useful to be able
to express selection of non-Gaussian traits on this scale. Such
an approach will yield a system for evolutionary prediction of
characters that have been modeled with a GLMM, requiring
no more assumptions than those that are already made in
applying the statistical model.

Themain results in this articlearearranged in four sections.
First,wedescribe theGLMMframework: its relationship to the
more general (Gaussian) LMM and especially to the Gaussian

animal model (Henderson 1973; Kruuk 2004; Wilson et al.
2010), how GLMMs can be usefully viewed as covering three
scales, and how some special interpretational challenges
arise and are currently dealt with. Second, we propose a
system for making inferences of quantitative genetic param-
eters on the scale upon which traits are expressed for arbi-
trary GLMMs. We show how to estimate genotypic and
additive genetic variances and covariances on this scale, ac-
counting for fixed effects as necessary. We lay out the formal
theory underlying the system and apply it to an empirical
data set. The relationships between existing analytical formu-
las and our general framework are also highlighted. Third,
we illustrate the issues when inferring quantitative genetic
parameters using a GLMM with an empirical example on
Soay sheep (Ovis aries) and how our framework can help to
overcome them. Fourth, we outline a system of evolutionary
prediction for non-Gaussian traits that capitalizes on the fact
that the latent scale in a GLMM satisfies the assumptions of
available equations for the prediction of evolution. We show
in a simulation study that (i) evolutionary predictions using
additive genetic variances on the observed data scale repre-
sent approximations and can, in fact, give substantial errors,
and (ii) making inferences via the latent scale provides un-
biased predictions, insofar as a GLMM may provide a prag-
matic model of variation in non-Gaussian traits. The framework
introduced here (including both quantitative genetic parameter
inference and evolutionary prediction) has been implemented
in an R package (RCore Team2015), QGglmm, and is available
at https://cran.r-project.org/.

The Generalized Linear Mixed Model Framework

Linear mixed models for Gaussian traits

For Gaussian traits, a linear mixed model allows various
analyses of factors that contribute to the mean and variance
of phenotype. In particular, a formulation of a linear mixed
model called the animal model provides a very general
method for estimating additive genetic variances and covari-
ances, given arbitrary pedigree data, and potentially account-
ing for a range of different types of confounding variables,
such as environmental effects, measurement error, or mater-
nal effects. A general statement of an animal model analysis
decomposing variation in a trait, z; into additive genetic and
other components would be

z ¼ mþ Xbþ Zaaþ Z1u1 þ . . .þ Zkuk þ e; (1)

where m is the model intercept; b is a vector of fixed effects
such as sex and age, relating potentially both continuous and
categorical effects to observations via the fixed effects design
matrixX; just as in an ordinary linearmodel; and e is the vector
of normally distributed residuals. An arbitrary number of ran-
dom effects can be modeled, with design matrices Z; where
effects (a; u1. . .uk) are assumed to be drawn from normal
distributions with variances to be estimated. The key feature
of the animal model is that it includes individual additive
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genetic effects, or breeding values, conventionally denoted a:
These additive genetic effects and, critically, their variance are
estimable given relatedness data, which can be derived from
pedigree data or, more recently, from genomic estimates of
relatedness (Sillanpää 2011). The covariances of breeding val-
ues among individuals can be modeled according to

a � Nð0;AVAÞ; (2)

where A is the additive genetic relatedness matrix derived
from the pedigree and VA is the genetic additive variance.

Common issues with non-Gaussian traits

Manynon-Gaussian traits, however, cannotbe strictly additive
on the scale on which they are expressed. Consider, for
example, survival probability that is bounded at 0 and 1 so
that effects like the substitution effect of one allele for another
necessarily must be smaller when expressed in individuals
that otherwise have expected values near 0 or 1. In such a
scenario, it may be reasonable to assume that there exists an
underlying scale, related to survival probability, upon which
genetic and other effects are additive.

In addition to inherent nonadditivity, many non-Gaussian
traits will have complex patterns of variation. Over and above
sources of variation that can be modeled with fixed and
random effects, as in an LMM (e.g., using Equations 1 and
2), residual variation may include both inherently stochastic
components and components that correspond to unmodeled
systematic differences among observations. In an LMM, such
differences are not distinguished, but contribute to residual
variance. However, for many non-Gaussian traits it may be
desirable to treat the former as arising from some known
statistical distribution, such as the binomial or Poisson distri-
bution, and to deal with additional variation via a latent-scale
residual (i.e., an overdispersion term). Separation of these
two kinds of variation in residuals may be very generally
useful in evolutionary quantitative genetic studies.

The scales of the generalized linear mixed model

GLMManalysis canbeused for inferenceof quantitative genetic
parameters and provides pragmatic ways of dealing with in-
herentnonadditivityandwithcomplexsourcesofvariation.The
GLMM framework can be thought of as consisting of three
distinct scales on which we can think of variation in a trait
occurring (see Figure 1). A latent scale is assumed (Figure 1,
top), on which effects on the propensity for expression of some
trait are assumed to be additive. A function, called a “link func-
tion,” is applied that links expected values for a trait to the
latent scale. For example, a trait that is expressed in counts,
say, number of behaviors expressed in a unit time, is a strictly
nonnegative quantity. As depicted in Figure 1, a strictly positive
distribution of expected values may be related to latent values
ranging from 2N to þN by a function such as the log link.
Finally, a distribution function (e.g., binomial, Poisson, etc.) is
required to model the “noise” of observed values around the
expected value (Figure 1, bottom). Different distributions are

suitable for different traits. For example, with a count trait such
as that depicted in Figure 1, observed values may be modeled
using the Poisson distribution, with expectations related to the
latent scale via the log-link function.

More formally, these three scales of the GLMM can be
written

ℓ ¼ mþ Xbþ Zaaþ Z1u1 þ . . .þ Zkuk þ o; (3a)

h ¼ g21ðℓÞ; (3b)

z � Dðh; uÞ; (3c)

where Equation 3a is just as for an LMM (Equation 1), except
that it describes variation on the latent scale ℓ; rather than the
response directly. Note that we now refer to the “residual”
(denoted e in Equation 1) as “overdispersion” (denoted o;
with a variance denoted VO), since residuals (variation
around expected values) are defined by the distribution func-
tion, D; in this model. Just as for the LMM (Equation 1), all
random effects are assumed to follow normal distributions
with variances to be estimated on the latent scale. Particu-
larly, the variance of additive genetic effects a is assumed to
follow Equation 2 on the latent scale.

Equation 3b formalizes the idea of the link function. Any
link function has an associated inverse link function, g21;

Figure 1 Example of the relationships between the three scales of the
GLMM using a Poisson distribution and a logarithm-link function. Deter-
ministic relationships are denoted with shaded solid arrows, whereas
stochastic relationships are denoted with shaded dashed arrows. Note that
the latent scale is depicted as a simple Gaussian distribution for the sake of
simplicity, whereas it is a mixture of Gaussian distributions in reality.
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which is often useful for converting specific latent values to
expected values. The expected values h constitute what we
call the expected data scale. For example, where the log-link
function translates expected values to the latent scale, its in-
verse, the exponential function, translates latent values to
expected values. Finally, Equation 3c specifies the distribution
bywhich the observations z scatter around the expected values
according to some distribution function that may involve pa-
rameters (denoted u) other than the expectation. We call this
the observed data scale. Some quantities of interest, such as the
mean, are the same on the expected data scale and on the
observed data scale. When parameters are equivalent on these
two scales, we refer to them together as the data scales.

The distinction we make between the expected and ob-
serveddatascales is oneofconvenienceas theyarenotdifferent
scales per se. However, this distinction allows for more biolog-
ical subtlety when interpreting the output of a GLMM. The
expected data scale can be thought of as the “intrinsic” value
of individuals (shaped by both genes and the environment),
but this intrinsic value can be studied only through random
realizations. As we will see, because breeding values are in-
trinsic individual values, the additive genetic variance is the
same for both scales, but, due to the added noise in observed
data, the heritabilities are not. The choice of which scale to
calculate heritability depends on the underlying biological
question. For example, individuals (given their juvenile
growth and genetic value) might have an intrinsic annual re-
productive success of 3.4, but can produce only an integer
number of offspring each year (say 2, 3, 4, or 5): Heritabilities
of both intrinsic expectations and observed numbers can be
computed, but their values and interpretations will differ.

Current practices and issues with computing
quantitative genetic parameters from GLMM outputs

Genetic variance components estimated in a generalized
animal model are obtained on the latent scale. Hence, the
“conventional” formula to compute heritability,

h2lat ¼
VA;ℓ

VA;ℓ þ VRE þ VO
; (4)

where VRE is the summed variance of all random effects apart
from the additive genetic variance, and VO is the overdisper-
sion variance, is the heritability on the latent scale, not on the
observed data scale (Morrissey et al. 2014). Here, and
throughout this article, VA;ℓ stands for the additive genetic
variance on the latent scale. Although it might sometimes
be sensible to measure the heritability of a trait on the latent
scale (for example, in animal breeding, where selection
might be based on latent breeding values), it is natural to
seek inferences on the scale upon which the trait is expressed
and on which we may think of selection as acting. Some
expressions exist by which various parameters can be
obtained or approximated on the observed data scale. For
example, various expressions for the intraclass correlation
coefficients on the data scale exist (reviewed in Nakagawa

and Schielzeth 2010), but, contrary to the LMM, heritabilities
on the data scales within a GLMM framework cannot be con-
sidered as intraclass correlation coefficients. Exact analytical
expressions exist for the additive genetic variance and heri-
tability on the observed data scale for two specific and
important families of GLMMs (i.e., combinations of link func-
tions and distribution functions): for a binomial model with a
probit link function [i.e., the “threshold model” (Dempster
and Lerner 1950)] and for a Poisson model with a logarithm
link function (Foulley and Im 1993). However, a general
system for calculating genetic parameters on the expected
and observed data scales for arbitrary GLMMs is currently
lacking.

In addition to handling the relationship between observed
data and the latent trait via the link anddistribution functions,
any system for expected and observed scale quantitative ge-
netic inference with GLMMs will have to account for complex
ways in which fixed effects can influence quantitative genetic
parameters. It is currently appreciated that fixed effects in
LMMsexplainvarianceandthatvarianceassociatedwithfixed
effects canhavea large influenceonsummary statistics suchas
repeatability (Nakagawa and Schielzeth 2010) and heritabil-
ity (Wilson 2008). This principle holds for GLMMs as well,
but fixed effects cause additional, important complications
for interpreting GLMMs. While random and fixed effects
are independent in a GLMM on the latent scale, the nonlin-
earity of the link function renders them interrelated on the
expected and observed scales. Consequently, and unlike in an
LMM or in a GLMM on the latent scale, variance components
on the observed scale in a GLMM depend on the fixed effects.
Consider, for example, a GLMM with a log-link function. Be-
cause the exponential is a convex function, the influence of
fixed and random effects will create more variance on the
expected and observed data scales for larger values than for
smaller values.

Quantitative Genetic Parameters in GLMMs

Although all examples and most equations in this article are
presented in a univariate form, all our results are applicable to
multivariate analysis, which is implemented in our software.
Unless stated otherwise, the equations below assume that no
fixed effects (apart from the intercept) were included in the
GLMM model.

Phenotypic mean and variances

Expected population mean: The expectedmean phenotype�z
on the data scale (i.e., applying to both the mean expected
value and the mean observed value) is given by

�z ¼
Z

g21ðℓÞ fN
�
ℓ;m;VA;ℓ þ VRE þ VO

�
dℓ; (5)

where fN ðℓ;m;VA;ℓ þ VRE þ VOÞ is the probability density
of a normal distribution with mean m and variance
VA;ℓ þ VRE þ VO evaluated at latent value ℓ:
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Expected-scale phenotypic variance: Phenotypic variance on
the expected data scale can be obtained analogously to the
data scale population mean. Having obtained �z; the pheno-
typic variance is

VP;exp ¼
Z �

g21ðℓÞ2�z
�2

fN
�
ℓ;m;VA;ℓ þ VRE þ VO

�
dℓ: (6)

Observed-scale phenotypic variance: Phenotypic variance of
observed values is the sum of the variance in expected values
and variance arising from the distribution function. Since
these variances are independent by construction in a GLMM,
they can be summed. This distribution variance is influenced
by the latent trait value, but might also depend on additional
distribution parameters included in u (see Equation 3c).
Given a distribution-specific variance function v,

VP;obs ¼ VP;exp þ
Z

vðℓ; uÞ fN
�
ℓ;m;VA;ℓ þ VRE þ VO

�
dℓ: (7)

Genotypic variance on the data scales, arising from
additive genetic variance on the latent scale

Because the link function is nonlinear, additive genetic vari-
ance on the latent scale is manifested as a combination of
additive and nonadditive variance on the data scales. Follow-
ing Falconer (1960), the total genotypic variance on the data
scale is the variance of genotypic values on that scale. Geno-
typic values are the expected data scale phenotypes, given
latent scale genetic values. The expected phenotype of an
individual with a given latent genetic value a, i.e., its geno-
typic value on the data scales E½zja�; is given by

E½zja� ¼
Z

g21ðℓÞ fN ðℓ;mþ a;VRE þ VOÞdℓ: (8)

The total genotypic variances on the expected and observed
data scales are the same, since genotypic values are expecta-
tions that do not change between the expected and observed
scales. The total genotypic variance on both the expected and
observed data scales is then

VðE½zja�Þ ¼
Z

ðE½zja�2�zÞ2 fN
�
a; 0;VA;ℓ

�
da: (9)

This is the total genotypic variance on the data scale, arising from
strictly additivegenetic varianceon the latent scale. If nonadditive
genetic effects are modeled on the latent scale, they would be
included in the expectations and integrals in Equations 8 and 9.

Additive genetic variance on the data scales

The additive variance on the data scales is the variance of
breeding values computed on the data scales. Following
Robertson (1950; see also Fisher 1918), breeding values on
the data scales, i.e., aexp and aobs; are the part of the pheno-
type z that depends linearly on the latent breeding values.
The breeding values on the data scale can then be defined as

the predictions of a least-squares regression of the observed
data on the latent breeding values,

aobs ¼ ẑja ¼ mþ ba; (10)

where ẑ is the value of z predicted by the regression, a is the
latent breeding value, andm and b are the parameters of the
regression. Thus, we have VA;obs ¼ b2VA;ℓ and, from standard
regression theory,

b ¼ covðz; aÞ
VA;ℓ

: (11)

Because of the independence between the expected values
of z [i.e., the expected data scale g21ðℓÞ] and the distribu-
tion noise (see Equation 7), we can obtain the result that
covðz; aÞ ¼ covðg21ðℓÞ; aÞ; and hence

b ¼ cov
�
g21ðℓÞ; a�
VA;ℓ

: (12)

Stein’s (1973) lemma states that if X and Y are bivariate
normally distributed random variables, then the covariance
of Y and some function of X, f ðXÞ; is equal to the expected
value of f 9ðXÞ times the covariance between X and Y, so

cov
�
g21ðℓÞ; a� ¼ E

�
dg21ðℓÞ

dℓ

�
covðℓ; aÞ ¼ E

�
dg21ðℓÞ

dℓ

�
VA;ℓ;

(13)

noting that the covariance of latent breeding values and latent
values is the variance of latent breeding values. Finally,
combining Equation 12 with Equation 13, we obtain

b ¼ E
�
dg21ðℓÞ

dℓ

�
: (14)

To avoid confusion with various uses of b as other forms of
regression coefficients, and for consistency with Morrissey
(2015), we denote the average derivative of expected value
with respect to latent value as C:

C ¼ E
�
dg21ðℓÞ

dℓ

�
¼

Z
dg21ðℓÞ

dℓ
fN

�
ℓ;m;VA;ℓ þ VRE þ VO

�
dℓ:

(15)

The additive genetic variances on the expected and observed
scales are still the same and are given by

VA;obs ¼ VA;exp ¼ C2VA;ℓ: (16)

Including fixed effects in the inference

General issues: Because of the nonlinearity introduced by the
link function in a GLMM, all quantitative genetic parameters
are directly influenced by the presence of fixed effects. Hence,
when fixed effects are included in the model, it will often be
important to marginalize over them to compute accurate
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population parameters. There are different approaches to do
so.Wefirst describe the simplest approach (i.e., directly based
on GLMM assumptions).

Averaging over predicted values: In aGLMM, no assumption
ismadeabout thedistributionof covariates in thefixedeffects.
Given this, we canmarginalize over fixed effects by averaging
over predicted values (marginalized over the random effects,
i.e., Xb̂; where b̂ are the fixed effects estimates). Note that,
doing so, we implicitly make the assumption that our sample
is representative of the population of interest. Using this ap-
proach, we can compute the population mean in Equation
5 as

�z ¼ 1
N

XN
i¼1

Z
g21ðℓÞ fN

�
ℓ;mþ ℓ̂i;VA;ℓ þ VRE þ VO

�
dℓ; (17)

where N is the number of predicted latent values in ℓ̂ ¼ Xb̂:
Typically, X will be the fixed-effects design matrix used when
fitting the generalized animal model (Equations 1–3), and N
will be the number of data observations. Furthermore, this as-
sumes that all fixed effects represent biologically relevant vari-
ation, rather than being corrections for the observation process
or experimental condition. Cases may arise where some fixed
effects are biologically interesting (e.g., habitat characteristics,
potentially) and others are not (e.g., some correction associated
with the instrument used to make phenotypic measurements).
In such cases it may be desirable to integrate over those fixed
effects that are biologically interesting and fix others at some
sensible value (e.g., their mean, or zero, when zero is interpret-
able as a lack of effect). From this estimate of�z;we can compute
the expected-scale phenotypic variance:

VP;exp ¼ 1
N

XN
i¼1

Z �
g21ðℓÞ2�z

�2
fN

�
ℓ;mþ ℓ̂i;

VA;ℓ þ VRE þ VO
�
dℓ:

(18)

Note that we are not averaging over variances computed for
each predicted value, as the value of the mean �z is the same
across the computation. Equations 7–9 and 15 are modified
accordingly to compute all parameters, including C: This ap-
proach has the advantages of being simple andmaking a direct
use of the GLMM inference without further assumptions.

Sampled covariates are not always representative of the
population: The distribution of covariate values in Xmay not
be representative of the population being studied. In such
cases, integration over available values of fixed effects may
be inappropriate. For example, a population may be known
(or assumed) to have an equal sex ratio, but one sex may be
easier to catch and therefore overrepresented in any given
data set. In such a situation, incorporation of additional as-
sumptions or data about the distribution of covariates (e.g.,
of sex ratio) may be useful. A first approach is to predict
values according to a new set of covariates constructed to

be representative of the population (e.g., with balanced sex
ratio). Given these new predicted values, the above approach
can readily be used to compute quantitative genetic param-
eters of interest. A drawback of this approach is that it re-
quires one to create a finite sample of predicted values
instead of a full distribution of the covariates. A second ap-
proach requires one to specify such a distribution for fixed
covariates, here noted fXðXÞ: In this case, Equation 17 can be
modified as follows:

�z ¼ ∬g21ðℓÞ fN
�
ℓ;mþ Xb̂;VA;ℓ þ VRE þ VO

�
fXðXÞdXdℓ:

(19)

All relevant equations (Equations 6–9 and 15) are modified
accordingly. This approach is the most general one, but re-
quires the ability to compute fXðXÞ: Note that this distribu-
tion should also account for potential covariance between
covariates.

Summary statistics and multivariate extensions

Equations 5–16 give the values of different parameters that
are useful for deriving other evolutionary quantitative genet-
ic parameters on the observed data scale. Hence, from them,
other parameters can be computed. The narrow-sense heri-
tability on the observed data scale can be written as

h2obs ¼
VA;obs
VP;obs

: (20)

Replacing VP;obs by VP;exp will lead to the heritability on the
expected data scale h2exp:

h2exp ¼ VA;exp
VP;exp

: (21)

Recalling that VA;obs ¼ VA;exp; but VP;obs 6¼ VP;exp; note that the
two heritabilities above differ. Parameters such as addi-
tive genetic coefficient of variance and evolvability (Houle
1992) can be just as easily derived. The coefficients of varia-
tion on the expected and observed data scales are identical
and can be computed as

CVA;obs ¼ CVA;exp ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffi
VA;obs

p
�z

; (22)

and the evolvability on the expected and observed data scales
will be

IA;obs ¼ IA;exp ¼ VA;obs
�z2

: (23)

The multivariate genetic basis of phenotypes, especially as
summarized by the G matrix, is also often of interest. For
simplicity, all expressions considered to this point have been
presented in univariate form. However, every expression has
a fairly simple multivariate extension. Multivariate pheno-
types are typically analyzed by multiresponse GLMMs. For ex-
ample, the vector of mean phenotypes in a multivariate analysis
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on the expected data scale is obtained by defining the link func-
tion to be a vector-valued function, returning a vector of
expected values from a vector of values on the latent scale.
The phenotypic variance is then obtained by integrating the
vector-valued link function times the multivariate normal distri-
bution total variance on the latent scale, as in Equations 5 and 7.
Integration over fixed effects for calculation of the multivariate
mean is directly analogous to either of the extensions of Equation
5 given in Equations 17 and 19. Calculation of other parameters,
such as multivariate genotypic values, additive-derived covari-
ance matrices, and phenotypic covariance matrices, has directly
equivalent multivariate versions as well. The additive genetic
variance–covariancematrix (theGmatrix) on the observed scale
is simply the multivariate extension of Equation 16; i.e.,
Gobs ¼ CGℓC

T : Here, Gℓ is the latent G matrix and C is the
average gradient matrix of the vector-valued link function,
which is a diagonal matrix of C values for each trait (simulta-
neously computed from a multivariate version of Equation 15).

Relationships with existing analytical formulas

Binomial distribution and the threshold model: Heritabil-
itiesofbinarytraitshavea longhistoryofanalysiswithathreshold
model (Wright 1934; Dempster and Lerner 1950; Robertson
1950), whereby an alternate trait category is expressed when
a trait on a latent “liability scale” exceeds a threshold. Note that
this liability scale is not the same as the latent scale hereby de-
fined for the GLMM (see Supplemental Material, Figure S1).
However, it can be shown (see File S1, section A) that a GLMM
with a binomial distribution and a probit-link function is exactly
equivalent to such amodel, only with slightly differently defined
scales. For threshold models, heritability can be computed on
this liability scale by adding a so-called “link variance” VL to the
denominator (see, for example, Nakagawa and Schielzeth 2010;
de Villemereuil et al. 2013):

h2liab ¼ VA;ℓ
VA;ℓ þ VRE þ VO þ VL

: (24)

Because the probit-link function is the inverse of the cumu-
lative standard normal distribution function, the link variance
VL is equal to one in this case. One can think of the link
variance as arising in this computation because of the reduc-
tion from three scales (in the case of a GLMM) to two scales
(liability and observed data in the case of a threshold model):
The liability scale includes the link function.

When the heritability is computed using the threshold
model, Dempster and Lerner (1950) and Robertson (1950)
derived an exact analytical formula relating this estimate to
the observed data scale,

h2obs ¼
t2

pð12 pÞh
2
liab; (25)

where p is the probability of occurrence of the minor phenotype
and t is the density of a standard normal distribution at the pth
quantile (see also Roff 1997). It can be shown (see File S1,

section A) that this formula is an exact analytical solution to
Equations 5–21 in the case of aGLMMwith binomial distribution
and a probit link.When fixed effects are included in themodel, it
is still possible to use these formulas by integration over the
marginalized predictions (see File S1, sectionA).Note that Equa-
tion 25 applies only to analyses conducted with a probit link; it
does not apply to a binomial model with a logit-link function.

Poisson distribution with a logarithm link: For a log-link
function and a Poisson distribution, both the derivative of the
inverse link function and the variance of the distribution are
equal to the expected value. Consequently, analytical results
are obtainable for a log/Poisson model for quantities such
as broad- and narrow-sense heritabilities. Foulley and Im
(1993) derived an analytical formula to compute narrow-
sense heritability on the observed scale,

h2obs ¼
l2   VA;ℓ

l2
�
exp

�
VA;ℓ þ VRE þ VO

�
2 1

�þ l

¼ l  VA;ℓ
l
�
exp

�
VA;ℓ þ VRE þ VO

�
2 1

�þ 1
; (26)

where l is the data scale phenotypic mean, computed ana-
lytically as

l ¼ exp
	
mþ VA;ℓ þ VRE þ VO

2



: (27)

Again, it can be shown (see File S1, section B) that these
formulas are exact solutions to Equation 5–21 when assum-
ing a Poisson distribution with a log link. The inclusion of
fixed effects in the model makes the expression slightly more
complicated (see File S1, section B). These results can also be
extended to the negative-binomial distribution with log link
with slight modifications of the analytical expressions (see
File S1, section B).

The component of the broad-sense heritability on the
observed data scale that arises from additive genetic effects
on the latent scale canbecomputedasan intraclass correlation
coefficient (i.e., repeatability) for this kind of model (Foulley
and Im 1993; Nakagawa and Schielzeth 2010):

H2
obs ¼

VðE½zja�Þ
VP;obs

¼ l
�
exp

�
VA;ℓ

�
21

�
l
�
exp

�
VA;ℓ þ VRE þ VO

�
2 1

�þ 1
: (28)

If nonadditive genetic components were fitted in the model
(e.g., dominance variance), they should be added to VA;ℓ in
Equation 28 to constitute the total genotypic variance and
thus obtain the actual broad-sense heritability. Note that
Equations 26 and 28 converge for small values of VA;ℓ:

Example Analysis: Quantitative Genetic Parameters
of a Nonnormal Character

We modeled the first-year survival of Soay sheep (O. aries)
lambs on St. Kilda, Outer Hebrides, Scotland. We analyzed
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records of 3814 individuals born between 1985 and 2001 that
are known to either have died in their first year, defined
operationally as having died before the first of April in the
year following their birth, or have survived beyond their first
year. Months of mortality for sheep of all ages are generally
known from direct observation, and day of mortality is typi-
cally known. Furthermore, every lamb included in this anal-
ysis had a known sex and twin status (whether or not it had a
twin) and a mother of a known age.

Pedigree information is available for theSt.KildaSoay sheep
study population. Maternal links are known from direct obser-
vation, with occasional inconsistencies corrected with genetic
data. Paternal links are known from molecular data. Most
paternity assignments are made with very high confidence,
using a panel of 384 SNP markers, each with highminor allele
frequencies, and spreadevenly throughout thegenome.Details
of marker data and pedigree reconstruction are given in
Bérénos et al. (2014). The pedigree information was pruned
to include only phenotyped individuals and their ancestors.
The pedigree used in our analyses thus included 4687 individ-
uals with 4165 maternal links and 4054 paternal links.

Wefittedageneralized linearmixedmodelof survivalwitha
logit-link function and a binomial distribution function. We
included fixed effects of individual’s sex and twin status and
linear, quadratic, and cubic effects of maternal age (matAgei).
Maternal age was mean centered by subtracting the overall
mean. We also included an interaction of sex and twin status
and an interaction of twin status with maternal age. We in-
cluded random effects of breeding value (as for Equation 2),
maternal identity, and birth year. Because the overdispersion
variance VO in a binomial GLMM is unobservable for binary
data, we set its variance to one. The model was fitted in
MCMCglmm (Hadfield 2010), with diffuse independent nor-
mal priors on all fixed effects and parameter-expanded priors
for the variances of all estimated random effects.

We identified important effects on individual survival prob-
ability; i.e., several fixed effects were substantial and also each
of the additive genetic, maternal, and among-year random
effects explained appreciable variance (Table 1). The model
intercept corresponds to the expected value on the latent scale
of a female singleton (i.e., not a twin) lamb with an average-
aged (4.8 years) mother. Males have lower survival than fe-
males, and twins have lower survival than singletons. There
were also substantial effects of maternal age, corresponding to
a rapid increase in lamb survival with maternal age among
relatively young mothers and a negative curvature, such that
the maximum survival probabilities occur among offspring of
mothers aged 6 or 7 years. The trajectories of maternal age
effects in the cubic model are similar to those obtained when
maternal age is fitted as a multilevel effect.

To illustrate the consequences of accounting for different
fixed effects on expected and observed data scale inferences,
we calculated several parameters under a series of different
treatments of the latent scale parameters of the GLMM. We
calculated the phenotypic mean, the additive genetic vari-
ance, the total variance of expected values, the total variance

of observed values, and the heritability of survival on the
expected and observed scales.

First, we calculated parameters using only the model in-
tercept (m in Equations 1 and 3a). This intercept, under de-
fault settings, is arbitrarily defined by the linear modeling
software implementation and is thus software dependent.
In the current case, due to the details of how the data were
coded, the intercept is the latent scale prediction for female
singletons with average-aged (4.8 years) mothers. In an av-
erage year, singleton females with average-aged mothers
have a probability of survival of �80%. The additive genetic
variance VA;obs; calculated with Equation 16, is �0.005 and
corresponds to heritabilities on the expected and observed
scales of 0.096 and 0.051 (Table 2).

In contrast, if we wanted to calculate parameters using a
different (but equally arbitrary) intercept, corresponding to
twinmales, we would obtain amean survival rate of 0.37 and
an additive genetic variance that is approximately twice as
large, but similar heritabilities (Table 1). Note that we have
not modeled any systematic differences in genetic parame-
ters between females and males or between singletons and
twins. These differences in parameter estimates arise from
the exact same estimated variance components on the latent
scale, as a result of different fixed effects.

Thisfirst comparisonhas illustratedamajorway inwhich the
fixed effects in a GLMM influence inferences on the expected
and observed data scales. For linear mixed models, it has been
noted that variance in the response is explained by the fixed
predictors and that this may inappropriately reduce the pheno-
typic variance and inflate heritability estimates for some pur-
poses (Wilson 2008). However, in the example so far, we have
simply considered two different intercepts (i.e., no difference in
explained variance): female singletons vs. male twins, in both
cases, assuming focal groups of individuals are all born to
average-aged mothers. Again these differences in phenotypic
variances and heritabilities arise from differences in intercepts,
not from any differences in variance explained by fixed effects.
All parameters on the expected and observed value scales are
dependent on the intercept, including the mean, the additive
genetic variance, and the total variance generated from ran-
dom effects. Heritability is modestly affected by the intercept,
because additive genetic and total variances are similarly, but
not identically, influenced by the model intercept.

Additive genetic effects are those arising from the average
effect of alleles on phenotype, integrated over all background
genetic and environmental circumstances inwhich alternate
alleles might occur. Fixed effects, where they represent bi-
ologically relevant variation, are part of this background.
Followingour framework(seeEquation17),wecan solve the
issue of the influence of the intercept by integrating our
calculation of C and ultimately VA;obs over all fixed effects.
This approach has the advantage of being consistent for any
chosen intercept, as the value obtained after integration will
not depend on that intercept. Considering all fixed and
random effects, quantitative genetic parameters on the
expected and observed scales are given in Table 2, fourth
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column. Note that additive genetic variance is not interme-
diate between the two extremes (concerning sex and twin
status) that we previously considered. The calculation of
VA;obs now includes an average slope calculated over a wide
range of the steep part of the inverse-link function (near
0 on the latent scale and near 0.5 on the expected data
scale) and so is relatively high. The observed total pheno-
typic variance VP;obs is also quite high. The increase in VP;obs

has two causes. First, the survival mean is closer to 0.5, so
the random effects variance is now manifested as greater
total variance on the expected and observed scales. Second,
there is now variance arising from fixed effects that is in-
cluded in the total variance.

Giventhis,whichestimates shouldbereportedor interpreted?
Wehaveseenthatwhenfixedeffectsare included inaGLMM,the
quantitative genetic parameters calculated without integration
are sensitive to an arbitrary parameter: the intercept. Hence
integration over fixed effects may often be the best strategy for
obtainingparameters that arenot arbitrary. In the case of survival
analyzed here, h2obs is the heritability of realized survival,
whereas h2exp is the heritability of intrinsic individual survival.
Since realized survival is the one “visible” by natural selection,
h2obs might be a more relevant evolutionary parameter. Nonethe-
less, we recommend that VP;exp and VP;obs are both reported.

Data availability

The data analyzed (individual identity, first year survival,
maternal identity and all covariates, and the pedigree) in this
example are archived and available via the following DOI:
10.17605/OSF.IO/SCZPR.

Evolutionary Prediction

Systems for predicting adaptive evolution in response to
phenotypic selection assume that the distribution of breeding
values is multivariate normal and, in most applications, that
the joint distribution of phenotypes and breeding values is

multivariate normal (Lande 1979; Lande and Arnold 1983;
Walsh and Lynch 2003;Morrissey 2014). The distribution of
breeding values is assumed to be normal on the latent scale
in a GLMM analysis, and therefore the parent–offspring re-
gression will also be normal on that scale, but not necessar-
ily on the data scale. Consequently, evolutionary change
predicted directly using data-scale parameters may be dis-
torted. The breeder’s and Lande equations may hold approx-
imately and may perhaps be useful. However, having taken
up the nontrivial task of pursuing GLMM-based quantitative
genetic analysis, the investigator has at his or her disposal
inferences on the latent scale. On this scale, the assumptions
required to predict the evolution of quantitative traits hold.
In this section we first demonstrate by simulation how ap-
plication of the breeder’s equation will generate biased pre-
dictions of evolution. We then proceed to an exposition of
some statistical machinery that can be used to predict evo-
lution on the latent scale (from which evolution on the
expected and observed scale can subsequently be calcu-
lated, using Equation 5), given inference of the function
relating traits to fitness.

Direct application of the breeder’s and Lande equations
on the data scale

To explore the predictions of the breeder’s equation applied
at the level of observed phenotype, we conducted a simula-
tion in which phenotypes were generated according to a Pois-
son GLMM (Equations 3a–3c, with a Poisson distribution
function and a log-link function) and then selected the larg-
est observed count values (positive selection) with a range of
proportions of selected individuals (from 5% to 95%, creat-
ing a range of selection differentials), a range of latent-scale
heritabilities (0.1, 0.3, 0.5, and 0.8, with a latent phenotypic
variance fixed to 0.1), and a range of latent means m (from
0 to 3). We simulated 10,000 replicates of each scenario,
each composed of a different array of 10,000 individuals.
For each simulation, we simulated 10,000 offspring. For
each offspring, a breeding value was simulated according
to aℓ;i � N ððaℓ;d þ aℓ;sÞ=2;VA;ℓ=2Þ; where aℓ;i is the focal off-
spring’s breeding value, aℓ;d and aℓ;s are the breeding values
of simulated dams and sires, and VA;ℓ=2 represents the segre-
gational variance, assuming parents are not inbred. Dams
and sires were chosen at random with replacement from
among the pool of simulated selected individuals. For each
scenario, we calculated the realized selection differential
arising from the simulated truncation selection, Sobs; and
the average evolutionary response across simulations, Robs:

For each scenario, we calculated the heritability on the ob-
served scale, using Equation 20. If the breeder’s equation was
strictly valid for a Poisson GLMM on the observed scale, the
realized heritability Robs=Sobs would be equal to the observed-
scale heritability h2obs:

The correspondence between Robs=Sobs and h2obs is approx-
imate (Figure 2) and strongly depends on the selection dif-
ferential (controlled here by the proportion of selected
individuals). Note that, although the results presented here

Table 1 Parameters from the GLMM-based quantitative genetic
analysis of Soay sheep (O. aries) lamb first-year survival

Parameter Posterior mode with 95% CI

Fixed effects
Intercept 2.573 (1.755–3.514)
Sex (male vs. female) 21.193 (21.441 to 20.943)
Twin (twin vs. singleton) 22.567 (23.377 to 21.754)
Maternal age, linear term 0.233 (0.089–0.390)
Maternal age, quadratic term 20.171 (20.194 to 20.148)
Maternal age, cubic term 0.014 (0.010–0.020)
Sex–twin interaction 0.543 (0.015–1.068)
Sex–maternal age interaction 20.026 (20.114 to 0.054)

Random effects
VA;ℓ 0.915 (0.275–1.664)
Vmother 0.520 (0.177–0.887)
Vyear 3.335 (1.452–5.551)

All estimates are reported as posterior modes with 95% credible intervals (CI). The
intercept in this model is arbitrarily defined for female lambs without twins, born to
average-aged (4.8 years) mothers.
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depict a situation where the ratio Robs=Sobs is very often larger
than h2obs; this is not a general result (e.g., this is not the case
when using negative instead of positive selection; data not
shown). In particular, evolutionary predictions are poorest in
absolute terms for large m and large (latent) heritabilities.
However, because we were analyzing simulation data, we
could track the selection differential of latent values (by cal-
culating the difference in its mean between simulated survi-
vors and the mean simulated before selection). We can also
calculate the mean latent breeding value after selection.
Across all simulation scenarios, the ratio of the change in
mean breeding value after selection to the change in breeding
value before selection was equal to the latent heritability (see
Figure 2), showing that evolutionary changes could be accu-
rately predicted on the latent scale.

Evolutionary change on the latent scale and associated
change on the expected and observed scales

In an analysis of real data, latent (breeding) values are, of
course, notmeasured.However, givenanestimateof theeffect
of traits on fitness, say via regression analysis, we can derive
the parameters necessary to predict evolution on the latent
scale. The idea is thus to relate measured fitness on the
observed data scale to the latent scale, compute the evolu-
tionary response on the latent scale, and finally compute the
evolutionary response on the observed data scale.

To relate the measured fitness on the observed scale to the
latent scale, we need to compute the expected fitness Wexp

given latent trait value ℓ; which is

WexpðℓÞ ¼
X
k

WPðkÞPðZ ¼ kjℓÞ; (29)

where WPðkÞ is the measure of fitness for the kth data scale
category (assuming the observed data scale is discrete as in
most GLMMs). Population mean fitness can then be calcu-
lated in an analogous way to Equation 5:

�W ¼
Z

WexpðℓÞ fN
�
ℓ;m;VA;ℓ þ VRE þ VO

�
dℓ: (30)

These expressions comprise the basic functions necessary to
predict evolution.Given afittedGLMM,anda given estimate of

the fitness function WPðkÞ; each of several approaches could
give equivalent results. For simplicity, we proceed via applica-
tion of the breeder’s equation at the level of the latent scale.

The change in themean genetic value of any character due
to selection is equal to the covariance of breeding value with
relative fitness (Robertson 1966, 1968). Using Stein’s (1973)
lemma once more, this covariance can be obtained as the
product of the additive genetic variance of latent values
and the average derivative of expected fitness with respect
to latent value, i.e., E½dWexp=dℓ� Evolution on the latent scale
can therefore be predicted by

Dm ¼ VAE
�
dWexp

dℓ

�
1
�W
: (31)

In the case of a multivariate analysis, note that the derivative
above should be a vector of partial derivatives (partialfirst-order
derivative with respect to latent value for each trait) of fitness.

If fixed effects need to be considered, the approach can be
modified in the same way as integration over fixed effects is
accomplished for calculatingotherquantities; i.e., theexpression

�W ¼ 1
N

XN
i¼1

Z
WexpðℓÞfN

�
ℓ;mþ ℓ̂i;VA;ℓ þ VRE þ VO

�
dℓ (32)

would be used in calculations of mean fitness and the average
derivative of expected fitness with respect to latent value.

Phenotypic change caused by changes in allele frequencies
in response to selection is calculated as

D�z ¼
Z

g21ðℓÞfN
�
ℓ;mþ Dm;VA;ℓ þ VRE þ VO

�
dℓ2�z: (33)

Or, if fixed effects are included in the model,

D�z ¼ 1
N

XN
i¼1

Z
g21ðℓÞfN

�
ℓ;mþ ℓ̂i þ Dm;VA;ℓ þ VRE

þ VO
�
dℓ2�z: (34)

Note that, in Equation 34, �zmust be computed as in Equation
17 and that this equation assumes that the distribution of
fixed effects for the offspring generation is the same as for
the parental one.

Table 2 Estimates of expected and observed scale phenotypic mean and variances and additive genetic variance, for three different
treatments of the fixed effects modeled on the linear scale with a GLMM and reported in Table 1

Quantity Arbitrary intercept (singleton female) Arbitrary intercept (twin male) Averaging over all fixed effects

VA;ℓ 0.915 (0.275–1.664) 0.915 (0.275–1.664) 0.915 (0.275–1.664)
h2lat 0.152 (0.056–0.270) 0.152 (0.056–0.270) 0.111 (0.042–0.194)
�z 0.788 (0.718–0.886) 0.371 (0.212–0.471) 0.430 (0.336–0.517)
VA;obs 0.006 (0.002–0.015) 0.011 (0.005–0.024) 0.014 (0.005–0.021)
VP;exp 0.062 (0.033–0.096) 0.104 (0.069–0.123) 0.120 (0.106–0.138)
VP;obs 0.167 (0.107–0.206) 0.241 (0.183–0.250) 0.250 (0.226–0.250)
h2exp 0.096 (0.036–0.202) 0.125 (0.045–0.227) 0.112 (0.036–0.170)
h2obs 0.051 (0.015–0.085) 0.048 (0.023–0.106) 0.047 (0.019–0.089)

Additive genetic variance and heritability on the latent scales are also reported for comparison. Note that h2lat is slightly lower when averaging over fixed effects, since the
variance they explain is then accounted for.
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Another derivation of the expected evolutionary response
using the Price–Robertson identity (Robertson 1966; Price
1970) is given in the File S1 (section C).

The simulation study revisited

Using the same replicates as in the simulation study above,
we used Equations 29–34 to predict phenotypic evolution.
This procedure provides greatly improved predictions of
evolutionary change on the observed scale (Figure 3, top
row). However, somewhat less response to selection is
observed than is predicted. This deviation occurs because,
in addition to producing a permanent evolutionary re-
sponse in the mean value on the latent scale, directional
selection creates a transient reduction of additive genetic

variance due to linkage disequilibrium. Because the link
function is nonlinear, this transient change in the variance
on the latent scale generates a transient change in the
mean on the expected and observed scales. Following
several generations of random mating, the evolutionary
change on the observed scale would converge on the
predicted values. We simulated such a generation at
equilibrium by simply drawing breeding values for the
postselection sample from a distribution with the same
variance as in the parental generation. This procedure
necessarily generated a strong match between predicted
and simulated evolution (Figure 3, bottom row). Addi-
tionally, the effects of transient reduction in genetic vari-
ance on the latent scale could be directly modeled, for

Figure 2 Simulated R=S (evolutionary response over selection differential or the realized heritability) on the latent (top panels) or observed (bottom
panels) data scales against the corresponding scale heritabilities. Each data point is the average over 10,000 replicates of 10,000 individuals for various
latent heritabilities h2lat (0.1, 0.3, 0.5, 0.8), latent population mean (m from 0 to 3, from left to right), and proportion of selected individuals (5%, 10%,
20%, 30%, 50%, 70%, 80%, 90%, and 95%, varying from black to blue). The 1:1 line is plotted in black. The breeder’s equation is predictive on the
latent scale (top panels), but approximate on the observed data scale (bottom panels), because phenotypes and breeding values are not jointly
multivariate normal on that scale.

Genetic Inference with GLMMs 1291

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.186536/-/DC1/FileS1.pdf


example, using Bulmer’s (1971) approximations for the
transient dynamics of the genetic variance in response to
selection.

Implementation

The framework developed here (including univariate and
multivariate parameters computation and evolutionary
predictions on the observed data scale) is implemented
in theRpackageQGglmmavailable via theR comprehensive
archive network, https://cran.r-project.org/. The package
does not perform any GLMM inference but rather imple-
ments the hereby introduced framework for analysis
posterior to a GLMM inference. While the calculations we
provide will often (i.e., when no analytical formula exists)
be more computationally demanding than calculations on
the latent scale, they will be direct ascertainments of spe-
cific parameters of interest, since the scale of evolutionary
interest is likely to be the observed data scale, rather than
the latent scale (unless some artificial selection is applied
to predicted latent breeding values as in modern animal
breeding). Most applications should not be onerous. Com-
putations of means and (additive genetic) variances
took ,1 sec on a 1.7-GHz processor when using our R
functions on the Soay sheep data set. Summation over
fixed effects and integration over 1000 posterior samples
of the fitted model took several minutes. When analytical
expressions are available (e.g., for Poisson/log, binomial/
probit, and negative-binomial/log, see File S1 and R pack-
age documentation), these computations are considerably
accelerated.

Conclusion

The general approach outlined here for quantitative ge-
netic inferencewith GLMMs has several desirable features:
(i) It is a general framework, which should work with any
given GLMM and especially any link and distribution func-
tion; (ii) it provides mechanisms for rigorously handling
fixed effects, which can be especially important in GLMMs;
and (iii) it can be used for evolutionary prediction under
standard GLMM assumptions about the genetic architec-
ture of traits.

Currently, with the increasing application of GLMMs,
investigators seem eager to convert to the observed data
scale. It seems clear that conversions between scales are
generally useful. However, it is of note that the underlying
assumption when using GLMMs for evolutionary predic-
tion is that predictions hold on the latent scale. Hence,
some properties of heritabilities for additive Gaussian
traits, particularly the manner in which they can be used
to predict evolution, do not hold on the data scale for non-
Gaussian traits, even when expressed on the data scale.
Yet, given an estimate of a fitness function, no further
assumptions are necessary to predict evolution on the data
scale, via the latent scale (as with Equations 29, 31, and

33), over and above those that are made in the first
place upon deciding to pursue GLMM-based quantitative
genetic analysis. Hence we recommend using this frame-
work to produce accurate predictions about evolutionary
scenarios.

We have highlighted important ways in which fixed
effects influence quantitative genetic inferences with
GLMMs and developed an approach for handling these
complexities. In LMMs, the main consideration pertaining
to fixed effects is that they explain variance, and some or all
of this variance might be inappropriate to exclude from an
assessment of VP when calculating heritabilities (Wilson
2008). This aspect of fixed effects is relevant to GLMMs,
but furthermore, all parameters on the expected and
observed scales, not just means, are influenced by fixed
effects in GLMMs; these include additive genetic and
phenotypic variances. This fact necessitates particular care
in interpreting GLMMs. Our work clearly demonstrates
that consideration of fixed effects is essential, and the ex-
act course of action needs to be considered on a case-by-
case basis. Integrating over fixed effects would solve, in
particular, the issue of intercept arbitrariness illustrated
with the Soay sheep example. Yet cases may often arise
where fixed effects are fitted, but where one would not
want to integrate over them (e.g., because they represent
experimental rather than natural variability). In such
cases, it will be important to work with a biologically
meaningful intercept, which can be achieved for example
by centering covariates on relevant values (Schielzeth
2010). Finally, note that this is not an all-or-none alterna-
tive: In some situations, it could be relevant to integrate
over some fixed effects (e.g., of biological importance)
while some other fixed effects (e.g., those of experimental
origins) would be left aside.

One of the most difficult concepts in GLMMs seen as a
nonlinear developmental model (Morrissey 2015) is that
an irreducible noise is attached to the observed data. This
is the reason why we believe that distinguishing between
expected and observed data scales does have a biological
meaning. Researchers using GLMMs need to realize that this
kind of model can assume a large variance in the observed
data with very little variance on the latent and expected
data scales. For example, a Poisson/log GLMMwith a latent
mean m ¼ 0 and a total latent variance of 0.5 will result in
observed data with a variance VP;obs ¼ 2:35: Less than half of
this variance lies in the expected data scale (VP;exp ¼ 1:07);
the rest is residual Poisson variation. Our model hence as-
sumes that more than half of the measured variance comes
from totally random noise. Hence, even assuming that
the whole latent variance is composed of additive genetic
variance, the heritability will never reach a value .0.5.
Whether this random noise should be accounted for when
computing heritabilities (i.e., whether we should compute
h2exp or h2obs) depends on the evolutionary question under
study. In many instances, it is likely that natural selec-
tion will act directly on realized values rather than their
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expectations, in which case h2obs should be preferred. We
recommend however, that, along with VA;obs; all other vari-
ances (including VO; VP;exp and VP;obs) are reported by
researchers.

The expressions given here for quantitative genetic param-
eters on theexpectedandobserveddata scales areexact, given
the GLMM model assumptions, in two senses. First, they are
not approximations, such as might be obtained by linear
approximations (Browne et al. 2005). Second, they are ex-
pressions for the parameters of direct interest, rather than
convenient substitutes. For example, the calculation (also
suggested by Browne et al. 2005) of variance partition coef-
ficients (i.e., intraclass correlations) on an underlying scale
provides only a value of the broad-sense heritability (e.g.,

using the genotypic variance arising from additive genetic
effects on the latent scale).
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Supplementary Information

Throughout this document, when the mean and variance of the Normal distribution probability and cumu-
lative density functions are not mentioned, they are assumed equal to 0 and 1, respectively for the mean and
variance. Hence, by default, fN (`) and ΦN (`) correspond to a standard Normal distribution.

A Proof for analytical solutions for binary traits

Equivalence between a Binomial/Probit GLMM and the threshold model We consider the probabil-
ity of the observed data z to be 1, knowing that the latent trait value is ` (hence from the GLMM perspective):

P (z = 1) = ΦN (`) = P (X < `) = P (0 < `−X), (S1)

where X is a random variable following a standard Normal distribution. Let ε be a variable such that ε = −X,
then ε also follows a standard Normal distribution. This allows us to rewrite the above equation as:

P (z = 1) = P (0 < `+ ε), (S2)

which is the probability defined from the threshold model perspective. The addition of the ε term, which has a
variance of 1, explains the appearance of the so-called “link variance”. Note that the exact same reasoning apply
to the logit link function, which inverse function is the cumulative distribution function of a logistic distribution
of location 0 and scale 1. Thus, the “link variance” associated with a logit link is π3/2.

This equivalence, and the fact that the liability and expected data scales are different is illustrated in Fig. S1.

Latent scale

Expected data
scale

Observed data
scale

0

0 1 0

Liability

GLMM reshold
Model

0 1

Figure S1: Comparison between a Binomial/probit model (left) and a threshold model (right). GLMMs are
characterised by a probit-link transformation followed by a Binomial distribution, whereas the threshold model
uses a threshold on the liability scale to directly define the observed binary values. Deterministic relationships
are denoted using grey plain arrows, whereas stochastic relationships are denoted using grey dashed arrows.

1



Observed phenotypic mean Let p be the average phenotype (as well as the probability of 1, which is an
equivalent definition). Note that because of the equivalence between the GLMM and the threshold model:

p =

∫
ΦN (`)fN (`, µ, VP)d` = 1− ΦN (0, µ, VP + 1) , (S3)

which provides a quick analytical way to compute p. If fixed effects are included in the model, p is simply this
calculation averaged over the elements of Xb̂:

p = 1− 1

N

∑
i

ΦN (0, µ+ (Xb̂)i, VP + 1). (S4)

Observed phenotypic variance The observed variance of the phenotype only depends on the mean p and
is p(1− p). This is a property of a binomial distribution with only one trial and is consistent with Eq. ??:

VP,obs =
∫

(ΦN (`)− p)2 fN (`, µ, VP)d`+
∫
v(`)fN (`, µ, VP)d`,

=
∫

ΦN (`)2fN (`, µ, VP)d`− p2 +
∫

ΦN (`)fN (`, µ, VP)d`−
∫

ΦN (`)2fN (`, µ, VP)d`,
= p− p2,
= p (1− p).

(S5)

This very simple analytical solution allows to easily compute VP,obs. Of course, when fixed effects are included,
p should be computed using Eq. S4.

Consistency with Dempster & Lerner equation Using Dempster and Lerner (1950) equation and the
threshold model framework, one would compute the observed-scale heritability as:

h2obs, DL =
t2

p (1− p)
VA

VP + 1
(S6)

Note that the VP + 1 arise because of the addition of the so-called “link variance” (Nakagawa and Schielzeth,
2010). The term t is the probability density of a standard normal distribution evaluated at the pth quantile.
Hence (standardising the latent distribution):

t = fN (Φ−1(p)) = fN (
µ√

VP + 1
) (S7)

On the other hand, using our framework, one would compute the observed heritability by computing Ψ as in
Eq. ??, and combine it with Eqs. ??&??:

h2obs =
Ψ2VA
p (1− p)

(S8)

By comparing Eqs. S6&S8, one can see the identity holds if, and only if:

Ψ =
t√

VP + 1
= fN (0, µ, VP + 1) (S9)

In order to prove this identity, let us compute the ratio between the two:

Ψ/fN (0, µ, VP + 1) =

∫
fN (x)fN (x, µ, VP)dx

fN (0, µ, VP + 1)

=

√
VP + 1

VP

1√
2π

∫
exp

[
−1

2

(
x2 +

(x− µ)2

VP
− µ2

VP + 1

)]
dx

=

√
VP + 1

VP

1√
2π

∫
exp

[
−1

2

(
(x+ xVP − µ)2

VP (VP + 1)

)]
dx

=

√
VP + 1

VP

1√
2π

∫
exp

[
−1

2

(
(x− (µ/(VP + 1))2

VP/(VP + 1)

)]
dx

=

∫
fN (x,

µ

VP + 1
,

VP
VP + 1

)dx

= 1

(S10)

Note that, if fixed effects are included in the model, Ψ can be computed by averaging over them, as in Eq. S4:

Ψ =
1

N

∑
i

fN (0, µ+ (Xb̂)i, VP + 1) (S11)
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B Proof for analytical solutions for Poisson traits

Observed phenotypic mean The observed phenotypic mean, hereafter noted λ, is the quantity (in absence
of fixed effects):

λ =

∫
exp(`)fN (`, µ, VP)d` = exp(µ+ VP/2) (S12)

after simplifications in Mathematica. Again, when fixed effects are included, it suffices to average over them:

λ =
1

N

∑
i

exp(µ+ (Xb̂)i + VP/2) =
1

N

∑
i

λi, (S13)

where λi is the observed mean conditional to (Xb̂)i.

Expected-scale variance In absence of fixed effects, the expected-scale variance is defined as follow (using
Keonig’s formula):

VP,exp =

∫
exp(`)2fN (`, µ, VP)d`− λ2, (S14)

which, using Mathematica, simplifies into:

VP,exp = λ2 [exp(VP)− 1] . (S15)

When fixed effects, are included in the model, the formula does not simplify as much, because of the averaging:

VP,exp = exp(VP)
1

N

∑
i

exp(2µ+ 2(Xb̂)i + VP)− λ2 (S16)

Note that λ should be computed according to Eq. S15 in that case. Let us define the parameter Λ as

Λ =
1

N

∑
i

exp(2µ+ 2(Xb̂)i + VP) =
1

N

∑
i

λ2i , (S17)

so that VP,exp = Λ exp(VP) − λ2. The parameter Λ is the average of the squared values of λi. Unfortunately,
Λ 6= λ2, hence there is no further simplification.

Distribution variance Because the variance of a Poisson distribution is equal to the mean, the distribution
variance reduces to λ:

Vdist =

∫
exp(`)fN (`, µ, VP)d` = λ (S18)

When fixed effects are included in the model, λ should be computed as in Eq. S15.

Observed-scale additive variance In order to compute the observed-scale additive variance, we need the
parameter Ψ defined in Eq. ?? in the main text. Again, because the derivative of an exponential is an expo-
nential, the calculation reduces to λ:

Ψ =

∫
exp(`)fN (`, µ, VP)d` = λ (S19)

Once again, when fixed effects are included in the model, λ should be computed as in Eq. S15.
The observed-scale additive variance is then computed as Ψ2VA = λ2VA.

Observed-scale heritability In presence of fixed effects in the model, the heritability is consequently the
“simple” following ratio:

h2obs =
λ2VA

Λ exp(VP)− λ2 + λ
(S20)

Negative-Binomial distribution All the above results can be extended to the Negative-Binomial distribu-
tion, which, compared to the Poisson distribution, includes an overdispersion parameter (hereby noted θ). The
new parameter θ only affects the distribution variance such as:

h2obs =
λ2VA

Λ exp(VP)− λ2 + λ+ exp(2(µ+ VP))/θ
(S21)
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C Calculation of the Price-Robertson identity

The Price-Robertson identity (Robertson, 1966; Price, 1970) is based on the covariance between the (latent)
additive genetic values and the expected fitness. This covariance can be computed using Koenig’s formula for
covariance:

∆µ = cov(a,Wexp) = E[a×Wexp]− E[a] E[Wexp] = E[a×Wexp], (S22)

since, by definition, E[a] = 0. Hence we obtain the following complex calculation:

cov(a,Wexp) =

∫∫
a(Wexp(`))f(`|a)f(a)d`da =

∫∫
aWexp(`)fN (`, µ+ a, VRE + VO)fN (a, 0, VA)d`da. (S23)

Double-integration can be difficult to solve, but we can simplify further the computation by noticing that:

cov(a,Wexp) =

∫∫
aWexp(`)fN (`, µ+ a, VRE + VO)fN (a, 0, VA)d`da,

=

∫
afN (a, 0, VA)

∫
Wexp(`)fN (`, µ+ a, VRE + VO)d`da.

(S24)

Noting that

E[Wexp|a] =

∫
Wexp(`)fN (`, µ+ a, VRE + VO)d`, (S25)

we can simplify Eq. S24 into

∆µ = cov(a,Wexp) =

∫
aE[Wexp|a]fN (a, 0, VA)da. (S26)

This computation of the expected response on the latent scale is the one implemented in the QGglmm R
package.

D Code for the R package QGglmm

The up-to-date code of the package can be found at the following GitHub repository:
https://github.com/devillemereuil/qgglmm

The package can be downloaded and installed in R from the same repository. It requires the packages mvtnorm
and R2Cuba.
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