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KEY AGREEMENT BASED ON AUTOMATON GROUPS

We suggest several automaton groups as platforms for Anshel-Anshel-Goldfeld key agreement metascheme. They include Grigorchuk and universal Grigorchuk groups, Hanoi 3-Towers group, the Basilica group and a subgroup of the affine group Af f 4 (Z).

Introduction

Typically abelian groups are involved in cryptography, say in RSA and Diffie-Hellman schemes (see e. g. [START_REF] Menezes | Handbook of Applied Cryptography[END_REF], [START_REF] Myasnikov | Group-based cryptography[END_REF] and the references there). But they are vulnerable with respect to quantum machines. Thus, for post-quantum cryptography one tries to use non-abelian groups (some attempts one can find in e. g. [START_REF] Grigoriev | Constructions in public-key cryptography over matrix groups[END_REF], [START_REF] Grigoriev | Authentication from matrix conjugation, Groups, Compl[END_REF], [START_REF] Habeeb | Public key exchange using semidirect product of (semi)groups[END_REF] and in the references there). In this paper we suggest several groups G as candidates for platforms for Anshel-Anshel-Goldfeld key agreement metascheme [START_REF] Anshel | An algebraic method for public-key cryptography[END_REF] (section 1).

To break Anshel-Anshel-Goldfeld scheme over a group G an adversary needs to solve a system of simultaneous conjugacies of the form xu i x -1 = v i , 1 ≤ i ≤ m for given u i , v i ∈ G, 1 ≤ i ≤ m, a 1 , . . . , a n ∈ G and unknown x ∈ a 1 , . . . , a n . On the other hand, to perform a communication between Alice and Bob via a public channel, the word problem in G should have a small (say, polynomial) complexity. We suggest some automaton groups [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF], [START_REF] Bartholdi | Branch groups, Handbook of algebra[END_REF], [START_REF] Grigorchuk | Automata, dynamical systems, and groups[END_REF] (see section 2) as G for which the word problem is known to have the polynomial complexity The conjugacy problem for automaton groups was studied in [START_REF] Wilson | Conjugacy separability of certain torsion groups[END_REF], [START_REF] Bondarenko | On the conjugacy problem for finite-state automorphisms of regular rooted trees. With an appendix by R. Jungers[END_REF], [START_REF] Grigorchuk | The conjugacy problem for certain branch groups[END_REF]. Observe that automaton groups are convenient for algorithmic representation.

In section 2.1 we consider Grigorchuk group [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF]. Note that in [START_REF] Yu | The conjugacy problem in a class of 2-groups[END_REF], [START_REF] Rozhkov | The conjugacy problem in an automorphism group of an infinite tree[END_REF] algorithms (without complexity analysis) for the conjugacy problem in Grigorchuk group were proposed, later in [START_REF] Lysonok | The conjugacy problem in the Grigorchuk group in polynomial time decidable[END_REF] a polynomial complexity algorithm for the conjugacy problem in Grigorchuk group was exhibited. But the problem of simultaneous conjugacies seems difficult in Grigorchuk group. Also mention that there was an attempt to use Grigorchuk group in cryptography in a different way [START_REF] Garzon | The complexity of Grigorchuk group with applications to cryptography[END_REF] which was later broken [START_REF] Petrides | Cryptanalysis of the public key cryptosystem based on the word problem on the Grigorchuk groups[END_REF]. In section 2.2 we discuss the Basilica group [START_REF] Grigorchuk | Spectral properties of a torsion-free weakly branch group defined by a three state automaton[END_REF] which is defined by an automaton with 3 states. In section 2.3 we consider the universal Grigorchuk group [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF], [START_REF] Benli | Universal groups of intermediate growth and their invariant random subgroups[END_REF]. In section 2.4 we discuss the group of Hanoi Towers on 3 pegs [START_REF] Grigorchuk | Schreier spectrum of the Hanoi Towers group on three pegs. Analysis on graphs and its applications[END_REF]. Finally, in section 2.5 we consider a subgroup of the affine group Af f 4 (Z) with unsolvable conjugacy problem.

Anshel-Anshel-Goldfeld key agreement metascheme

We recall the key agreement scheme from [START_REF] Anshel | An algebraic method for public-key cryptography[END_REF] (cf. [START_REF] Grigoriev | Constructions in public-key cryptography over matrix groups[END_REF] where its extension to multiparty communications is exhibited, also [START_REF] Myasnikov | Cryptanalysis of the Anshel-Anshel-Goldfeld-Lemieux Key Agreement Protocol[END_REF] ). Let G be a group and a 1 , . . . , a n , b 1 , . . . , b m ∈ G be some publicly given elements. Alice chooses her private element a = a ±1 p1 • • • a ±1 ps ∈ a 1 , . . . , a n , while Bob chooses his private element 2010 Mathematics Subject Classification 15A80, 94A60

1 b = b ±1 q1 • • • b ±1 qt ∈ b 1 , . . . , b m . Alice transmits (via a public channel) elements a -1 b i a, 1 ≤ i ≤ m, while Bob transmits ba j b -1 , 1 ≤ j ≤ n. After that Alice computes bab -1 = ba ±1 p1 b -1 • • • ba ±1 ps b -1 , while Bob computes a -1 ba = a -1 b ±1 q1 a • • • a -1 b ±1 qt a.
Finally, the commutator a -1 (bab -1 ) = (a -1 ba)b -1 computed by both Alice and Bob, is treated as their common secret key.

So, an adversary has to find

A ∈ a 1 , . . . , a n , B ∈ b 1 , . . . , b m such that A -1 b i A = a -1 b i a, 1 ≤ i ≤ m and Ba j B -1 = ba j b -1 , 1 ≤ j ≤ n (
note that the right-hand sides of the latter equalities are known). Then one can verify that a -1 bab -1 = A -1 BAB -1 . We emphasize that an adversary has to search a solution

A of the problem A -1 b i A = a -1 b i a, 1 ≤ i ≤ m in
the subgroup a 1 , . . . , a n which makes the task even harder than the customary simultaneous conjugacy problem. Thus, our goal is to exhibit groups with the polynomial complexity of the word problem and difficult problem of solving systems of conjugacies.

We produce several candidates for such groups among automaton groups (see e. g. [START_REF] Bartholdi | Branch groups, Handbook of algebra[END_REF], [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF], [START_REF] Grigorchuk | Automata, dynamical systems, and groups[END_REF]).

Automaton groups

Denote by X = {0, . . . , k -1} an alphabet and by S a finite set that we will call a set of the states. An automaton of Mealy type on X with a set S of states is defined by a transition function τ : S × X → S and an output function π : S × X → X. If for each s ∈ S the function π(s, •)is a permutation in Sym(k) then the automaton is called invertible.

Denote by T a rooted k-regular tree and by T 0 , . . . , T k-1 , respectively, the rooted subtrees of T with their roots at the children of the root of T . The paths (without back tracking) in T starting at its root correspond to the words in the alphabet X. Denote by X l the set of the words of the length l over X, by X * the set of all the words, and by X ∞ the set of all the right-infinite words over X. Each state s ∈ S provides an action on T being its automorphism: s acts by a permutation π(s, •) on the roots of subtrees T 0 , . . . , T k-1 , and in its turn s acts recursively as τ (s, i) on the subtree T i , 0 ≤ i < k.

Thus, for an invertible automaton A = (S, X, τ, π), this defines a group G(A) of automatically defined automorphisms of T with the operation of composition. The group G(A) (see e. g, [START_REF] Bartholdi | Branch groups, Handbook of algebra[END_REF], [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF], [START_REF] Grigorchuk | Automata, dynamical systems, and groups[END_REF]) is generated by the words over S ∪ S -1 where for the state corresponding to s -1 the permutation π(s -1 , •) = (π(s, •)) -1 and τ (s -1 , i) = (τ (s, i)) -1 . We refer to the length |g| of an element g ∈ G(A) as its length in the generators S ∪ S -1 (clearly, the length depends on a representation in the generators, we'll be interested in upper bounds on the length, so no misunderstanding would emerge). For an element g ∈ G(A) we define its portait (see e. g. [START_REF] Bartholdi | Branch groups, Handbook of algebra[END_REF], [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF]) of a depth d as the collection of the following data:

(i) a permutation of the action of g on X d and (ii)for every word

x = x 1 • • • x d ∈ X d the action g x ∈ G(A) of g on the subtree T x of T with the root x.
In all the examples of automaton groups G(A) considered below (except for the last one) two elements g 1 , g 2 ∈ G(A) are equal iff their portraits of depth log(|g 1 | + |g 2 |) coincide. Moreover, the sections of all the words of this length over X have constant size O(1) (we'll refer to it as the portrait property). This is due to the contracting property established for the groups G(A) considered below (except for the last one): there exist λ < 1, c, l such that |g x | < λ|g| + c for all g ∈ G(A), x ∈ X l . The contracting property immediately allows one to solve the word problem in G(A) within the polynomial complexity. On the other hand, it seems that the problem of solving a system of simultaneous conjugacies is difficult in all the automaton groups under consideration, the key agreement scheme from section 1 based on any of these groups seems hard to be broken.

Thus, one can compute the portrait within the polynomial complexity, and the portrait (or its binary encoding) will be used as a common secret key by Alice and Bob.

2.1. Grigorchuk group. Grigorchuk group G (see e. g. [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF]) can be defined by an automaton with 5 states a, b, c, d, e acting on X * = {0, 1} * as follows:

π(a, 0) = 1, π(a, 1) = 0, π(b, x) = π(c, x) = π(d, x) = x; τ (a, x) = τ (e, x) = e, τ (b, 0) = τ (c, 0) = a, τ (d, 0) = e, τ (b, 1) = c, τ (c, 1) = d, τ (d, 1) = b for any x ∈ X. In particular, a 2 = b 2 = c 2 = d 2 = bcd = e (
where e denotes the identity). Note that G is not finitely presented. Observe that the complexity upper bound for the word problem for G is O(n log n) [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF]. It is known (see e. g. [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF]) that the portrait property (see section 2) holds for G.

In [START_REF] Lysonok | The conjugacy problem in the Grigorchuk group in polynomial time decidable[END_REF] an algorithm is designed to test whether for given u, v ∈ G there exists x ∈ G such that xux -1 = v. In fact, one can extend this algorithm to produce such x, provided it does exist. On the other hand, it seems to be a difficult problem to test whether there exists x ∈ G such that xu i x -1 = v i , 1 ≤ i ≤ m for given u i , v i ∈ G, 1 ≤ i ≤ m (and even more, to find such x).

One could also use the generalizations G ω [START_REF] Grigorchuk | Degrees of growth of finitely generated groups and the theory of invariant means[END_REF], [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF] of G where ω ∈ {0, 1, 2} ∞ . Observe that the word problem in G ω has a complexity upper bound polynomial in the complexity of computing a prefix of ω of a logarithmic length, while for a generic ω already the single conjugacy equation problem is more difficult than the similar problem in G [START_REF] Grigorchuk | Degrees of growth of finitely generated groups and the theory of invariant means[END_REF], [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF]. 2.2. Basilica group. Consider an automaton group B (sometimes called the Basilica group) defined by the following automaton with 3 states a, b, e (again, e is the identity of B) over the alphabet X = {0, 1} [START_REF] Grigorchuk | Spectral properties of a torsion-free weakly branch group defined by a three state automaton[END_REF], [START_REF] Grigorchuk | On a torsion-free weakly branch group defined by a three state automaton[END_REF]:

π(e, x) = π(a, x) = x, π(b, 0) = 1, π(b, 1) = 0; τ (e, x) = τ (a, 0) = τ (b, 0) = e, τ (a, 1) = b, τ (b, 1) = a for any x ∈ X.
It is proved in [START_REF] Grigorchuk | Spectral properties of a torsion-free weakly branch group defined by a three state automaton[END_REF] that the group B also satisfies the portrait property. Note that for B only an exponential complexity algorithm is known for the problem of a single conjugacy equation. Denote N = ω N ω where the intersection ranges over all the infinite words ω ∈ {0, 1, 2} ∞ . The universal group is defined U = F 4 /N [START_REF] Benli | Universal groups of intermediate growth and their invariant random subgroups[END_REF]. Similar to G (see section 2.1) a 2 = b 2 = c 2 = d 2 = bcd = e (and again, U is not finitely presented).

One can represent U as an automaton group [START_REF] Benli | Universal groups of intermediate growth and their invariant random subgroups[END_REF] defined by an automaton with 5 states a, b, c, d, e (again, e is the identity of U ) over an alphabet X = {0, 1}×{0, 1, 2} of size 6 as follows: Similar to the group G (cf. section 2.1) the group U also satisfies the portait property [START_REF] Grigorchuk | Solved and unsolved problems around one group[END_REF], [START_REF] Benli | Universal groups of intermediate growth and their invariant random subgroups[END_REF].

Apparently, the simultaneous conjugacy problem for U (cf. section 1) is not easier than the same problem for G, for G ω and for B.

2.4. Hanoi 3-Towers group. We describe Hanoi Towers group H (3) on 3 pegs as an automaton group [START_REF] Grigorchuk | Asymptotic aspects of Schreier graphs and Hanoi Towers groups[END_REF], [START_REF] Grigorchuk | Schreier spectrum of the Hanoi Towers group on three pegs. Analysis on graphs and its applications[END_REF], [START_REF] Bondarenko | The word problem in Hanoi Towers groups[END_REF]. The alphabet X = {0, 1, 2} consists of 3 letters which corresponds to the pegs. Actually, one can generalize to the group H (k) of Hanoi Towers on k ≥ 3 pegs, then |X| = k [START_REF] Grigorchuk | Schreier spectrum of the Hanoi Towers group on three pegs. Analysis on graphs and its applications[END_REF], [START_REF] Bondarenko | The word problem in Hanoi Towers groups[END_REF]. A word x 1 • • • x n ∈ X n has a meaning that the disc i is placed on x i -th peg. According to the rules of the game in each peg the discs of sizes 1, 2, . . . are placed in the decreasing order of their sizes from the bottom to the top.

The automaton of H (3) contains 3 states: a 01 , a 02 , a 12 . For any word w ∈ X n we have

a ij (iw) = jw, a ij (jw) = iw, a ij (xw) = xa ij (w), x ∈ {i, j}.
This means that a ij takes the disc from the top of either peg i or j being minimal among these two and puts it on the other peg among i and j. Clearly, a 2 01 = a 2 02 = a 2 12 = e (again, H (k) is not finitely presented).

In [START_REF] Bondarenko | The word problem in Hanoi Towers groups[END_REF] the portrait property is proved for H (3) . Note that the complexity bound exp(O(log k-2 n)) [START_REF] Bondarenko | The word problem in Hanoi Towers groups[END_REF] for the word problem in the group H (k) is not polynomial for k ≥ 4.

2.5.

A group with unsolvable problem of conjugacy. In Proposition 7.5 [START_REF] Bogopolski | Orbit decidability and the conjugacy problem for some extensions of groups[END_REF] a group F ⊂ GL 4 (Z) is constructed with generators M 1 , . . . , M s ∈ GL 4 (Z) having unsolvable orbit problem, i. e. whether for a pair of vectors u, v ∈ Z 4 there exists f ∈ F such that f u = v. In [START_REF] Sunik | The conjugacy problem in automaton groups is not solvable[END_REF] it is proved that the semidirect product G = Z 4 F ⊂ Af f 4 (Z) has unsolvable conjugacy problem. Moreover, in Proposition 1.5 [START_REF] Sunik | The conjugacy problem in automaton groups is not solvable[END_REF] this construction is modified to make a group F ⊂ GL 6 (Z) free, also having unsolvable orbit problem and G = Z 6 F ⊂ Af f 6 (Z) having unsolvable conjugacy problem.

On the other hand, the word problem in G (as well as in G) can be solved within the polynomial complexity. Indeed, an element of G one can represent as a composition of affine transformations in Af f 4 (Z) of Z 4 of the form v → u+M i v, 1 ≤ i ≤ s for vectors u ∈ Z 4 . One can explicitly compute such a composition.

Note that in [START_REF] Sunik | The conjugacy problem in automaton groups is not solvable[END_REF] G is represented as an automaton group. Mention that unlike the groups from the previous sections G does not fulfil the portrait property. It looks reasonable to use both G and G as platforms for Anshel-Anshel-Goldfeld scheme (see section 1).

2. 3 .

 3 Universal Grigorchuk group. One can represent each group G ω as F 4 /N ω where N ω is a normal subgroup of 4-free group F 4 (with the generators a, b, c, d).

  π(e, (x, y)) = π(b, (x, y)) = π(c, (x, y)) = π(d, (x, y)) = (x, y), π(a, (0, y)) = (1, y), π(a, (1, y)) = (0, y); τ (e, (x, y)) = τ (a, (x, y)) = τ (b, (0, 2)) = τ (c, (0, 1)) = τ (d, (0, 0)) = e, τ (b, (0, 0)) = τ (b, (0, 1)) = τ (c, (0, 2)) = τ (d, (0, 1)) = τ (d, (0, 2)) = a, τ (b, (1, y)) = b, τ (c, (1, y)) = c, τ (d, (1, y)) = d for any x ∈ {0, 1}, y ∈ {0, 1, 2}.
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