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Abstract

A consequence of the assumptions of the infinitesimal
model, one of the most important theoretical foun-
dations of quantitative genetics, is that phenotypic
traits are predicted to be most often normally dis-
tributed (so-called Gaussian traits). But phenotypic
traits, especially those interesting for evolutionary bi-
ology, might be shaped according to very diverse dis-
tributions. In this review, I show how quantitative ge-
netics tools have been extended to account for a wider
diversity of phenotypic traits using first the threshold
model, then more recently using generalised linear
mixedmodels. I explore the assumptions behind these
models and how they can be used to study the genet-
ics of non Gaussian complex traits. I also comment on
three recent methodological advances in quantitative
genetics that widen our ability to study new kinds of
traits: the use of “modular” hierarchical modelling to
e.g. study survival in the context of capture-recapture
approaches for wild populations; the use of aster mod-
els to study a set of traits with conditional relation-
ships (e.g. life-history traits); and finally, the study of
high-dimensional traits such as gene expression.
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Introduction: the
infinitesimal model and its
assumptions

Quantitative genetics is a conceptual andmethodolog-
ical framework allowing biologists to study the ge-
netics of complex phenotypic traits,1,2 i.e. traits in-
fluenced by a large number of genes. A central as-
sumption of the quantitative genetics framework is
that traits are normally distributed (hereafter called
Gaussian traits), and when using several traits in a
multivariate framework, that their relationships are
simple and their number of dimensions is manageable.
In this review, we will describe how newmethodolog-
ical development are overcoming these constraints, al-
lowing us to study traits with non-normal error distri-
bution (hereafter called non-Gaussian traits), complex
conditional relationships between traits and high-
dimensionality.

The foundations of quantitative genetics were es-
tablished in 1918 by Fisher3 using what is now known
as the infinitesimalmodel. Apart from settling the the-
oretical disagreement between Mendelians and bio-
metricians about the universality of Mendel’s laws,4
the infinitesimal model has been used for a century
withmuch success, allowing the advent of efficient an-
imal and plant breeding, while also deepening our un-
derstanding of evolutionary biology.5 This success is
explained not only by the simplicity of the model, but
also by its robustness to various assumptions.4 This
model assumes that a complex phenotypic trait is in-
fluenced by an infinite number of loci, all of which
have an infinitesimal effect. This generally results in
the assumption of a Gaussian distribution of the ad-
ditive genetic effects of individuals. The variance of
these effects is the additive genetic varianceVA, which
is a parameter of prime interest in quantitative genet-
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ics. Indeed, the most common way to evaluate how a
population can respond to selection is through the ra-
tio between the additive genetic variance and the total
phenotypic variance (VP), namely the heritability (h2):

h2 =
VA
VP
. (1)

To estimate VA in modern analyses, the statistical
assumptions of the infinitesimal model are best imple-
mented using a linear mixed model (LMM), in which
a random effect (with an assumed Gaussian distribu-
tion) reflecting the variance of additive genetic origin
is included.6,7 In its most simple form, this model can
be written as:

z = µ + Za+ e, (2)

where z is the vector of observed phenotypic data, µ
is the population mean phenotypic value, Za is a ran-
dom effect of additive genetic origin (e.g. sire/dam
effect or relatedness-based effect) and e is the vector
of residuals. It is important to note that the assump-
tion of the infinitesimal model implies that the addi-
tive genetic effects a (also called breeding values) are
normally distributed following the matrix of related-
ness between individuals in the population (here de-
noted A):

a ∼ N (0,AVA) . (3)

Since the residuals e are almost always assumed to be
normally distributed as well (with a variance, called
residual variance, notedVR), it follows that the pheno-
typic trait z is also normally distributed.

Commonly used statistical tools in quantitative ge-
netics are thus particularly well fitted for the study of
Gaussian traits (i.e. normally distributed, at least con-
ditionally on some fixed effects), but they are not a
universal tools for any type of phenotypic trait. Cu-
riously, despite the fact that the infinitesimal model
is a century old, quantitative genetics remains very
dependent on these assumptions of normality. How-
ever, in the last decade, much effort has been put into
developing methods that are compatible with the core
assumptions of the infinitesimal model, but that can
also accommodate a broader range of characteristics
for the phenotypic trait under study, especially about
its distribution (but see e.g. the case of gene expres-
sion).

Expanding the model to more
kinds of phenotypic traits

The threshold model
The first extension of the model towards non-

Gaussian traits dates back toWright,8 working on the
variable number (three or four, hence a binary trait)
of digits in the guinea pigs. Wright refuted the idea
that the complex results observed regarding the in-
heritance of this apparently simple phenotypic trait
could be explained by an interaction between 3 differ-
ent genes (the favoured hypothesis at the time) and
proposed a model assuming instead a very large num-
ber of genes involved (i.e. the infinitesimal model).
But, as explained above, the infinitesimal model nat-
urally leads to a Gaussian trait and certainly not to
a binary one. Wright thus assumed that, because of
the mathematical consequences of the infinitesimal
model, “something” (a latent trait, currently referred
to as “liability”, possibly through its use in quantita-
tive genetics of disease literature) was normally dis-
tributed but that the resulting phenotype was sepa-
rated into two categories: values of liability below a
given threshold would produce, say, three digits while
values above this threshold would produce four dig-
its (see Fig. 1). This idea of applying a threshold to a
Gaussian hypothetical trait can be traced back to even
earlier work by Pearson.9

This model became known as the “threshold
model”10 and has been increasingly used, especially
for the study of Human disease genetics,11 because it
allows to use the quantitative genetics tools on cate-
gorical traits. It was expanded to a “multiple thresh-
old model” to account for traits with more than two
categories.12,13 The success of the threshold model has
been such that it has been proposed as a catch-all
model for any non-Gaussian trait, through transfor-
mation into a binary trait,14 and its use has been pro-
moted outside of the quantitative genetics field.15 This
success is also due to the fact that statistical imple-
mentations of the threshold model have been avail-
able for a long time.10,13,16

The fact that the observed phenotype is a threshold-
based transformation of a Gaussian liability begs the
question of “where” to calculate the additive genetic
variance and heritability of the trait: at the level of the
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Figure 1: Graphic representation of the threshold
model. Values below the threshold on the liability
scale produce Phenotype 1 while values above pro-
duce Phenotype 2.

observed trait or at the level of the liability? Demp-
ster & Lerner10 (with help from Robertson) derived an
equality to transform the heritability computed at the
level of observed data h2obs to the level of the liability
h2liab:

h2liab =
p(1 − p)

t2
h2obs, (4)

where p is the proportion of one of the binary pheno-
types in the population and t is the density of a stan-
dard normal distribution at the pth quantile. Later,
van Vleck17 found that analysing a binary trait as if
they were Gaussian then using the transformation
above, yielded well calibrated estimates of h2liab (in
the case of parent-offspring regression, the two phe-
notypes are in comparable frequencies, i.e. p is be-
tween 0.25 and 0.75). This approach (to analyse bi-
nary data if they were Gaussian and use the transfor-
mation on the heritability estimate) has been notably
promoted by Elston et al.18 and Roff.19 It has the ad-
vantage that no specific software implementation is
needed, since it can basically use any tool designed
for Gaussian traits, hence being extremely straightfor-
ward. Towhat extent this method is robust, e.g. to the
presence of (fixed-effect) covariates on the model, is
however unknown.

Recently, this approach has been successfully used
within the animal model framework to study the
heritability of binary traits such as fish life-history
strategies (migrant/resident),20 bird cooperative be-
haviour (helper/non-helper)21 or dispersal status (allo-
/phylopatric).22 It has also been shown to be unbi-
asedwhen usedwith the animalmodel in a simulation
study (see “REMLc” in Ref. 23), though, to the best of
my knowledge, the sensitivity to extreme values of p
has never been checked when using the animal model.

This historical evolution of the threshold model has
three consequences. First, the threshold approach is
straightforward to implement in practice because one
can circumvent explicitly implementing the threshold
model by a simple transformation of the heritability
estimate. Second, and as a corollary, complex exten-
sions of the model (e.g. multivariate models) are lack-
ing, although they would be useful for the evolution-
ary biology community. This has led to the third con-
sequence: the threshold model was “absorbed” into
the generalised linear mixed models (GLMM) when
they became more popular in evolutionary quantita-
tive genetics over a decade ago. That is not to say that
the threshold model has become useless. For example,
Roff’s14 argument that traits with utterly bizarre dis-
tributions could be transformed into binary traits us-
ing a threshold and then analysed using a threshold
model with reasonable success still holds, especially
if these distributions do not fit within available distri-
bution families in GLMM software.

The generalised linear mixed
models
Structure of the model GLMMs are based on the
same assumptions than LMM, but rather than being
applied on the observed response variable, they are
applied on a latent Gaussian variable (hereafter ℓ),
much as in the threshold model. A link functionд and
an additional distribution D (with an optional param-
eter θ) are required to go from this latent variable to
the response variable:

ℓ = µ + Za+ e, (5a)

η = д−1(ℓ), (5b)

z ∼ D(η,θ). (5c)
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Box 1: Diversity of traits and related statistical distribution

Gaussian continuous traits This type of trait might be themost com-
mon: it is definitely the most common in the published literature. Gaus-
sian traits are readily analysed using LMMs. The residual error must be
normally distributed, but not necessarily the trait itself. The influence
of other variables might render the overall distribution non-Gaussian,
but accounting for those variables in the model is sufficient to study the
trait as a Gaussian trait. LMMs are also known to be robust to slightl
deviations of the error distribution from a normal distribution.

Non-Gaussian continuous traits When the trait distribution is
strongly non-Gaussian and no measured co-variate can account for this
distortion from a normal distribution, relying on linear mixed models
can become difficult. To analyse these traits, one option is to rely on
transformations (using a function that renders the distribution of the
trait closer to a normal distribution). This option raises the issue that
the transformed, rather than the original trait, is analysed, hence the in-
ferred parameters might lose their biological meaning (but they can be
computed back on the original scale, see dispersal distance example in
main text). If this is not possible, another option is to transform the trait
into a binary trait and analyse it using a threshold model or a GLMM,
as suggested by Ref. 14. A better option, if applicable, is to use a GLMM
with an appropriate continuous distribution (e.g. the exponential distri-
bution for the example on the left).

0 1 2 3 4 5 6

Count traits This refers to any trait measured as a positive integer.
These traits are most often analysed using an appropriate GLMM (e.g.
Poisson, binomial, negative-binomial), although using a LMM is possible
when the distribution converges towards a Normal distribution (Poisson
with high λ or binomial with high number of observations). Note that
Poisson distributions are almost always used with a log-link function,
meaning that the actual distribution of the trait is overdispersed com-
pared to an actual Poisson distribution (i.e. the variance is expected to
be greater than the mean).

A B C D

Categorical traits This refers to traitsmeasured as categories, such as
presence/absence, morphotype or colour. The categories can be ordered
(e.g. small/medium/large) in which case the traits are called ordinal. Or-
dinal traits are most often analysed using (multiple) threshold models
(or corresponding GLMMs). Strict (non-ordered) categorical traits can
be analysed using a multinomial distribution as implemented in some
GLMM software implementations (see Table 1). Binary traits (with only
two categories) can be seen as both categorical and ordinal, and are most
often analysed using a threshold model (or corresponding GLMM).

Compared to the threshold model, GLMMs are
broader, but also more complex. On the one hand, the
genotype-to-phenotype model underlying the thresh-
old model is fairly simple: some internal, invisible
normally distributed variable is divided into two or

several outputs using one or several thresholds. It
is intuitive to imagine how such mechanisms could
happen, as threshold effects are relatively common
in biological systems.24 GLMMs, on the other hand,
assume that the latent variable (ℓ in Eq. 5a), which
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stands for the combined additive genetic and a part
of the environmental effects, is transformed into an
expectation by the inverse of the link function (η in
Eq. 5b). Observed values z (Eq. 5c) are then drawn
around this expectation according to a certain distri-
bution D. Strictly speaking, this distribution should
belong to the exponential family, like the binomial
or Poisson distributions, but in practice, the scope
of software implementing GLMMs has gone beyond
this family, providing distributions such as negative
binomial and zero-inflated Poisson. It is thus impor-
tant to note that GLMMs are not LMMs “with a differ-
ent error distribution”, but are a much more complex
type of model. Themost commonly used distributions
are the binomial and Poisson distributions to analyse
count data such as binary traits, clutch size or fitness.
However, the variety of distributions available in soft-
ware implementing GLMMs is growing, with distribu-
tions such as the negative-binomial (for overdispersed
Poisson-like data), zero-inflated Poisson (a mixture of
a binomial and a Poisson distribution), multinomial
or exponential (see Box 1 and Table 1). The availabil-
ity of a wide variety of distributions is relevant for
evolutionary biologists, asmost evolutionary relevant
traits have complex distributions. Such models have
been used to study the genetics of various traits such
as dispersal,25 number of offspring,26,27 disease,28 re-
sistance29 and productivity.30

Estimating the parameters The likelihood of a
GLMM is most often intractable, and specific approxi-
mate algorithms have been developed.33 Each of these
algorithms have strengths andweaknesses in terms of
speed, accuracy and robustness to model complexity.
For example, the penalised quasi-likelihood (PQL) is
a fast algorithm, but is known to be biased in some
cases.34 In the context of quantitative genetics anal-
ysis, this has been shown to yield downward-biased
estimates of additive genetic variance, and hence of
heritabilities for binomial data.23 On the contrary,
Bayesian algorithms such as Markov Chain Monte
Carlo (MCMC) usually yield more accurate variance
estimates, though a sensitivity to the prior distribu-
tion is to be expected when the data sample size
and the variance are low.23 When the fitted mod-
els are highly complex (e.g. a zero-inflated Poisson
with many random effects), likelihood-based meth-
ods might fail to converge at all, and only MCMC-
based methods might yield an output. A more com-
prehensive review of algorithms to estimate GLMMs

and their properties can be found in Box 2 of Ref. 35.

Computing quantitative genetic
parameters from a GLMM
Choosing the scale From Eq. 5, we can note that
GLMMs are composed of three layers, or “scales”, in-
stead of one for the LMM. This raises the following
issue: on which scale should the heritability be com-
puted? Parameters such as the additive genetic vari-
ance and heritability are easily computed for the la-
tent variable (ℓ in Eq. 5a, hereafter “latent scale”),
which is by definition linear, Gaussian and behave ac-
cording to the classical assumptions of the infinites-
imal model, but obtaining those parameters on the
scales of η in Eq. 5b and z in 5c (hereafter “data scale”)
is more complex.36,37 However a case can bemade that
inferring quantitative parameters on the data scale
should be the standard approach as the phenotype
is exposed to natural selection at this scale. In any
case, the relationships between these scales bear bio-
logical assumptions that researchers need to be aware
of (see Box 2). Twomain assumptions have notable bi-
ological consequences in terms of quantitative genet-
ics. The first one is that the whole model is not linear
(notably because of the impact of the non-linear link
function). This, for example, generates non-additive
genetic variance on the data scale even if only addi-
tive genetic variance was assumed on the latent scale.
In other words, broad- and narrow-sense heritabili-
ties are always differently computed on the data scale,
even if no non-additive genetic component was as-
sumed. The second assumption is that an always-
existing intrinsic level of “noise” is assumed in almost
all models. This level of noise is dependent on the
mean and cannot be set to zero as in LMMs. For ex-
ample, settingVR do not result in a heritability of one
on the data scale. In fact, for a given latent mean and
total variance, there is a maximal value that the data
scale heritability can reach that can be strictly lower
than one.

Using a “link variance” To obtain parameters on
the data scale, a parallel with the “liability scale” of the
threshold model has been most commonly used. In-
deed, it can be shown that a GLMM with a binomial
distribution and a probit link function is equivalent
to a threshold model,31,38 because a probit function
is the inverse function of a cumulative distribution
function of a standard Normal distribution. In other
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Table 1: List of R packages available to implement generalised linear mixed models (GLMMs) with some of
their characteristics.

Software Licensing Algorithm Available distributions Accepts pedigree

lme4 GPL Gauss-Hermite
binomial, gamma, Poisson, inverse-
Gaussian

No

ASReml-R Proprietary PQL
binomial, multinomial, gamma,
Poisson, negative-binomial

Yes

MCMCglmm GPL MCMC
binomial, multinomial1, Pois-
son, exponential, geometric,
zero-inflated Poisson and binomial

Yes

animalINLA GPL INLA
binomial, Poisson, zero-inflated
Poisson

Yes

1: The models named “ordinal” and “categorical” can be broadly viewed as multinomial models with various properties of the link
function and underlying latent scale. GPL: GNU Public Licence; PQL: Penalised Quasi-Likelihood; MCMC: Markov Chain Monte
Carlo; INLA: Integrated Nested Laplace Approximation.

words, defining the probabilityp = probit−1(ℓ) in a bi-
nomial GLMM is equivalent to adding a value drawn
in a standard Normal distribution to ℓ and then apply-
ing a threshold. The conclusion is that the variance
on a hypothetical liability of an equivalent threshold
model is the variance of ℓ (e.g. VA + VR), plus the
variance of a standard Normal distribution, which is
equal to one and can be referred to as the “link vari-
ance”. Note also thatVR is not identifiable in binomial
models, and should thus be set to an arbitrary value
(usually zero, more rarely one). The heritability, as if a
threshold model was used to analyse the data and her-
itability was computed on the liability scale, is thus:36

h2liab =
VA

VA +VR + 1
. (6)

From this estimate, the heritability on the data scale
can be easily obtained using Eq. 4. Recognising the
logit function as the inverse of the cumulative distri-
bution function of a logistic distribution leads to the
same conclusion that a term needs to be added to ob-
tain the variance on a liability scale (here a mixture
of a Gaussian and logistic distributions). This term,
corresponding to the variance of a standard logistic
distribution, is π2/3. This approach is very useful, as
it allows heritability estimates to be compared on a
common scale, whether they are estimated using a bi-
nomial GLMM or a threshold model. As such, it has
become a standard to compute heritability estimates
from binomial GLMMs.37 Because of the simplicity
of this approach, a similar reasoning was used as an
approximation for Poisson GLMMs,26,27,39 despite the
logarithm link function not being related to a distri-

bution function, contrary to the probit and logit func-
tions. This usually leads to the following approxima-
tion:39

h2approxPoiss =
VA

VA +VR + λ−1
, (7)

where λ is the population average of the phenotypic
values. However, it is important to note that this cal-
culation has no strong theoretical justification and the
scale upon which it is performed is undefined. The ac-
tual heritability on the data scale is:39

h2Poiss =
VA

exp(VA +VR) − 1 + λ−1
, (8)

which should generally be preferred. Note that Eqs. 7
and 8 converge asVP tends toward zero. Note also that
this is different from the estimate of the repeatability
given by Ref. 36, because repeatability corresponds to
an intra-class correlation coefficient, which in terms
of heritability would be a broad-sense heritability31,39

(see Box 2 as for why those two estimates would be
different).

Using a general framework In general, this ap-
proach of adding a “link variance” is very specific to
models related to the threshold model (e.g. binomial
with a probit or logit link), but not applicable to all
GLMMs. Ref 31 provides a more general solution
which involves integral calculation. Such integrals
allow to compute population mean (z̄) and variance
(VP,z) on the data scale (i.e. related to z), based on la-
tent scale estimates (i.e. related to ℓ). Furthermore,
the additive genetic variance on the data scale can be
computed as the product of the latent additive genetic
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Box 2: Biological assumptions behind GLMMs and their consequences

When using a statistical model in quantitative genetics, we are always making assumptions about the underly-
ing genetics and the genotype-phenotype map of the phenotypic trait of interest. When using a LMM, these
assumptions have a clear connection with the infinitesimal model and the biological assumptions are clear and
mostly well-understood by biologists. However, as shown in Eq. 5, GLMMs are more complex models and it is
important for biologists to be aware that this involves specific assumptions.
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Ref. 31.

As stated in the main text, the latent scale ℓ is the one on which assump-
tions are compatible with the infinitesimal model. This is illustrated in
the figure on the left as the latent trait follows a Gaussian distribution.
But looking at the expected (η) and observed data (z) scale, we can see
they greatly differ from what would be expected under the sole infinites-
imal model assumptions.
Assume that all of the variance in the latent scale is of additive genetic
origin. The heritability on that scale is h2lat = 1. Because of the non-
linearity of the inverse of the link function (i.e. the exponential function
in this example), a part of this additive genetic variance is not additive
any more on the expected data scale. Hence, we assume that the ad-
ditive genetic components of the trait are interacting in a complex way
(e.g. with epistatic interaction) to yield the genetic expectation of the
trait. In other words, the variance of the expected data scale is still en-
tirely of genetic origin (broad-sense heritability H2

exp = 1), but now only
a part of this variance is additive (narrow-sense heritability h2exp < 1). To
go from the expected to the observed data scale, we sample phenotypic
values around the expectation (here according to a Poisson distribution).
This creates more variance of non-genetic origin. At this scale, neither
the broad- nor the narrow sense heritabilities are equal to 1. This added
“noise” around the expected values can be considered as either of biolog-
ical origin or a measurement error.
This example shows two important consequences of the assumptions in
GLMMs. First, the implicitly assumed genotype-phenotype map is com-
plex and generates non-additive genetic variances even if none was in-
cluded in the statistical model for the latent trait. Second, the models
assumes that the trait is subject to an incompressible, intrinsic environ-
mental noise that neither artificial, nor natural selection could remove.
Whether this is a sensible assumption for the analysis at hand should be
considered by biologists with caution.

Unfortunately, in-depth studies regarding the biological validity of these assumptions are currently lacking (but
see Ref. 32 for more general considerations).

variance and a coefficientΨ2, which can be computed
using integral calculation:31,32

VA,z = Ψ2VA. (9)

Once these parameters are computed, the heritability
can simply be estimated as:

h2obs =
VA,z
VP,z
. (10)

Applying Eq. 10 to a Poisson GLMM exactly yields
Eq. 8. That is not to say the estimate of h2obs in Eq. 10

is in every sense identical to an estimate obtained us-
ing a LMM. Indeed a strong issue when assuming the
model underlying GLMMs (Eq. 5) is that it breaks the
simple relationship between heritability, the strength
of selection S and the response to selection R, as usu-
ally illustrated by the breeder’s equation:40 R = h2S .
This equation holds only approximatively in the con-
text of GLMMs and the heritability computed on the
data scale.31 A non-approximate strategy consists go-
ing back and forth between the observed data scale
and the latent scale. First the fitness from observed
data has to be computed, then the above equation (or
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Price-Robertson identity41,42) has to be applied on the
latent scale to predict the latent response to selection
and finally go back to the data scale using the integral-
based framework described above to obtain the cor-
responding phenotypic response. Yet another issue
with GLMMs, again arising from the non-linearity of
the link function is that fixed effects, when included
in a GLMM impact the quantitative genetic estimates
on the data scale. To account for this, it is necessary
to integrate over the fixed effects. This whole new
approach to compute quantitative genetic parameters
and response to selection fromGLMM-based analyses
has been implemented in an R package named QG-
glmm.43

Multivariate analysis Multivariate models are im-
portant in quantitative genetics as genetic and en-
vironmental constraints on the covariances of traits
have a strong impact on their ability to respond to se-
lection.44 An interesting feature of the above frame-
work is that it can be used in a multivariate form.
Multivariate GLMMs are handy in the sense that
they allow to study the genetic or environmental co-
variation between traits with very different distri-
butions (e.g. between a Gaussian, a binary and a
Poisson trait). To do so, assuming T traits are stud-
ied, such models assume that the latent scale is of
T latent traits, with e.g. a G-matrix of additive ge-
netic variance-covariance and a R-matrix of residual
variance-covariance between latent traits (similarly
to multivariate LMMs). These latent traits are then
independently transformed to their respective data
scale according the specific process of their distribu-
tion (a log-link and a Poisson error for a Poisson trait,
for example). This model yields a G-matrix on the la-
tent scale, and given the possibly strong differences
between the traits distribution, we might expect to
run into trouble when trying to compute a G-matrix
on the data scale. This is however not the case, be-
cause the transformation of each latent to its respec-
tive data scale is independent from each other. Thus
a diagonal matrixΨ containing an evaluation of each
Ψt of the trait t in the diagonal can easily be computed.
The data scale Gobs is then:

Gobs = ΨGΨ′ (11)

where ′ is the transposition operator. Gobs can be
directly interpreted as the additive genetic variance-
covariancematrix on the data scale. Dividing the diag-
onal elements of this matrix by the diagonal elements

of the data-scale phenotypic variance-covariance ma-
trix (Pobs, also obtainable from the estimations of
the multivariate GLMMs) provides the data-scale her-
itabilities of each trait. Additionally, converting Gobs
into a correlation matrix provides the data-scale ge-
netic correlations between the traits. This approach
has also been implemented in the QGglmm R pack-
age.43

An example study: the phoenix
dataset
The dataset To illustrate some of the points stated
in the previous section, this section will analyse a sim-
plistic and simulated dataset (simulation code avail-
able online). This dataset concerns phenotypic traits
measured on a mythical bird: the phoenix. Phoenixes
are eagle-sized, non sexually dimorphic birds with a
golden plumage and a capacity to revive from their
ashes when they die. The dataset consists of a popu-
lation of 1000 pedigreed individuals on which I have
one measurement per trait. The traits were analysed
using an animal model and the MCMCglmm R pack-
age.45 The R code, in the form of a tutorial, as well as
the data used here, are available online.

Tarsus length As is the case for other birds, tar-
sus length is a Gaussian (i.e. normally distributed)
trait (Fig. 2A). The animal model output yields a rel-
atively high heritability of 0.34 for this trait (Table 2).
Because this is a Gaussian trait, there is no debate
around the scale on which to compute the heritabil-
ity, as there is only one way to produce an estimate.

Dispersal distance Phoenixes disperse from their
site of birth to a site of breeding. The distribution of
natal dispersal distances is quite typical,46 with most
birds dispersing only short distances, but occasionally
over much longer distances (Fig. 2). Despite the con-
tinuous aspect of natal dispersal distance, this trait is
thus heavily non-Gaussian. However, the log- trans-
formed distance is normally distributed and can thus
be analysed as a Gaussian trait:

log-distance = log(distance) (12)

The output of an analysis of the log-distance using an
animal model is shown in Table 2. Using the output of
this model directly, the heritability of the log-distance
is equal 0.64 (Table 2). However, what I am interested
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Figure 2: Trait distribution of the phoenix example. Traits for which a density is displayed (tarsus length
and dispersal distance) are continuous, traits for which a histogram is shown (plumage colour, number of
revivals and personality) are discrete, i.e. count or categorical traits.

Table 2: Point estimates of the (latent) intercept (µ), (latent) additive genetic (VA) and (latent) residual vari-
ance (VR) for four traits of the phoenix dataset. The latent heritabilityh2lat is computed as the ratio ofVA to the
sum of VA and VR. The data scale heritability h2obs is computed using the QGglmm package, when relevant.

Trait Distribution µ VA VR h2lat h2obs

Tarsus Length Gaussian 10.13 0.96 2.02 0.34
Dispersal distance log-Gaussian 0.84 0.45 0.25 0.64 0.44

Plumage colour Binary -1.1 1.86 1 0.69 0.27
Nb. of revivals log-Poisson -0.14 0.13 0.33 0.24 0.086

in is the heritability of the distance of natal disper-
sal, rather than the log-distance, as this is the quan-
tity that might be targeted by selection. Although this
type of data transformation is by no means a GLMM
per se, it is possible to use the framework from Ref. 31
and the package QGglmm43 to compute the heritabil-
ity back on the original data scale. We can do this by
considering the logarithm as a link function, but no
distribution D (essentially z = η in Eq. 5), see the
script in Supplementary Information for details. The
heritability on the original data scale is 0.44 (Table 2),

which is much lower than the heritability of the log-
distance. Both estimates are correct, they simply do
not relate to the same quantity. For information, an
(ill-fitted) model using the distance directly as a re-
sponse variable (thus assuming it is a Gaussian trait)
yields an intermediate heritability of 0.55.
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Plumage colour Phoenixes usually have a golden
plumage, but about 25% of themhave awhite plumage
(Fig 2C).This might be of genetic origin, but no simple
Mendelian model can account for the heredity of this
binary trait. It is possible to analyse this trait using
quantitative genetics by assuming a threshold model.
To implement such a threshold model, I chose the ap-
proach of Refs 17–19 to analyse the binary trait as if
it were normally distributed. This produced a heri-
tability estimate of 0.30, which can be transformed
on the liability scale using Dempster & Lerner’s equa-
tion10 (see Eq. 4). This yields a heritability estimate
of 0.56. Again, both of those estimates are correct:
one (0.30) is related to the actual data scale, while
the other (0.56) is related to the hypothetical, contin-
uous liability scale. I also used a more proper bino-
mial GLMM with a probit link to analyse the trait. I
obtained a very high heritability of 0.69 on the latent
scale (see Table 2). However, this calculation does not
account for the “link variance” and thus doesn’t bear
actual connectionwith the thresholdmodel (see Eq. 6).
When accounting for this, I obtained a lower heritabil-
ity (0.51), very close to the one on the liability scale,
as expected. When estimations from this GLMM are
transformed through QGglmm to obtain estimates on
the data scale, we obtain 0.27, again very close to the
estimate on the data scale. Because GLMMs are more
properly defined than the Gaussian-model approach,
and since we can obtain comparable parameters (i.e.
pertaining to the same scales) in both cases, I recom-
mend using GLMMs whenever possible.

Number of revivals All phoenixes do not revive
from their ashes, most of them do not. Those who do
can only revive a given number of times before perma-
nently dying, with only a few birds reaching as many
as 8 revivals (Fig 2D). I analysed this trait using a Pois-
son GLMM with a logarithm link function. When us-
ing estimates to compute the heritability on the latent
scale, I obtained an estimate of 0.24 (Table 2). Using
QGglmm to compute the heritability on the data scale
yields an estimate of 0.086 (Table 2), exactly the same
as using Eq. 8. Using the simpler approximation of
Eq. 7 yields a close estimate of 0.093. The approxima-
tion works fairly well in this case, as the estimated
total latent variance (0.45) is low.

A multivariate model To illustrate the concepts
related to multivariate GLMMs, I will analyse a joint
model of the number of revivals (a Poisson trait) and

plumage colour (a binary trait with, as above, the
residual variance set to one). This model assumes
two latent traits (possibly) with additive genetic and
residual covariances. The model thus provides a two-
elements vector for the intercepts and matrices of di-
mensions 2 × 2 for the additive genetic G-matrix and
the residual R-matrix:

µ =

(
−0.13
−1.19

)
,

G =

(
0.088 0.0042
0.0042 1.99

)
,

R =

(
0.34 0.055
0.055 1

)
,

P = G+ R.

(13)

The analysis of these estimates is already quite inter-
esting: on the latent scale, the estimates of the addi-
tive genetic and residual covariances are quite low,
suggesting that the two latent traits are in fact rel-
atively independent. By dividing the diagonal ele-
ments of G by the diagonal elements of P, we obtain
latent heritabilities (0.24 and 0.68) matching those of
the univariate analysis in this case. Those latent esti-
mates can be transformed to the data scale using QG-
glmm, yielding:

meanobs =

(
1.12
0.28

)
,

Gobs =

(
0.11 0.00079

0.00079 0.056

)
,

Pobs =

(
1.90 0.016
0.016 0.20

)
.

(14)

This confirms that on the data scale, the two traits
seem to be quite uncorrelated. Dividing the diago-
nal elements of Gobs by the diagonal elements of Pobs
again yields heritabilities comparable to the univari-
ate cases (0.058 and 0.28).

The special case of non-binary
categorical traits
Multiple threshold model and equivalents Just
like the number of digits in Wright’s study,8 the anal-
ysis of many categorical traits (i.e. traits that are com-
posed of categories such as blue/green/red) requires
quantitative genetic tools, because their underlying
genetics is complex. Such an analysis for non-binary
categorical traits (i.e. with more than two categories)
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Figure 3: Graphical representation of the multiple
threshold model used to simulate the personality
trait of the phoenix dataset. More than one thresh-
old is estimated, separating the underlying “liability”
into the three phenotypes (Bold, Medium and Shy
personality). The thresholds were set to be symmet-
ric around the mean, yielding proportions of roughly
25%/50%/25%.

can be performed using the multiple threshold model
introduced above or using a GLMM (e.g. using multi-
nomial model, see Table 1). In most methods, the la-
tent trait is divided into different groups according
to various thresholds and then either directly trans-
formed into categorical data (for the multiple thresh-
old model, see Fig. 3) or, equivalently, after going
through a link function and distribution (in the case of
a GLMM). For example, Ref. 47 used this type ofmodel
on humans to study the genetic covariation between
choroidal thickness and age-related macular degener-
ation (AMD), computed as different stages of disease
seriousness (0 to 5).

Categorical or ordinal data It is important to
distinguish between categorical traits in which cate-
gories cannot be ordered (such as colours) and ordi-
nal traits in which categories can be naturally ordered
(such as binned data). Strictly speaking, the multiple
threshold model is designed for ordinal traits, because
the categories need to be ordered (see Fig. 3). For
purely (unordered) categorical data, models such as
the “categorical” family in MCMCglmm48 are avail-
able. Instead of assuming a one-dimensional latent
scale as in the multiple threshold or its GLMM equiv-

alent, thesemodels assume amulti-dimensional latent
scale: for a trait with K possible categories, this scale
is composed of a K −1 dimensional Gaussian distribu-
tion. These models can be very useful as they allow to
infer interesting information about categorical traits,
such as the genetic correlation between the different
categories.

Estimating the heritability Estimating the heri-
tability on the observed data scale for these traits
is relatively complicated. Despite the apparent sim-
plicity of categorical and ordinal traits, they take the
mathematical form of multivariate traits, with the
number of dimensions equal to the number of traits.
On the observed data scale (Eq. 5c), there is not one
heritability, but a variance-covariance matrix provid-
ing the additive genetic variance for each category
in the diagonal and the additive genetic covariances
in the off-diagonal elements. I found no mention of
this anywhere in the literature and the properties of
this matrix (and of the corresponding observed data
scale phenotypic variance covariance matrix) have
not been properly described for two possible reasons.
First, by far the most popular model to analyse cat-
egorical and ordinal traits is the multiple threshold
model. Because of the deterministic relationship be-
tween the liability scale and the observed data scale
(see Fig. 3), the heritability computed on the liability
scale serves as a good summary statistic of the addi-
tive genetic properties of the trait (see example below).
Second, a general framework to compute the quan-
titative genetic parameters of models other than the
multiple threshold (e.g. multinomial model) has been
only very recently available.31

Calculations for ordinal traits As an illustration,
I applied this framework to the ordinal family avail-
able in the MCMCglmm R package (see Supplemen-
tary Information for the calculation details). The pop-
ulation average on the data scale is simply the propor-
tion pk of each category k (K categories):

z̄ =
©«
p1
...

pK

ª®®¬ . (15)

The phenotypic variance-covariance matrix Pz is de-
fined as:

Pz(k, l) =

{
pk (1 − pk ) if k = l

−pkpl if k , l
. (16)
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Table 3: Point estimates of the (latent) intercept (µ), (latent) additive genetic (VA) and (latent) residual vari-
ance (VR) for the personality trait of the phoenix dataset. The latent heritability h2lat is computed as the ratio
of VA to the sum of VA and VR. The data scale heritability h2obs are computed from QGglmm, which provides
an estimate for each category (Bold, Medium, Shy).

µ VA VR h2lat h2obs (Shy) h2obs (Medium) h2obs (Bold)

0.94 0.55 1 0.4 0.12 9.7 × 10−5 0.12

More interestingly, one can define the vectorΨ (note
that here Ψ is a vector, not a matrix as in the mul-
tivariate case above) as the difference of the liability
density at consecutive thresholds, here noted γ (see
Supplementary Information for the proof of this):

Ψk = f (γk−1) − f (γk ), (17)

where γ0 = −∞ and f is the density of a Normal dis-
tribution with mean µ and varianceV (ℓ) + 1 (i.e. the
density of the liability). From there (see also the mul-
tivariate paragraph above), we can conclude that the
additive genetic matrix on the data scale, Gz is:

Gz = ΨVAΨ
T . (18)

By dividing the diagonal elements of Gz by the di-
agonal element of Pz , we obtain a heritability esti-
mate for each category. Beside the technicality of
this calculation, we can learn the following prop-
erties. First, phenotypic covariances between cate-
gories are always negative. This comes from the fact
that when a category increases in proportion in a
population, the proportion of other categories neces-
sarily decrease. Second, the sign of the additive ge-
netic covariances between a category k and l will di-
rectly depend on the signs of Ψk and Ψl . Yet the
signs of these quantities depend on whether we are
“climbing” the Gaussian density (i.e. we are below its
mean value) or “descending” it (i.e. were are above its
mean value). As a result, Gz is composed of blocks:
two groups of categories for which the threshold is
strictly below (or above for the other group) the mean
value are positively correlated among them, while the
two groups are negatively correlated with each other.
The biological meaning of this is that extreme cate-
gories (like the lowest or highest ranking categories)
have phenotypic values far away from the popula-
tionmean, hence on average breeding values far away
from 0. As a consequence, they have a strong ten-
dency to yield offspring belonging to “neighbouring”
categories, hence the genetic correlation. Third, the
Gz variance-covariance matrix is actually of rank 1

and all additive genetic correlations are either −1 or
1 (following the block structure described above for
the signs). So even if the genetic structure takes the
form of a matrix of dimensionK , its actual dimension-
ality is the same as the liability scale it comes from (i.e.
1). The dimensionality of Pz , however, is K − 1. This
relates to the fact that a categorical trait with K cate-
gories has a dimensionality of K − 1 due to the con-
straint of the proportion of each category summing
over to one. This also explains why binary traits can
be summarised using a single heritability value: given
that for K = 2, both Gz and Pz have a dimensional-
ity of 1, all estimates (additive genetic and phenotypic
variances and the resulting heritabilities) are equal be-
tween the two categories. In any case, this whole mul-
tivariate framework is actually not needed for K = 2,
as shown above.

An example: personality of phoenixes When
the phoenixes of our example are being caught, a per-
sonality trait is assessed based on their behaviour. Re-
sponsive and aggressive individuals are categorised as
“bold”, calmer individuals are categorised as “medium”
and afraid or panicked individuals are categorised as
“shy” (see Fig. 2E). Because of the clear and natural hi-
erarchy of these three categories, this trait can be seen
as an ordinal trait. Using the “ordinal” family (im-
plementing a model equivalent to a multiple thresh-
old model, see also the “threshold” family) of MCM-
Cglmm,45 we can infer latent parameters and hence
a latent heritability of 0.40 (Table 3). As usual, we
need to add the “link variance” to obtain an estimate
actually comparable to the liability scale of a multi-
ple threshold model. This yields an lower estimate
of 0.23. Using QGglmm to obtain parameters on the
data scale, we obtain a heritability parameter for each
category: Bold and Shy phenotype have a 0.12 heri-
tability, while the Medium category has an extremely
low heritability (9.7 × 10−5, see Table 3). These her-
itabilities are computed by dividing the diagonal el-
ements of the G matrix by the diagonal elements of
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the P matrix on the data scale. The distribution of
these estimates are interesting and informative. Be-
cause of the 25%/50%/25% symmetry of the Bold/Medi-
um/Shy categories (see Fig. 2E), individuals from the
Medium category (i.e. close to the liability mean) ex-
hibit little genetic variation compared to Bold and Shy
individuals (all necessarilymore distant to the liability
mean). As always, all of those estimates are correct,
but which one is the most sensible to comment on?
Excluding the data scale for now, between the latent
and liability scale, the latter should be preferred for
two reasons: (i) this is the heritability that has histor-
ically been reported when using (multiple) threshold
models, and (ii) this is the “closest” to the data, as the
liability is linked to the data scale through a determin-
istic relationship. However, one could argue that the
best estimates are data scale ones, as they are linked
to the actual phenotype. This is a generally sensible
reasoning. However, in the case of our personality
trait (and in many other situations), the Bold/Medi-
um/Shy division is a binning caused by our inability
to finely measure continuous variation on a Bold-Shy
continuum of personalities, thus that the actual phe-
notype is the (not so hypothetical, in this case) liabil-
ity scale. Note that the same reasoning would apply
if we had only a Bold/Shy categorisation (hence for a
binary trait).

Cutting-edge and complex
models for specific
phenotypic traits

Heritability of survival: combining
animal and capture-recapture
models
Away from experimentally controlled settings, sur-
vival can be a challenging phenotypic trait on which
to perform quantitative genetics. In many settings,
and especially in wild populations, the survival of in-
dividuals is not directly observed. Rather, it is in-
ferred from the prolonged absence of the individual
from the records (which can also be due to emigra-
tion or coarse recapture efforts). As with any kind of
inference, this is performed with uncertainty: from
the onset of the absence of the individual from the
records, one cannot tell when exactly the death hap-
pened, or if it happened at all. In practice, this un-

certainty will depend on the depth of the population
survey and the survey’s ability to recapture existing
individuals. Capture-recapture models49–51 were de-
signed to infer parameters such as survival while ac-
counting for imperfect probability of recapture.

Estimating the heritability of survival while ignor-
ing the uncertainty around its estimation might have
two consequences. The first and immediate conse-
quence is in confidence/credibility intervals around
the heritability estimate that are narrower than they
ought to be. The second consequence is a potentially
biased estimation. Indeed many processes might lead
to a better inference of survival in some individuals
than in others (e.g. bold individuals are easier to catch
than shy individuals). The use of statistical models
(such as capture-recapture models above) and auxil-
iary variables should help to mitigate this bias.

To address this issue, Papaıẍ et al.52 used the flexi-
bility of Bayesian inference and MCMC algorithms53
to estimate the heritability of survival, using an an-
imal model, while “properly” estimating survival us-
ing a capture-recapture model (an approached named
CRAM for Capture-Recapture-Animal-Model). The
principle is as follows: a capture-recapture “mod-
ule” estimates survival from one year to another
using time-series of presence/absence and optional
auxiliary variables whilst an animal model “module”
makes use of these inferences to estimate the heritabil-
ity of survival. Because both inferences are conducted
within the same MCMC run, this approach naturally
accounts for the uncertainty in estimating survival
and should thus yield better credible intervals.

Unfortunately, this approach has not gained mo-
mentum and has, to the best of my knowledge, never
been applied apart from the study of Papaıẍ et al..52
This lack of success might stem from two issues.
A first issue could be that the number of available
datasets for which this approach could be used on
(i.e. a wild population survey for which a pedigree is
available and with imperfect probability of recapture)
is relatively small. A second issue could be the rela-
tive complexity of the approach. A WinBUGS/Open-
BUGS code is available, but the method requires han-
dling of large sparse matrices, for which these pro-
grams are not optimised. The use of JAGS and itsglm
module,54 which should handle sparse matrices better,
could help in that regard.

Despite the unfortunate (but still reversible) fate of
CRAM, it led the way into an exciting approach us-
ing hierarchical modelling to perform quantitative ge-
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Figure 4: Example of a process that can be analysed using aster models. An individual survives according
to a Bernoulli distribution with a probability psurv. If an individual survives, it breeds with a probability
pbreed. Finally, if the individual breeds, it yields a number of offspring following a Poisson distribution with a
parameter λ.

netics on statistically inferred (rather than directly ob-
served) phenotypic traits by combining “modules” in
a hierarchical model, as suggested by Ref. 52 and 37.
We can hope that beyond the special case of survival,
this modular approach could be useful in other areas
of quantitative genetics.

Compounded life-history traits:
aster models

The relationship between components of fitness and
life history traits is notoriously complex, with many
traits influencing the total fitness of individuals at the
same time. Often, there is a hierarchy in the influ-
ence of components of fitness. For example (Fig. 4),
individuals have first to survive the non-breeding sea-
son, then engage in mating during the breeding sea-
son and finally have different numbers of offspring
(a.k.a. breeding success). This kind of data is cur-
rently most often analysed as a zero-inflated Poisson
distribution using directly the breeding success (and
assigning a breeding success of zero to dead or non-
breeding individuals). This is a correct approach, but
a frustrating one as it does not allow all the steps to be
studied separately. In our example, survival and not
entering into breeding are merged when using a zero-
inflated Poisson model, while being completely differ-
ent phenomena. As these two phenomena could have
very different genetic and environmental influences,
much could be gained by modelling them separately

rather than combining them in the same component
of a bivariate analysis (as is the case in a zero-inflated
Poisson).

In order to study this type of conditional relation-
ship between e.g. life-history traits,55 Geyer et al.56
developed an approach named aster models, in which
these hierarchical dependencies typical of life-history
traits are accounted for. The approach was imple-
mented in the aster R package. Since then, aster
models have been used in various studies on adapta-
tion, especially on plants.57–61 Recently, aster models
have been extended to include random effects62 using
a modified version of the PQL approach.33 These ef-
fects can be used to estimate the additive genetic vari-
ance in some settings, e.g. the estimation of heritabil-
ity of compounded life-history traits or fitness using
sire/dam designs (see a tutorial in Ref. 63). Although
no implementation is readily available, the aster mod-
els can be extended to use a pedigree. However
the theoretical implications of aster models in terms
of quantitative genetics (as was done for GLMMs in
Ref. 31) have not yet been worked out. Hence some
methodological challenges are still ahead, but aster
models have a strong potential for the study of the
quantitative genetics of life-history traits.

More generally, the core assumptions behind aster
models (assumption of a causality pathway and con-
ditional independence between components of this
pathway) can already be used with much success in
the complex analysis of fitness components. For ex-
ample, Ref. 64 has shown that the “paradox of stasis”
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in bird body size (where there is seemingly strong
selection for higher body sizes but no change is ob-
served over time) is likely to be explained by an an-
tagonistic effect of chick body size on parental per-
formance. To do so, they assumed a complex path-
way to explain fitness, including among other vari-
ables, parental performance, body size, survival and
fecundity. Assuming conditional independence be-
tween three models (for body size, juvenile survival
and annual fecundity), they could fit these models
using “plain” GLMMs. This approach is made possi-
ble by the computation of selection gradients that are
complex functions of themodels estimates and the use
of a Bayesian approach allowing to compute posterior
distributions (hence to obtain a measure of the sta-
tistical error) of such complex functions.64 Although
this approach is not an exact equivalent to aster mod-
els (which is using joint estimation and can come in
a “conditional aster models”55,56), it could be a pos-
sible way to tackle issues such as the one in Fig. 4
(using subsequent Bayesian models including the par-
ent node as a fixed effect and computing the complex
functions for the resulting selection gradients).

High dimension data: the
heritability of gene expression
Gene expression is a phenotypic trait of great inter-
est because of its obvious causal proximity to the
genes, allowing for detailed studies of the genotype-
phenotype map.65 Although a variety of distributions
have been derived to model stochastic variations in
protein or mRNA levels,66 gene expression is most
often analysed as a Gaussian trait after transforma-
tion.67 As such, one could consider that it does not
have peculiarities as a phenotypic trait. Yet study-
ing gene expression using the tools of quantitative ge-
netics might be quite challenging because it requires
studying a very large number of traits (usually in the
order of thousands) at once. This means that a high-
dimension additive genetic variance-covariance ma-
trix (or G-matrix) needs to be inferred. For a study
on 1,000 genes for example, this would require the in-
ference of 500,500 parameters for the G-matrix. The
number of individuals necessary to infer such a ma-
trix with satisfying precision (well above millions) is
definitely out of our reach.

In order to work around this issue, Blows et al.68
used an approach based on “block sampling” in which
submatrices of low dimension (e.g. k = 5 ork = 50 in

their study) are estimated and higher dimension ma-
trices are reconstructed from them. More precisely,
the complete G-matrix is separated into “blocks” Bi j
of size k = M/m, where M is the number of dimen-
sions of G:

G =

©«
B11 B12 · · · B1m
B12 B22 · · · B2m
...

...
. . .

...

B1m B2m · · · Bmm

ª®®®®¬
(19)

which is reconstructed from a simpler, block-diagonal
matrix K:

K =

©«
B11 0 · · · 0
0 B22 · · · 0
...

...
. . .

...

0 0 · · · Bmm

ª®®®®¬
(20)

with each block Bii being independently inferred
from the dataset (e.g. estimation of a small G-matrix
from k random genes). The reconstruction of G from
K is based on theoretical work in Ref. 69, 70. Of
course, this approach is based on strong assumptions,
namely that pleiotropy (and/or linkage) is widespread
throughout the genome, allowing us to scavenge use-
ful information on the structure of theG-matrix by us-
ing “smaller pieces” of it. Besides other methodolog-
ical results, the authors confirmed, using Drosophila
serrata gene expression data, the strong influence of
pleiotropy/linkage in gene expression data.68 Using
gene ontology analysis,71,72 they also found an enrich-
ment in regulatory gene ontologies in the genes con-
tributing the most to the major axis of their G-matrix
(hence the most pleiotropic genes).68

Another promising approach to address this issue
of quantitative genetics in high-dimensionality is the
Bayesian sparse factor analysis.73 This is again based
on the assumption that pleiotropy is widespread and
hence the G-matrix is of low rank. Following a sta-
tistical approach close to principal component analy-
sis, the G-matrix is approximated using a number of
independent latent factors (much smaller than the di-
mensionality of G), for which heritabilities can be es-
timated. In summary, the heritability of those latent
factors is estimated in a diagonal matrix Σh2 and the
total matrix G is reconstructed using the model:

G = ΛΣh2ΛT +Ψ (21)

where Λ is the “factor loadings” matrix relating the
latent factors to the actual trait (as is the case in a
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principal component analysis) and Ψ is a diagonal
trait-specific additive genetic variance matrix. By re-
lating these latent factors to the actual phenotypic
traits, this model allows sets of traits linked through
pleiotropy to be clustered. Using this model on a
dataset on gene expression of 414 genes in Drosophila
melanogaster, the authors identified 27 latent factors,
most of which had moderate to high heritabilities and
two of which were significantly genetically correlated
with fitness.

Such approaches approximating large G-matrices
by low-rank matrices are currently challenging to im-
plement and their inferential value is based on strong
assumptions (e.g. that pleiotropy is widespread).
Hence they should be analysed with due caution. But
despite these computational and statistical difficul-
ties, they still deepen our understanding of genotype-
phenotype maps and genetic correlations at the level
of gene expression. Given the trending abundance
of gene expression studies, we can hopefully expect
such studies to be replicated in the near future and
even connections to upper levels (morphological and
life-history traits) to be made. Note that rank reduc-
tion through the simpler approach of factor analysis
can also be useful for datasets of much smaller dimen-
sionality, such as a dozen of traits.74–76

Future directions
This review of recent developments in the field of
evolutionary quantitative genetics shows that, de-
spite its age, the field is still active and undergoing
strong developments. New and exciting theoretical
and methodological work opens the way to more re-
fined analyses of complex data, in turn enhancing our
understanding of the sources of biological variation
and the mechanism of its differential transmission to
future generations. With these new tools, evolution-
ary biologists can understand the genetic bases of a
broader variety of phenotypic traits, with an increas-
ing ability to fit peculiarly distributed traits. How-
ever, despite the growing use of those tools, we are
still lacking a good perspective on how these non-
Gaussian traits are shaped by biological processes. If
the (multiple) threshold model makes a convincing
case that binary (or ordinal) traits can arise from a
normally distributed variable, the cases of other mod-
els typical from GLMMs are far less supported. No
theoretical work that I am aware of describes how the
logarithm link of a Poisson model can be biologically

justified (although a possible interpretation of the use
of logarithmwould be the assumption of a totally mul-
tiplicative model). The fact that it is not possible to
select Poisson traits for a single specific value is also
not properly described: as the variance is equal to the
mean, even a latent trait without variation can still ex-
hibit phenotypic variation on the data scale. Note that
more flexible alternatives exists such as the double-
Poisson77 and the Conway-Maxwell Poisson78 (COM-
Poisson) distributions, but they are still making as-
sumptions regarding a link between mean and vari-
ance, e.g. for the COM-Poisson, for which the mean
reaches zero when the variance decreases to a mini-
mal value. These assumptions are made by evolution-
ary biologists each time they use such kind of mod-
els, because they are statistically convenient, but al-
most no theoretical work has been done on whether
they can be reasonably made on a biological system
to begin with (although see Refs. 31, 32). Convinc-
ing genotype-phenotype maps accounting for the ex-
istence of quantitative, but non-Gaussian, traits are
thus needed.

Another direction of methodological development
would be to extend our ability to analyse biolog-
ical systems in a holistic way. A first approach
would be to use path diagrams, as was suggested by
Wright79 long ago and is currently becoming more
promoted.64,80,81 Aster models, discussed in this pa-
per, uses such path diagrams in a convenient way
for evolutionary biologists and could become a handy
set of models, when they will be able to deal more
efficiently with typical quantitative genetic data (e.g.
pedigrees). A second way would be to enhance our
ability to analyse datasets of high dimensions that are
currently produced by gene expression studies, or to
a lesser extent by large multivariate studies of multi-
ple traits,74–76 and might be produced in the near fu-
ture by high-throughput phenotyping technologies.82
I have discussed several recent attempts at doing this.
Although they rely on strong statistical assumptions,
they seem to be able to provide interesting informa-
tion on, at least, the rough structure of the genetic
covariation among traits and even on how groups of
traits can be heritable and selected together. As we
go down that road, however, we must keep in mind
that these methods are using a scrap of information,
coming from subset (or low-rank) analyses, to infer
properties about the whole system, which will always
be a limited process.
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Conclusion
Despite being around a century old,4 quantitative ge-
netics is still a very dynamic field of research, possibly
even gaining momentum over the last decades.83 The
field was first centred around the study of Gaussian
traits because it is based on the infinitesimal model.3
It was quickly applied to binary traits,8 but only rel-
atively recently was it extended to other trait distri-
butions (see e.g. Ref. 84 for pioneer work on Poisson-
distributed traits). As shown in this review, progress
has been made to better understand the properties
of the models used for non-Gaussian traits23 and
new ideas are being developed for particular types
of traits.52,63,68 However, our understanding of the
genotype-to-phenotype map for non-Gaussian traits
is still only superficial. For example, while GLMMs
are convenient statistical models, whether their bio-
logical assumptions (see Box 2, notably that themodel
generates non-additive genetic variance and incom-
pressible noise) are justified is most often unknown
and left to the researcher’s expert judgement. The
growing interest in the study of the quantitative ge-
netics of non-Gaussian traits will most certainly trig-
ger new research in this area, which would in turn
help design more appropriate quantitative genetics
models. In the meantime, it should be acknowledged
that these methods are indeed extremely useful and
should not be discarded, but we should also acknowl-
edge their underlying assumptions and be careful to
interpret our parameters in the light of these assump-
tions.
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