
HAL Id: hal-03043390
https://hal.science/hal-03043390v1

Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed-effect variance and the estimation of
repeatabilities and heritabilities: issues and solutions
Pierre de Villemereuil, Michael B. Morrissey, Shinichi Nakagawa, Holger

Schielzeth

To cite this version:
Pierre de Villemereuil, Michael B. Morrissey, Shinichi Nakagawa, Holger Schielzeth. Fixed-effect
variance and the estimation of repeatabilities and heritabilities: issues and solutions. Journal of
Evolutionary Biology, 2018, 31 (4), pp.621-632. �10.1111/jeb.13232�. �hal-03043390�

https://hal.science/hal-03043390v1
https://hal.archives-ouvertes.fr


Fixed effect variance and the estimation of repeatabilities and
heritabilities:

Issues and solutions

Pierre de Villemereuil1, Michael B. Morrissey2, Shinichi Nakagawa3, and Holger Schielzeth4

1School of Biological Sciences, University of Auckland, Auckland, New Zealand, bonamy@horus.ens.fr
2School of Evolutionary Biology, University of St Andrews, St Andrews, UK, KY16 9TH, michael.morrissey@st-andrews.ac.uk

3Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia, s.nakagawa@unsw.edu.au
4Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburger Str. 159, 07743 Jena, Germany,

holger.schielzeth@uni-jena.de

Abstract

Linear mixed effects models are frequently used for estimating
quantitative genetic parameters, including the heritability, as
well as the repeatability, of traits. Heritability acts as a filter that
determines how efficiently phenotypic selection translates into
evolutionary change, while repeatability informs us about the in-
dividual consistency of phenotypic traits. As quantities of biolog-
ical interest, it is important that the denominator, the phenotypic
variance in both cases, reflects the amount of phenotypic variance
in the relevant ecological setting. The current practice of quanti-
fying heritabilities and repeatabilities from mixed effects models
frequently deprives their denominator of variance explained by
fixed effects (often leading to upward-bias of heritabilities and re-
peatabilities) and it has been suggested to omit fixed effects when
estimating heritabilities in particular. We advocate an alternative
option of fitting models incorporating all relevant effects, while
including the variance explained by fixed effects into the estima-
tion of the phenotypic variance. The approach is easily imple-
mented and allows optimising the estimation of phenotypic vari-
ance, for example by the exclusion of variance arising from ex-
perimental design effects while still including all biologically rel-
evant sources of variation. We address the estimation and inter-
pretation of heritabilities in situations in which potential covari-
ates are themselves heritable traits of the organism. Furthermore,
we discuss complications that arise in generalised and non-linear
mixed models with fixed effects. In these cases, the variance pa-
rameters on the data scale depend on the location of the intercept
and hence on the scaling of the fixed effects. Integration over the
biologically relevant range of fixed effects offers a preferred solu-
tion in those situations.
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Introduction
Additive genetic variance, phenotypic variance, and their
ratio, the heritability of a trait, are key parameters in evo-
lutionary quantitative genetics, because they allow the as-
sessment of whether a phenotypic trait can evolve through
natural and artificial selection (Falconer and Mackay, 1996;
Lynch and Walsh, 1998). The heritability, h2, of a trait cor-
responds to the fraction of the selection differential that
can cause genetic change in the offspring generation. The
heritability acts as a filter that determines how efficiently a
population can respond to phenotypic selection. Therefore,
heritability is relevant to assess the adaptive potential (e.g.
in species threatened by global change Hoffmann and Sgrò,
2011; Alberto et al., 2013), as well as to investigate funda-
mental issues in evolutionary biology (Mousseau and Roff,
1987; Merilä and Sheldon, 2000; Kruuk et al., 2000; Hadfield
et al., 2006). A related metric that is relevant in many bio-
logical contexts is the repeatability, R, that can be used. for
example, to describe the individual consistency in pheno-
typic traits such as behaviour. Repeatability can be used in
a variety of context, but for the purpose of simplicity we
here focus on individual consistency, which is arguably the
most widespread application in evolutionary ecology.

Mathematically, the heritability (and repeatability) of a
trait are defined as the ratio of its additive genetic variance
VA (between-individual varianceVI) to its total phenotypic
variance VP:

h2 =
VA
VP
, (1a)

R =
VI
VP
, (1b)

As ameasure of biological interest, heritability and repeata-
bility should be estimated with the ecologically relevant
phenotypic variance in the denominator, just as VA and
VI should be estimated accounting for various confound-
ing effects (Wilson et al., 2010) and in the relevant envi-
ronment, since genotype-by-environment (or individual-
by-environment) interactions are common (Falconer, 1952;
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Kawecki and Ebert, 2004; Stinchcombe, 2014). The pheno-
typic variance VP could ideally be quantified by random
sampling from the base population in a biologically rele-
vant setting. But studies are often designed, for good rea-
sons, primarily for estimating VA and/or VI without bias
and with the highest possible precision. Optimal sampling
for the estimation of these variances can sometimes gener-
ate conflicts between the precise estimation of the numera-
tors and the denominators of Eq. 1a. To cope with these de-
sign choices, as well as to model experimentally and natu-
rally arising confounding effects, quantitative genetic mod-
els have to be as thorough as possible in terms of covariates
accounted for. This thoroughness inevitably leads to much
complexity in the types and forms of effects included in
the model, which in turns might render the computation
of some parameters, especially VP, more difficult than usu-
ally appreciated. As the two cases of heritability and re-
peatability have common issues regarding the correct es-
timation of VP and the models to estimate heritability are
generally slightly more complicated, we will focus on her-
itability throughout this article, but most arguments apply
to repeatability estimation as well.

The most popular methods for estimating quantitative
genetic parameters make use of the linear mixed models
(LMM) framework (Kruuk, 2004; Wilson et al., 2010). In
particular the so-called animal model (Thompson, 1976), a
special case of a mixed effects model, is widely used in
plant and animal breeding (Gianola and Rosa, 2015) and
has been increasingly used in wild population studies over
the past decade (Postma, 2014). One of the greatest advan-
tages of mixedmodels is that they allow accounting for var-
ious confounding effects (Kruuk, 2004; Wilson et al., 2010).
A LMM fitted to explain a phenotype y can contain both
fixed and random effects and is conventionally written as:

y = µ +Xb+Zaa+Zu+ e, (2)

where y is the vector of phenotypes y, µ is the global inter-
cept and e is a vector of residual errors. TheXb part stands
for fixed effects (although not the intercept in the notation
that we use here and in the following), whereas Zu refers
to the random effects. Random effects, unlike fixed effects,
are modelled as stemming from a normal distribution with
amean of zero and a variance to be estimated from the data.
Because of the quantitative genetic context discussed here,
we isolate the random effectZaa corresponding to the ad-
ditive genetic value of the individuals from other random
effect components. The matrices X and Z are referred to
as the design and incidence matrices for the fixed and ran-
dom effects, respectively. Especially, the X matrix con-
tains the values of the co-factors included in the analysis.
The vectors b and u contain the fitted fixed and potential
random effect estimates, respectively.

When no fixed effects (apart from the intercept µ) are in-
cluded in the analysis, the heritability is simply calculated
as:

h2 =
VA

VA +VRE +VR
, (3)
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Figure 1: Schematic description of an analysis using a con-
tinuous fixed-effect predictor to model a phenotypic trait,
possibly with random effects. The graph shows the rela-
tionship between the fixed-effect predictor and the pheno-
typic trait (individual data points in black circles, values
predicted by the model as black thick line). The total phe-
notypic variation (black double-arrow on the right) is de-
composed into the fraction explained by fixed-effect vari-
ation (i.e. the phenotypic variation “along” the predicted
model, in green) on one hand, and random variation (i.e.
variation from random effects and residual error arising
“around” the predicted model, in red) on the other hand.

where VA stands for the variance in additive genetic val-
ues a,VRE for (the sum of) any relevant, i.e. accounting for
natural sources of variation, additional random effect vari-
ance(s) and VR for the residual variance. Since variance
decomposition using LMM separates the phenotypic vari-
ance into additive components, Eq. 3 will generally give an
unbiased estimate of Eq. 1a. Fixed effects, however, can be
problematic for multiple reasons.

Substantial progress has been made in highlighting is-
sues pertaining to fixed effects in quantitative genetic in-
ferences (Wilson et al., 2010; Wolak et al., 2015), generat-
ing solutions for mixed model analysis in general (Naka-
gawa and Schielzeth, 2013), and in data-scale quantitative
genetic inference using generalised mixed models (Naka-
gawa and Schielzeth, 2010; de Villemereuil et al., 2016). The
purpose of this paper is to synthesise the ideas in these
previous works so as to provide an accessible guidance to
about what issues arise, and how to handle them, in a num-
ber of circumstances that are likely to occur in empirical
evolutionary quantitative genetic studies.
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Phenotypic variance
estimation in the presence of
fixed effects
Fixed effects are often fitted with the intention to account
for confounding effects and improve the goodness-of-fit of
the models by accounting for complex patterns in the data.
As illustrated in Fig. 1, the variance of the random effects,
as well as the residual variance are estimated around the
predicted values. Because of this, the sum of random vari-
ances (including additive genetic, random effects and resid-
ual variances) underestimates VP, as it does not reflect the
total phenotypic variance of the trait, but rather the vari-
ance after the fixed effects have been accounted for (i.e. re-
lated to the red part in Fig. 1).

As a consequence, fixed effects change the size of the
phenotypic pie that is decomposed in different compo-
nents, if the denominator is calculated as in Eq. 3. Wil-
son (2008) recommended particular care when fitting fixed
effects in animal models and argued for a supplementary
analysis without fixed effects. Note that the issues tack-
led here and by Wilson (2008) about reduction of the de-
nominator variance when accounting for fixed effects also
apply to the practice of two-step analyses by first fitting a
linear model to account for confounding effects and then
analysing the heritability of the residuals (Garland, 1988).
The argument also applies to the estimation of repeatabil-
ity.

Since it will typically not be possible to get a benchmark
forVP from an independent dataset, we need solutions that
allow a reconstruction ofVP in the presence of fixed effects.
A simple solutionwould be to replace the denominatorVA+
VRE+VR by the phenotypic variance in the original dataset
VPo, such that:

h2 =
VA
VPo
. (4)

VPo will however be affected by various aspects of the ex-
perimental design and may not be representative of the
phenotypic variance in the base population (even if biases
may be small in some cases of well-balanced experimental
designs).

A more proper solution is to account for the amount of
variance that has been transferred from the random com-
ponents to the fixed effects. The variance VF arising from
the fixed effect covariates will be the variance of the values
predicted by the model (green part of Fig. 1) along all pos-
sible values for the fixed-effect predictor (x-axis in Fig. 1).
If we note ŷ the predicted value of the model according to
a some specific predictor(s) value(s) and fx the distribution
of the fixed-effect predictor(s), the variance of fixed effects
is thus the variance of ŷ along the distribution fx :

VF =

∫
Vx (ŷ)dfx , (5)

where Vx is the squared deviation from the mean (along

the distribution fx ). In practice, however, a distribution
fx of the covariates will not be known, as such distribu-
tions are not part of the linear modelling assumptions. In
the context of computing the coefficient of determination,
Nakagawa and Schielzeth (2013) proposed constructing a
fixed effect variance component as the variance of the lin-
ear predictor of the model ŷ = Xb̂. In other words, ŷ
are the data points projected on the black thick line in Fig.
1 and their corresponding variance VF (i.e. related to the
green part in the figure) can be computed as:

VF = V (ŷ) = V (Xb̂), (6)

which ismuch simpler to compute than Eq. 5. When includ-
ing this variance component in the heritability calculation,
the denominator is no longer sensitive to the presence and
number of fixed effects, because the variance transferred
from random components to the fixed effects is now ac-
counted for in the new componentVF (again, see Fig. 1 for
a graphical illustration that VP includes VF):

h2 =
VA

VA +VF +VRE +VR
. (7)

This is a straightforward calculation that can be applied for
any analysis, and using most software, since it needs only
the values of the co-factors (i.e. the design matrix X) and
the parameter estimates. The former is an aspect of the
sampling and/or experimental design and the latter is part
of the output of any statistical software. The computation
of repeatability usingVF is straightforward by replacingVA
by VI in Eq. 7, as in Eq. 1b.

It will be useful to provide estimates of this component
in publications, in order to reflect how much variance was
depleted because of the presence of fixed effects. The same
kind of solution could be applied if the heritabilitywasmea-
sured on the residuals of a regression (sometimes referred
to as “corrected phenotypic values”): the variance of the
regression model (VF, following the exact same definition
as in Eq. 6) could be computed and included inVP, though a
better practice anyway would be to run everything within
a single LMM.

As an illustration, we re-analysed the unicorn example
data from Wilson (2008) using the MCMCglmm R pack-
age (Hadfield, 2016). This analysis of unicorn horn length
(Table 1) shows that accounting for the VF component
allow to recover the correct value for VP and hence for
h2, whichever the structure of the fixed effect component.
Hence, because this practice would answer the concerns
raised by Wilson (2008), we encourage researchers to in-
clude fixed effects in their analyses. A decision not to fit in-
fluential fixed effects, despite their beneficial effect on the
goodness-of-fit or for accounting for confounding effects,
would likely harmmodel fit, parameter estimation and pos-
sibly the behaviour of the test statistics. Improving the fit
of the model would most likely improve the precision of
the estimates, which, for any particular dataset, would im-
prove the precision of the heritability estimate (the point
estimate would bemore probably close to its true value and
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Table 1: Re-analysis of the unicorn dataset from Wilson (2008) in MCMCglmm (Hadfield, 2016), using models 1a, 1b
and 1c from this reference (posterior mean of the estimates and 95% credible interval in bracket). We computedVF and
provideVP and h2 with or without accounting for this component. Discrepancies in values from h2 compared to Wilson
(2008) are due a typological error in this reference (A.J. Wilson, personal communication).

Fixed effect VF VA VR VP h2

No VF With VF No VF With VF

None
0.00

[0.00-0.00]
0.34

[0.08-0.60]
3.14

[2.85-3.44]
3.49

[3.24-3.71]
3.49

[3.24-3.71]
0.098

[0.025-0.17]
0.098

[0.025-0.17]

Age + Sex
2.49

[2.36-2.62]
0.36

[0.27-0.47]
0.65

[0.58-0.73]
1.02

[0.94-1.08]
3.51

[3.35-3.65]
0.36 [0.28-0.45] 0.10 [0.08-0.13]

Age + Sex +
Age:Sex

2.56
[2.42-2.68]

0.35
[0.26-0.46]

0.60
[0.52-0.67]

0.95
[0.88-1.03]

3.51
[3.36-3.66]

0.37 [0.28-0.46]
0.10

[0.072-0.13]

the confidence interval will be smaller). Furthermore, the
inclusion of co-factors that account for non-genetic effects
that are partly confounded with the additive genetic com-
ponent VA (e.g. common environment effects) are likely
to reduce upward bias in the heritability estimate and will
tend to result in lower, but more accurate point estimates
of heritabilities.

Removing the influence of
experimental design on VP

In the context of estimating the phenotypic variance of a
trait, fixed effects (as well as random effects) may be of
two kinds. They can either reflect natural sources of vari-
ation that we are interested in, or variance arising from
experimental and/or design effects. Since the latter cate-
gory artificially inflates the variance in the data, we might
wish to exclude this source of variance from the heritabil-
ity calculation. For example, if we want to study the ampli-
tude of insect songs in the field, we might want to improve
our model fit by including effects accounting for natural
sources of variation, such as the age of the individual (if
the amplitude is age-dependent) and effects accounting for
sampling design, such as the distances between the animal
and the microphone. Yet, in the computation of the pheno-
typic variance VP, we might want to include the biological
variance arising from age, but not the experimental vari-
ance arising from the distance.

We have categorised fixed effects in a cursory literature
survey (Table 2) into sources of natural or experimental
variation for illustration. Most of the fixed effects included
in these analyses originate from natural variation (e.g. sex,
year, age, area, litter size) and most likely should be in-
cluded in VP. Others are of experimental origin either be-
ing an experimental treatment or of design origin (e.g. due
to variation in the time of measurement) and should prob-
ably be excluded from VP. Of course, this separation be-
tween natural and experimental sources of variation can
be quite difficult (e.g. year of sampling may represent er-
ror measurement or relevant natural variation depending

on context). Furthermore, it can sometimes be interesting
to also exclude natural sources of variation. For example,
“age” or “sex” could be excluded from the denominator to
get heritabilities conditional on those factors. This would
allow performing evolutionary prediction for a particular
age-class or sex.

In essence, what is required is to compute the pheno-
typic variance including the “natural” factors xnat condi-
tional on the experimental factors xexp:

VF =

∫
Vx (ŷ |xexp)dfxnat |xexp(xnat). (8)

To exclude the particular factor(s) in practice, the predic-
tor(s) (i.e. the respective columns in the design matrix) and
the related inferred parameters can simply be left out of a
new linear predictor ŷ⋆ in the calculation ofVF such that:

VF = V (ŷ⋆). (9)

This is equivalent to Eq. 8, in the sense that it is accounting
for the variance due to the factors included in the compu-
tation of ŷ⋆ conditional on the effect of other factors that
have been excluded. Note, however, that this computation
is unfortunately not general and is based on the assump-
tions that the measured variance of the natural predictors
is not caused by any of the experimental predictors. A
more general solution relies on path analysis and the as-
sumption of a causal pathway between variables (see Box
1).

A strong assumption in the equations above is that the
sampled design matrix X for the cofactors is representa-
tive of their distribution fx in the natural population. This
might not be always the case. For example, the insects that
we are studying with respect to song amplitude might oc-
cur in distinct morphotypes (and these morphotypes differ
in song amplitude) that are not equally common. For statis-
tical reasons it may be useful to oversample rare morphs if
we want to estimate the effect of morph on song amplitude.
Such a sampling design will equalize morph frequencies in
the sample and will thus tend to inflate VF if calculated as
Xb̂. Statistical requirements (balanced sampling) and bi-
ological realism (natural morph ratios) differ in this case
and the calculation should account for this difference, es-
pecially we need to ensure the denominator actually reflect
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Table 2: Fixed effects literature survey. This literature survey does not claim completeness, but should be representative
for heritability estimates in wild population using the animal model.

Référence Nb. effects Fixed effects
Natural variation Experimental variation

Réale et al. (1999) 2 Sex, Years —
Kruuk et al. (2000) 2 Age, Area —

Milner et al. (2000) 8
Age, Parasite burden, Birth Year, Year
ofmeasurement, Birth type, Coat color,
Horn type

Catch date

Kruuk et al. (2001) 1 — Brood size manipulation
Merilä et al. (2001) 1 — Brood size manipulation
Kruuk et al. (2002) 1 Age —

MacColl and Hatchwell (2003) 6
Year, Sex, Helper, Hatch date, Area, At-
tempt

—

Sheldon et al. (2003) 1 Year —

Hadfield et al. (2006) 5 Sex, Year, Hatch date
Carotenoid treatment, Im-
mune treatment

Thériault et al. (2007) 4 Age, Year Day of capture
Nilsson et al. (2009) 3 Age, Dyad Brood size manipulation
Morales et al. (2010) 3 Eggmass, Age Treatment
Charmantier et al. (2011) 2 Sex, Natal colony —
Doligez et al. (2011) 2 Sex, Age —
Lane et al. (2011) 2 Age-class, Year —
Reid et al. (2011b) 1 Year —
Reid et al. (2011a) 2 Year, Age-class —
Evans and Sheldon (2012) 3 Sex, Age Measurement day
Bérénos et al. (2014) 3 Sex, Litter size Age at capture
Lane et al. (2015) 4 Age, Cone availability, Litter size, Year —

natural variation. A solution is to use Eq. 5 directly by as-
suming a distribution fx for our morphotypes.

Although this might be feasible in this simple example,
it will be more difficult as soon as many covariates have to
be included, for which a joint distributionmust be assumed.
Two other solutions are possible. One possible solution
would be to use Eq. 6, but replace the design matrixX by a
modified design matrix X′ that more closely matches the
distribution of covariates to the natural population varia-
tion (e.g. sampled observations from the field) to compute
the predicted values (noted ŷ′). Note that, when construct-
ing X′, we should still take into account potential corre-
lations between co-factors. For example if the rare morph
is preferentially present in warm environments and tem-
perature is included in the model, then X′ should reflect
that correlation. Additionally, the computation of X′ will
only represent a possible sampling of the true population,
thus this solution will comewith the drawback of sampling
noise arising form this.

Another possible solution would be to use a slightly dif-
ferent (but exactly equivalent) approach compared to Eq. 6
and computeVF as the product between the variance of the
covariate in the natural population and their squared esti-
mated effects. For a model with a simple continuous co-
variate x with an associated slope b̂x , this will be:

VF = b̂2xV (x) (10)

For amultivariate model, the variance-covarianceS′ of the

covariates in the wild population is required (and can be
easily computed from raw data) and one can compute VF
in the multivariate analogous of Eq. 10:

VF = b̂⊺S′b̂, (11)

where ⊺ is the symbol for the transpose operation. The
main advantage of this solution (again, exactly equivalent
as the above approach) is that, compared to the resampling
of a design matrix X′, it does not introduce supplemen-
tary sampling noise (i.e. apart from the already existing
sampling noise due to data collection on the natural pop-
ulation and model estimates). All the issues and solutions
discussed here equally apply to the computation of repeata-
bility.

Fitting of genetic covariates
and implicit assumptions
about genetic covariances
A general consideration is whether fixed effects should
cover only non-genetic sources of variation. Morphs in
our example might be environmentally or genetically de-
termined and it is usually advisable to model such dis-
crete effects with potentially oligocausal control as fixed
effects, no matter whether they are ultimately genetic or
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Box 1: Using path analysis to obtain a partial VF

Path analysis Path analysis is a statistical analysis aiming at evaluating the directed influence of variables onto others.
This directed relationship is referred to as causality (Wright, 1921). The direction of the relationship has a strong influence
in our case, because it allows us to predict if the presence of one variable would inflate the variance of another.
Three examples In the figure below are three different examples using a phenotypic variable of interestP influenced by
a biological variableB and an experimental variableE. The parametersbXY stand for the coefficient of a model of the effect
ofX on Y (e.g. a slope). The parameters σX is the exogenous standard-deviation of the variableX , i.e. its standard-deviation
due to influences outside of the causal pathway (e.g. stochasticity, unmeasured variables and measurement error). The
parameters σXY is the exogenous covariance betweenX andY , i.e. a undirected covariance arising from common influences
outside of the causal pathway or due to physical/logical constraints (e.g. size and volume are physically covarying).

B
σB

σBE E
σE

P
σP

bBP bEP

1

B
σB

bBE E
σE

P
σP

bBP bEP

2

B
σB

bEB E
σE

P
σP

bBP bEP

3

General principle In all cases, we are only interested in computing the variance arising from the grey area of the pathway
(B andP ), while excluding variance arising fromE. ExcludingE from the graphmeans that we set its exogenous standard-
deviation (σE ) and possible covariances (e.g. σBE ), as well as all the coefficients of its effect on any variable (e.g. bEP ), to
zero. Given that, the “fixed-effect variance” of P in this graph excludingE is simply the variance arising from the effect of
B:

VF = b2BP σ2
B

We will see that the difference between the three examples lies in the computation of σB .

Example 1 In this example, the variablesB andE share an undirected covariance σXY . In other words, we assume that
a set of unmeasured variables have an effect on both B and E, but not that a change in E will affect B. In that case, the
exogenous variance of B is merely its actual variance: σ2

B
= V (B).

Example 2 In this example, the variableB has a direct effect onE (e.g. because an aspect of the species biology modulate
the effect of the experimental treatment). In that case, changes of variance in B will affect the variance of E, but this is
not a problem for us since we want to exclude E. Once again, the exogenous variance of B is merely its actual variance:
σ2
B

= V (B).

Example 3 In this example however, the variable E has a direct effect on the variable B (e.g. because the experimental
treatment has an effect over different parts of the biological system). This means that, by experimentally introducing E
into the biological system, we also experimentally increased the actual variance of B. To compute the exogenous variance
of B, we need to remove this additional variance: σ2

B
= V (B |E). In other words, σ2

B
is here the residual variance of a

model of the effect of E on B (e.g. the residual variance of the regression of E on B).

environmental in origin. With purely monogenic inher-
itance of morphs, morph phenotype is essentially a ge-
netic marker for a (potential) quantitative trait locus (QTL)
and thus represents the local heritability in linkage with
the morph-determining locus (see e.g. Payne, 1918; Sax,
1923, for early QTL studies using Mendelian phenotypes
as markers), while the polygenic contribution of the back-
ground is captured byVA. Whether or not covariates cover
genetic or non-genetic effects matters for the interpreta-
tion, since the estimate of VA (and consequently h2) might
represent the totalVA or the backgroundVA other than the
local heritability at the QTL.

Some potential covariates might also be (heritable) poly-

genic traits themselves. In many cases, relationships be-
tween a heritable focal trait and some other relevant herita-
ble trait are best handled with multi-response models (see
Hadfield, 2010; Wolak et al., 2015), wherein the potential
covariate is treated as a response along with the focal trait.
Such a model estimates the genetic (and non-genetic) vari-
ances for both traits along with genetic (and non-genetic)
covariances among the traits treated as responses. This is
not the case when the potential covariate is fitted as a fixed
effect in the model: the fixed effect will explain the total in-
fluence of the covariate on the focal trait but not explicitly
distinguish between (nor differentially estimate) different
sources of covariances. There are situations where it does
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make sense to include polygenic traits as fixed covariates,
particularly when studying questions where causal effects
of traits on one another are relevant. Further discussions
of such scenarios are presented in Gianola and Sorensen
(2004) and Morrissey (2014, 2015).

To illustrate this, let us go back to Wilson (2008)’s uni-
corn dataset. It is a known fact that in unicorns, horn
length varies according to the individual body mass (slope:
β = 0.403 for a full model including age, sex and their in-
teraction). It would thus seem relevant to add bodymass as
a covariate in our model of horn length. Doing so for our
full model in Table 1 results in a heritability (accounting for
VF) of h2horn length |body mass = 0.066 (Table S1 in Appendix).
This is slightly lower than the estimate in Table 1, despite
the fact that we accounted for the variance explained by
the fixed effects. Yet, the inferred phenotypic variance
(VP,horn length |body mass = 3.47, Table S1) is comparable to the
estimate in Table 1, what is now different is the estimate of
the additive genetic variance (VA,horn length |body mass = 0.23,
Table S1, lower thanVA,horn length = 0.35 in Table 1). What
is causing this lower additive genetic variance? Inciden-
tally, we also know that body mass is a heritable trait
(VA,body mass = 0.328 and h2body mass = 0.344, Table S2).
Moreover, a bivariate model shows that it is genetically cor-
related with horn length (rG = 0.63, Table S3). Hence, by
including body mass as a fixed effect, we have been “ex-
plaining away” some of the additive genetic variance of
horn length, precisely because of this genetic correlation.
A naive way to obtain a correct estimate of the additive
genetic variance of horn length, without resorting to a bi-
variate model, would be to use the slope of the regression
of horn length on body mass and compute the additive ge-
netic variance as VA,horn length |body mass + β2VA,body mass =
0.23+ 0.162× 0.328 = 0.283, which doesn’t quite restore
VA,horn length to its original value. This is because this com-
putation use the total slope of the relationship between
horn length and body mass, hence assuming an effect of
the phenotypic value of body mass on the genetic value
of horn length, which is apparently not a good assumption
here. Anymore accurate recovery ofVA will almost always
require to fit a bivariate model. Because of the issues high-
lighted here, we believe it is advisable, whenever possible,
to fit multivariate models between heritable and putatively
genetically correlated traits instead of using other traits as
covariates.

More generally, whether the covariate variability is of
genetic or environmental origin, we still make an implicit
strong assumption about the structure of genetic variation
of the response trait(s). In particular, we assume that the
additive genetic effects (and especially their variance) are
constant across the range of the covariate or categorical
factor. In doing so, we assume that genotype-by-covariate
interactions are negligible, or put differently, that there is
a perfect genetic correlation e.g. between categories of the
categorical covariate. This assumption is frequently vio-
lated. In the special case of sex, for example, it has been
shown that fitting sex as a fixed effect in a LMM leads to

(downward) biased estimates unless the cross-sex genetic
correlation is perfect (Wolak et al., 2015).

Note that repeatability might also be impacted by the in-
clusion of biological covariates that are themselves repeat-
able and share some of the underlying mechanisms of this
repeatability (e.g. genetics or environmental) with the re-
sponse variable.

Non-linear models and
non-Gaussian traits
The influence of fixed effects becomes more complex, and
thus even more important to consider carefully, when the
data are non-linear in the parameters of a model. Such
non-linearity arises in non-linear mixed models (NLMMs),
in generalised linear mixed models (GLMMs), through the
non-linearity of their link functions, and when data are
non-linearly transformed prior to analysis. In GLMMs, a
distinction is critical between the latent scale and the data
scale (Morrissey et al., 2014): on the former, we assume
linearity, normality and perform most of the inferences,
whereas the latter is a non-linear transformation from the
latent scale (e.g. through the link function). Hence, the
above framework could be used to compute heritabilities
and repeatabilities on the linear, normally distributed, la-
tent scale, but creates difficulties with methods transform-
ing estimates from the latent scale to the data scale (see e.g.
Table 1 and 2 in Nakagawa and Schielzeth, 2010).

Non-linearity causes dependence between fixed and ran-
dom effects, with the direct consequences that quantitative
genetic parameters can no longer be computed without
accounting for the whole distribution of fixed effects. In
other words, in a GLMM, variation associated with fixed
effects does not only potentially contribute to the pheno-
typic variance, but the contribution to the phenotypic vari-
ance is not constant across the distribution of fixed effects
(de Villemereuil et al., 2016). Hence VA and VP on the data
scale become complex functions of all the parameters. This
means that adding a VF component to the computation of
VP will not work any longer, because the additivity of the
fixed effects and random effects variance components is
not valid in these models. De Villemereuil et al. (2016)
showed that we need to integrate over the predicted val-
ues based on fixed effects to compute quantitative genetic
parameters using a GLMM. The same logic applies when
working with non-linear models or with data that was non-
linearly transformed, unless we are specifically interested
in the heritability of the transformed data.

Alastair Wilson collected data on the number of aggres-
sive behaviours performed in a single day on all unicorn in-
dividuals for which he analysed the genetics of horn length
in his 2008 paper. Here, we conduct analyses of these data
to illustrate how, in addition to h2, variance components
such as VA and VP depend on the full distribution of fixed
effects. Fig 2 show how, according to our Poisson GLMM
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Figure 2: Illustration of the non-linearity of GLMMs using the unicorn aggressive behaviour trait. Plain arrows il-
lustrate deterministic relationships and dotted arrows stochastic relationships. On the latent scale, males and females
have the same variance in latent values, the males only differing from the female by a larger mean latent value. Because
the inverse of the link function (here the exponential) is not linear, initially equally apart values for each sexes are more
spread for males than for females (solid arrows). Because the variance depends on the mean for Poisson distributions,
this effect is amplified for larger values, creating even more variances for males. The end result is that on the data
scale, the two sexes no longer satisfy the assumptions on the latent scale: their variance are different (bigger for males),
the shapes of their distributions now differ (females are more skewed toward). On the data scale, it is not possible to
compute the variance arising from the fixed effect as simply the variance arising from differences in mean between the
two sexes.

model, the effect of the sex covariate impacts the observed
number of aggressive behaviours: despite the two sexes
having the same variance in their latent values and differ-
ing only in mean latent value (males having larger values,
with little overlap), the counts of aggressive behaviours do
not follow this patterns as clearly (variance in male val-
ues is larger with strong overlap of the distribution with
females). This non-linearity of the effects can be linked
to two subsequent phenomenons. To begin with, the ex-
ponential inverse link function assumed in the Poisson
GLMMs is strongly non-linear: this results in the fact that
two pairs (one for female, one for male, see red and blue
arrows) of evenly spaced values on the latent scales are
not evenly spaced after transformation through the inverse
link-function. On top of this, the variance of a Poisson dis-
tribution is equal to the mean: this creates even more vari-

ance for large values (see dotted arrows and correspond-
ing distributions of aggressive behaviours for males and
females). The strong effect of this non-linearity on the vari-
ances of the phenotypic trait raises the question of how to
best account for the variance “explained” by fixed effects.

We analysed the number of aggressive behaviours using
the R package MCMCglmm and a Poisson family including
sex, age and their interaction as fixed effects. The results of
the analysis on the latent scale (direct output from MCM-
Cglmm) are available in the first row of Table 3. We can
see that the fixed effects account for a large part of the phe-
notypic variance (VF is larger than VA and VR). Using the
framework from de Villemereuil et al. (2016) implemented
in the QGglmm R package, we then computed the quan-
titative genetic parameters on the observed data scale us-
ing three different approaches: (i) not accounting for fixed

8



Table 3: Results of fitting a model for number of observed aggressive behaviours using a Poisson distribution in MCM-
Cglmm. First row: estimate of the intercept of the model and variance decomposition on the latent scale. Three last
rows: estimates of population mean, additive genetic variance, phenotypic variance and heritability computed on the
observed data scale using QGglmm (i) ignoring fixed effect and only providing the intercept; (ii) providing the intercept
but including VF in the latent total variance or (iii) using the whole latent predicted values distribution.

Latent scale Intercept VF VR VA
Variances 0.0871

(-0.0533 - 0.254)
0.307

[0.273 - 0.342]
0.0973

[0.0686 - 0.13]
0.0317

[0.00766 - 0.056]

Observed scale Mean VA,obs VP,obs h2obs
(i) Using the intercept 1.17

(0.984 - 1.35)
0.0434

(0.0114 - 0.0813)
1.36

(1.14 - 1.61)
0.0318

(0.00825 - 0.0564)
(ii) Adding VF 1.36

(1.16 - 1.55)
0.0589

(0.0154 - 0.11)
2.37

(1.95 - 2.79)
0.0247

(0.00722 - 0.0447)
(iii) Integrating over
predictions

3.49
(3.37 - 3.62)

0.386
(0.113 - 0.709)

10.3
(9.3 - 11.4)

0.0377
(0.0119 - 0.0695)

effects at all, (ii) accounting the variance of fixed effects
in the total variance of the latent scale and (iii) using the
whole distribution of predicted values to be integrated over
rather aVF component. As shown in the last three rows of
Table 3, the three strategies drastically differ not only in
the value for VP, but also for all the other values, namely
the populationmean, the additive genetic variance and to a
lesser extent, the heritability. Note that accounting for the
whole distribution of predicted values (last row) is the only
approach that yields a population mean and phenotypic
variance compatible with the sample estimates (number of
aggressive behaviours, mean = 3.41 and variance = 9.77).

The analysis of unicorn aggression data illustrates that
the approach of using a VF component suggested here can
only be applied directly to phenotypic traits with a normal
error distribution and analysed using linear mixed models
(or if the analysis is based on the latent scale of a GLMM).
However, solutions to integrate over the distribution of
predicted values do exist, such as assuming a distribution
of the fixed-effect covariates (see Eq. 19 in de Villemereuil
et al., 2016) or averaging over the predicted values accord-
ing the fixed effects (i.e. averaging over ŷ) within the inte-
gral computation (see Eq. 18 in de Villemereuil et al., 2016).
This latter approach has been implemented in the QGglmm
R package. This approach of course assumes that the dis-
tribution of fixed effects in the sample is representative for
the base population of interest. Otherwise, the design ma-
trices might need to be adjusted accordingly (e.g. by pro-
viding a construct such as ŷ⋆ or ŷ′ introduced above, or
a mix of these constructs, as the predicted values to QG-
glmm).

On this subject, it must be noted that repeatability and
heritability are computed differently for GLMMs as the
narrow-sense heritability on the observed data scale of
GLMMs is not an intra-class correlation coefficient any
more (see the difference between Eqs. 9 and 16 in de Ville-
mereuil et al., 2016).

Conclusion & Perspectives
Wilson (2008) identified an issue when fixed effects are in-
cluded a quantitative genetic model: the inclusion of fixed
effects in the model has an influence on the computation
of the phenotypic variance. Based on recent work from
several sources, we provide guidelines to overcome this
and other related issues, in the hope this will facilitate the
use and interpretation of quantitative genetic mixed mod-
els with fixed effects. We also discussed the complications
arising from the diverse and complicated nature of covari-
ates that can be fitted as fixed effects. We think that fixed
effects are an opportunity to finely control confounding
effects. Yet, when belonging to the phenotypic variance,
they need to be included in the denominator of the heri-
tability and repeatability. In order to do so, we here pro-
mote the practice of accounting for the “fixed-effect” vari-
ance component VF (see Nakagawa and Schielzeth, 2013),
which includes the variance of all or selected fixed effects
to be added in the denominator of the heritability and re-
peatability calculation. We include an example of analysis
using simulated data (including how to implement Eqs. 9
and 11, see Supplementary Information) and the R package
MCMCglmm (Hadfield, 2016) to show how these calcula-
tions can be implemented and how they can affect the out-
put (h2 estimates changing from 0.66 when not including
VF in the denominator to 0.15 when including it in our ex-
ample). The code for the analysis of the unicorn examples
is also provided.

This approach has several advantages. First, it over-
comes Wilson (2008)’s legitimate reluctance of including
fixed effects in themodel. When includingVF in the denom-
inator, there is no issue of “lost variance”. Second, since we
are now able to include fixed effects, we have gained a finer
control on confounding effects on the additive variance. It
also requires some careful consideration of which fixed ef-
fects represent experimental design effects and which are
biologically relevant. Third, it provides us with the choice
of whether or not to include effects in VF, depending on
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whether or not we deem them part of the natural pheno-
typic variance of the studied population. Fourth, as argued
above for the case of morphotypes in the context of song
amplitude, the calculation ofVF can accommodate some dis-
crepancies between the analysed data and the actual popu-
lation in the distribution of covariates.

Overall we advocate for the inclusion of fixed effects in
linear mixed models to estimate heritabilities and repeata-
bilities when (i) this improves the goodness-of-fit of the
model and/or helps to account for confounding effects and
(ii) a carefully computed VF component is included in the
calculation of the denominator. While this is generally also
true for non-linear models and GLMMs, any model that in-
volves non-linearity in the response to fixed effects will re-
quire particular attention and likely integration over their
biologically relevant range in order to marginalize the in-
fluence of fixed effects.
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