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Abstract—Phylogenetic comparative methods (PCMs), especially ones based on linear models, have played a central role
in understanding species’ trait evolution. These methods, however, usually assume that phylogenetic trees are known
without error or uncertainty, but this assumption is most likely incorrect. So far, Markov chain Monte Carlo (MCMC)-based
Bayesian methods have mainly been deployed to account for such “phylogenetic uncertainty” in PCMs. Herein, we propose
an approach with which phylogenetic uncertainty is incorporated in a simple, readily implementable and reliable manner.
Our approach uses Rubin’s rules, which are an integral part of a standard multiple imputation procedure, often employed
to recover missing data. We see true phylogenetic trees as missing data under this approach. Further, unmeasured species in
comparative data (i.e., missing trait data) can be seen as another source of uncertainty in PCMs because arbitrary sampling
of species in a given taxon or “species sampling uncertainty” can affect estimation in PCMs. Using two simulation studies,
we show our method can account for phylogenetic uncertainty under many different scenarios (e.g., uncertainty in topology
and branch lengths) and, at the same time, it can handle missing trait data (i.e., species sampling uncertainty). A unique
property of the multiple imputation procedure is that an index, named “relative efficiency,” could be used to quantify the
number of trees required for incorporating phylogenetic uncertainty. Thus, by using the relative efficiency, we show the
required tree number is surprisingly small (~50 trees). However, the most notable advantage of our method is that it could
be combined seamlessly with PCMs that utilize multiple imputation to handle simultaneously phylogenetic uncertainty
(i.e., missing true trees) and species sampling uncertainty (i.e., missing trait data) in PCMs. [Bayesian statistics; comparative

analysis; data augmentation; information theory; model averaging; phylogenetics.]

Phylogenetic comparative methods (PCMs) have been
playing a central role in investigating trait evolution
across species (reviewed in Garamszegi 2014). The most
popular methods in comparative biology are based on
linear regression such as independent contrasts (Fel-
senstein 1985), phylogenetic generalized least squares
(PGLS; Grafen 1989), or phylogenetic (generalized) linear
mixed models (Lynch 1991; Hadfield and Nakagawa
2010). PCMs also include methods estimating lineage
diversification (O’Meara 2012; Pennell and Harmon
2013). When one phylogenetic tree is used in analysis, all
these methods assume that the phylogeny of organisms
is known without error.

However, no phylogenetic trees (or hypotheses) are
known without error. Errors come in the form of uncer-
tainty in branch length, topology, and also in the model
of assumed character evolution (Cooper et al. 2016;
Cornwell and Nakagawa 2017). Researchers have been
investigating the impact of these types of uncertainty
on statistical inference (e.g., Diaz-Uriarte and Garland
1996; Symonds 2002). These studies generally suggest the
importance of incorporating “phylogenetic uncertainty”
in PCMs; note that by using one tree, point estimates
(e.g., regression coefficients) are not necessarily biased
(Stone 2011), but uncertainty estimates [e.g., standard
error or confidence intervals (CI)] are not accurate.
Therefore, a number of methods have been proposed
to include phylogenetic uncertainty (e.g., Losos 1994;

Martins 1996; Huelsenbeck et al. 2000; Housworth and
Martins 2001; Rangel et al. 2015). Among these methods,
probably the best one is to use Bayesian Markov
Chain Mote Carlo (MCMC; Huelsenbeck et al. 2000;
Huelsenbeck and Rannala 2003; de Villemereuil et al.
2012); the Bayesian MCMC methods utilize phylogenetic
trees sampled from posterior tree set obtained from
Bayesian phylogenetic tree estimation programs such as
BEAST (Drummond and Rambaut 2007) and MrBayes
(Ronquist and Huelsenbeck 2003).

Nonetheless, these methods are not always met with
enthusiasm in the evolutionary biology community (cf.
Pagel et al. 2004; Pagel and Meade 2006). Difficulties we
see are 2-fold: (1) currently, few easy-to-use implement-
ations for such Bayesian MCMC methods are widely
available, at least, for regression-based PCMs (but see
Hadfield 2010; de Villemereuil et al. 2012); and (2) even
if implemented, Bayesian MCMC-based analysis may
take a long time to process many phylogenetic trees
(e.g., see figure 6 in de Villemereuil et al. 2012). More
recently, Garamszegi and Mundry (2014) have proposed
a readily implementable frequentist solution, which
employs model averaging with Akaike information cri-
terion (AIC) in PGLS incorporating many phylogenetic
trees (see also Mahler et al. 2010). Such a method
overcomes the aforementioned difficulties. However,
Garamszegi and Mundry (2014) acknowledge the lack of
theoretical basis for this proposal, and that theoretical
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or simulation-based confirmation of their method is
necessary.

Herein, we propose another solution to account
for phylogenetic uncertainty. Our method is simple,
generally applicable, and, what is more, it is fairly
reliable and readily implementable (see below). Also,
it is firmly based on missing data theory (reviewed in
Little and Rubin 2002), and utilizes Rubin’s rules, which
have been proposed as a part of the multiple imputation
procedure (Rubin 1987). Evolutionary biologists and
ecologists have just recently recognized the usefulness
of techniques based on missing data theory (reviewed in
Nakagawa and Freckleton 2008; Nakagawa 2015). Also,
the importance of these missing-data methods has been
discussed in the phylogenetic comparative literature
(e.g., Garamszegi and Moller 2011; de Villemereuil and
Nakagawa 2014). Notably, multiple imputation has been
successfully employed in a number of comparative
studies to handle missing data (e.g., Fisher et al. 2003;
Gonzalez-Suarez et al. 2012; Liker et al. 2014; Pollux et al.
2014). Yet, so far, nobody seems to have made a use
of Rubin’s rules to deal with phylogenetic uncertainty.
We note that Martins” work (1996) is conceptually very
similar to the proposed method in terms of incorporating
uncertainty due to fitting “incorrect” trees (see below),
but we do not advocate the use of randomly generated
trees (Symonds 2002; see also Rangel et al. 2015).

Paterno et al. (2018) recently discussed three main
sources of uncertainty which affect PCMs: (1) phylogen-
etic uncertainty, (2) species sampling uncertainty, which
can be seen as a missing-data problem (because one
can see unsampled species as missing data; Nakagawa
and Freckleton 2008), and (3) data uncertainty, which
include measurement error and within-species variation
(see also Rangel et al. 2015; Cooper et al. 2016; Cornwell
and Nakagawa 2017). Once we could show Rubin’s
rules can be used for accounting for phylogenetic
uncertainty, there is a highly practical possibility that
we could seamlessly combine multiple imputation with
PCMs to handle missing trait data, thus, addressing
species sampling uncertainty simultaneously. There are
two ways of imputing missing phenotypic data. The
one is that we directly use a phylogenetic correlation
(variance-covariance) matrix in the multiple imputation
process (e.g., Bruggeman et al. 2009; Goolsby et al.
2017; see below for more details). The other is that we
employ (phylogenetic) eigenvectors from a phylogenetic
correlation (or variance-covariance) matrix (Penone et al.
2014). These two approaches, surprisingly, have never
been systematically compared in terms of performance
in augmenting missing comparative data.

Below, we first describe Rubin’s rules associated
with multiple imputation, and explain the rationale
and potential advantages of our proposed method.
Then, we conduct two simulation studies: (1) using 12
phylogenetic trees covering different taxa, we compare
the performance of our proposed method to other
methods such as methods using only one phylogenetic
tree and the AIC-based method; and (2) we test how the

proposed method can perform with different degrees
and types of missing data, when used with the two
types of multiple imputation methods (i.e., the one
using a phylogenetic correlation matrix and the other
phylogenetic eigenvectors).

MULTIPLE IMPUTATION AND RUBIN’S RULES

Multiple imputation is a three-step process: imputing
data, analyzing imputed data and pooling results. In the
first step, m copies of “complete” datasets are generated
from an incomplete original dataset. Popular techniques
for the imputation steps use EM/EMB (expectation
maximization with bootstrap) and MCMC algorithms,
both of which are implemented in R packages such
as Amelia (Honaker et al. 2011), mice (van Buuren
and Groothuis-Oudshoorn 2011) and mi (Su et al.
2011); for more details regarding the algorithms, see
Schafer (1997), Enders (2010), and van Buuren (2012).
In the second step (analysis), we run separate statistical
analyses on m datasets. In the final step (pooling),
we use Rubin’s rules (see below) to aggregate m sets
of results to produce parameter estimates along with
their uncertainty (the overall process is illustrated in
Fig. 1).

%As an example of applying this three-step process to
PCMs, let us first assume that we have complete data
for species traits (i.e., ignoring top-left side of Fig. 1).
Then, what remains missing is the “true phylogenetic
tree”; note that this is the central reason for us using (a
part of) multiple imputation to account for phylogenetic
uncertainty. Currently, a standard approach to creating
candidate trees is to use Bayesian phylogenetic methods,
as mentioned above, such as BEAST and MrBayes, which
yield a posterior distribution of phylogenetic trees (for a
guidance on building phylogenetic trees, see Garamszegi
and Gonzalez-Voyer 2014). Alternatively, we can use
published Bayesian tree sets as in Jetz et al. (2012)
for birds, and Arnold et al. (2010) for primates. We
consider this tree generation stage as our imputation
step (the first step). The second step can be conducted
using any frequentist or Bayesian statistical procedures
including PCMs, such as independent contrasts, PGLS,
and phylogenetic mixed models. Say, we will run PGLS
with m randomly sampled phylogenetic trees from a
Bayesian posterior tree set, which will result in m sets
of results. Then, by combining these result sets via
Rubin’s rules (the final step), we will have integrated
phylogenetic uncertainty in our estimates from PGLS.

Rubin’s rules are a set of formulas for combining
multiple statistical results, and they are as follows (Rubin
1987). With m imputations, parameters (e.g., regression
coefficients) can be estimated as the average b over the
estimates yielded by each imputed dataset b;:

> b;. (1)
j=1

b=

SIS
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FIGURE 1. A conceptual diagram of our proposed method for
accounting for phylogenetic and species sampling uncertainty in PCMs
(e.g., PGLS) using multiple imputation and pooling (i.e., Rubin’s rules).

The within-imputation variance (Vyy) is calculated from
the standard error (se) associated with bj:

1 m
—_2 2
Vw_m, 1sej. (2)
]:

The between-imputation variance (V) and the total

variance (V1: v/VT is the overall standard error for b)
are as follows:

1 -« —
Vp= mZ(b]’—b) . 3)
]:1
\%
VTZVW—FVB‘FWB- 4)

A quantity named the “fraction of missing information”
and noted y can be computed for each parameter:

SR

This parameter conveniently represents the proportion
of our parameter uncertainty that is arising from
the multiple imputation process, that is, it represents
the proportion of uncertainty due to using different
trees.

From this parameter y, we can obtain statistical
significance and CI (with a particular o level) for our
averaged point estimate, b based on t distributions with
the degrees of freedom (v) of the following:

1
V=1, ©)
Y
b
ty=——, 7
= ”)
100(1 — )% CI =l_7:|:t\)’(1_a/2)\/ Vr. (8)

This computation, however, assumes a very large sample
size, n (which is the length of data when no data are
missing; Rubin and Schenker 1986; Rubin 1987). Barnard
and Rubin (1999) proposed the following adjustment in
the degrees of freedom (cf. Lipsitz et al. 2002):

1
\J*:(1+ ! ) , )
V' Vobs
—k+1
s =0 (Ag Jn-k. (o)

where v* is the corrected degrees of freedom correspond-
ing to our averaged point estimate b, especially suitable
when sample size, # is small. The degrees of freedom,
Vobs denotes the observed degrees of freedom and k is
the number of the parameters estimated in the model.
In the next section, we will compare the performance of
both v (hereafter denoted “original df”) and v* (hereafter
denoted “corrected df”).

Once we have an estimate of the corrected degrees of
freedom, we can obtain a refined estimate of the fraction
of missing information, y* for each parameter:

2
oty

Finally, a useful measure of the multiple imputation
process is named “relative efficiency” (¢), which repres-
ents the efficiency of the multiple imputation process,
compared to the case of m being infinite. It ranges from
0 to 1 (1 being efficiency identical to a case with infinite
m) and can be obtained as follows:

N\ —1
e= (1+y—> . (12)
m

Relative efficiency represents the efficacy of multiple
imputation process, compared to the case of m being
infinite. In other words, this number can be used to assess
how many imputations (i) are needed to account for
uncertainty due to missing data. In our case, relative
efficiency can indicate how many phylogenetic trees we
should use for analysis (typically, the number of required

Y=y (11)
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trees to account for phylogenetic uncertainty is chosen
arbitrarily). Notably, to achieve fairly high relative
efficiency, the required number of m is surprisingly
low, even when the fraction of missing information is
relatively large. For example, with y*=0.5 and m=5,
relative efficiency is 90.91%, while it is 95.24% when y* =
0.5 and m=10. Rubin’s (1987) initial recommendation
of m was low (3-10) probably due to computational
limitation at that time, but current thinking is to use
much larger m, aiming at over 99% relative efficiency
(e.g., Graham et al. 2007; von Hippel 2009; Nakagawa
2015). We obtain a relative efficiency value (¢) for every
parameter, and such values vary among parameters. For
assessing efficiency of a model, we will use the relative
efficiency (€) that is obtained from the largest value of
the fraction of missing information, following McKnight
et al. (2007); that is:

1
B (1 n %W) — min(e) (13)

where the maximum and minimum are taken over all k
parameters of the model. Another practical implication
of the relative efficiency is that, for example, a low
relative efficiency (due to a small m) would mean
associated CI remain wider than a higher relative
efficiency could achieve (i.e., larger m; this can be seen
in the term, Vg/m in Equation 4). These equations are
shown here mainly to illustrate the philosophy behind
the process (again, summarized in Fig. 1). We can easily
automate calculations involving the above formulae with
currently available R packages for multiple imputation
such as mice (reviewed in Nakagawa and Freckleton
2011; see also Penone et al. 2014).

SIMULATION STUDIES

Incorporating Phylogenetic Uncertainty as Missing Data

In order to assess the overall quality of our new
method and compare it to existing ones, we performed a
simulation study using 12 “maximum likelihood” trees
extracted from TreeBASE (the number of tips ranging
from 67 to 174; www.treebase.org, see Supplementary
Table S1). We simulated datasets in which a variable
y was linearly predicted from a variable x, with an
intercept of 5 and a slope of 2. The error structure of
this relationship was constrained by the phylogenetic
tree chosen among the 12 trees (hereafter called the
“true tree”), following a Brownian motion model. Dif-
ferent residual standard deviations were used (0=2,
5, 10, or 15). From the true tree, a distribution of trees
was created by altering branch lengths and topology
to artificially reproduce, while controlling precision, the
kinds of tree variability obtained in a Bayesian posterior
distribution of trees. To alter branch lengths, random
noise drawn from a uniform distribution centered
around 0 was added to the true value. The maximum
level of that noise varied between 0% (no branch length

noise), 10%, 20%, 40%, 70%, or 90% of the true branch
length. To alter topology, we randomly “swapped”
branches belonging to a focal clade to a sister clade.
To choose the branch to swap, a tip was chosen at
random, and a “threshold” was chosen from a uniform
distribution with the thresholds of [0.1, 1]. The node just
below this threshold in the path from the tip chosen
to the root was swapped. We used several levels of
topological noise (no swaps, i.e., no topological noise,
or 1, 2, 5, 10, 20, 30 swaps in the tree). To construct
the distribution of trees, the probability of each swap
was set to 0.5. For each set of parameters (true tree,
level of branch noise, level of topological noise), we
constructed a distribution of 100 trees and replicated
the analysis 100 times. This resulted in 2016 conditions,
hence 201,600 different analyzes. Using the simulated
phenotypes and tree distributions, we compared PGLS
using the true tree or two types of consensus trees
(majority rule or consensus), with both multiple PGLS
with pooling of the results using AIC averaging (as
in Garamszegi and Mundry 2014) and pooling with
Rubin’s rules as described above (either using the
original degrees of freedom, df, or the corrected df as in
Equation 9).

The accuracy of the intercept and slope were only
slightly influenced by the different parameters (Table 1
and Supplementary Figs. 51-53). On the contrary, the
estimation of the residual standard deviation depended
strongly on the method used (as well as, trivially, the
true parameter sigma, and to a far lesser extent, all of the
other parameters, see Table 1). Notably, the estimation of
residual standard deviation was biased upward for the
two methods using consensus trees (strict or majority
rule, see Supplementary Figs. S1-S3).

The coverage of the CI for the slope was heavily
influenced by the method used and more marginally
by other parameters (except the true parameter sigma
which had negligible influence, Table 1). The coverage
was correctly calibrated when using the true tree (True
PGLS, Fig. 2) and heavily mis-calibrated when using
consensus trees (strict and majority rule consensus
PGLS, Fig. 2). Accounting for uncertainty yielded better-
calibrated coverages. AIC averaging was the closest
to correct calibration. It was, however, slightly but
consistently too liberal (Fig. 2). Using Rubin’s rule
yielded conservative coverages. Contrary to AIC aver-
aging, the coverage was sensitive to the level of branch
length and/or topological noise, decreasing when the
noise increased (thus being even more conservative,
Fig. 2).

%n order to assess the behavior of the proposed
method using Rubin’s rules to account for phylogenetic
uncertainty, we also conducted a study using different
sample size for the trees (T = 10, 20, 50, or 100) and
computed the relative efficiency as shown in Equation
(13). This analysis revealed two interesting patterns
(Fig. 3). First, no efficiency lower than 0.90 was recorded
for a total of 806,400 simulated datasets, even for a
sample size of trees as low as T = 10. Second, the relative
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TaBLE 1.  Variance partitioning using a linear model to model the distribution of the inferred parameters, confidence interval coverage and

efficiency
Parameter contribution to R?

Parameter True Branch length Topology Number
estimation Model R? tree Method Sigma noise noise of trees
Intercept 0.0075 0.51 0.018 0.29 0.062 0.12 -
Slope 0.007 0.8 0.041 0.027 0.11 0.026 -
Residual St. Dev. 0.79 0.043 0.3 0.66 0.00015 0.0017 -
CI coverage

Slope 0.66 0.013 0.98 3.4 x 1075 0.0019 0.0055 -
Efficiency analysis

Efficiency 0.71 0.023 - 1.9 x 1077 0.37 0.037 0.58

The total R? of the linear model is given, followed by the relative contribution (i.e. relative Pratt’s measure; Pratt 1987) from each parameter to
the total R?. Relative contributions sum up to 1. “Number of trees”# was available only for the study of efficiency.

. — .- Consensus _ _ _ PGLSRubin'srule . ... Model averaging
Method (strict) (corrected df) AIC)
Consensus PGLS Rubin's rule True PGLS
(majority) (original df)
Branch Length Noise Topology Noise
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FiIGUrRe 2.  Complementary of the coverage (1—coverage) for 95% CI for the different estimation methods against the two types of noise (left:

branch length noise, right: topological noise). Grey area is the zone of nonsignificance for a binomial test with a true probability of 0.05 (i.e.,

expected complementary coverage).

efficiency depended strongly on the number of trees
used (Fig. 3 and Table 1). It also depended on the level
of branch length noise, and to a lesser extent, on the
level of topological noise (Fig. 3 and Table 1), as well
as, even more marginally, on the nature of the true tree
(Table 1). Third, in order to reach a relative efficiency
over 0.99, on average, only 50 trees were necessary even
with high levels of branch length and topological noise.
With 100 trees, the relative efficiency was always over
0.99.

Incorporating Both Phylogenetic Uncertainty and Missing
Trait Data

We then investigated the possibility to combine the
ability of multiple imputation to account simultaneously
for phylogenetic uncertainty and missing phenotypic
values. To do so, we conducted a study with parameters
fixed to the following values: the residual standard
deviation ¢ was set to 5, the branch length noise to
20% and topological noise to 2 swaps. For simulated
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the average estimate. The lower dot is the minimal relative efficiency yiel

data according to these parameters, we deleted records
of phenotypic values at various proportions (10%, 30%,
and 50%) and according to three mechanisms inspired
from Penone et al. (2014): values were missing completely
at random (MCAR), missing at random according to
the environmental variable (MARvar) or missing at
random according to the phylogeny (MARphylo). For
more details of missing data mechanisms (e.g., MCAR,
MAR), see Little and Rubin (2002, see also Nakagawa
and Freckleton 2008;). The multiple imputation of the
missing phenotypic values were handled using two

ded during the simulations.

different methods: on the one hand, we used an R
implementation of the method PhyloPars (Bruggeman
et al. 2009), called Rphylopars (Goolsby et al. 2017),
to impute the missing values according to both the
phylogeny and environmental (nonmissing) data (here-
after, the matrix method). On the other hand, we used
the method described in Penone et al. (2014) using
the information contained in phylogenetic eigenvectors
(Diniz et al. 1998; see also Guenard et al. 2013) to
impute the missing vales (hereafter, the eigenvector
method).
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FIGURE 4.  Estimate of the slope (a) and the coverage (1—coverage) of its associated CI (b) for the two methods of multiple imputation of

missing phenotypic values (PhyloPars and Eigenvectors) according to the proportion of missing values in the data and mechanism of missing
values: MCAR; MARvar, missing at random according to the environmental variable: MARphylo, missing at random according to the phylogeny.
Grey area in B is the zone of nonsignificance for a binomial test with a true probability of 0.05 (i.e., expected complementary coverage).

The results of our simulations show that the matrix
method (RphyloPars) yielded estimates with little bias
(Fig. 4a, especially when missing values are missing
according to the phylogeny, MARphylo), while using
eigenvectors resulted in a stronger bias, strongly increas-
ing with the proportion of missing values. Overall, the
level of bias strongly depended on the characteristics of
the true tree and the method used, and only slightly on
the rate of missing values (Table 2). Coverage analysis of
the CI (Fig. 4b) show that the matrix method is slightly
too liberal when values are MCAR or missing at random
according to the environmental variable (MARvar), but
slightly conservative when they are missing at random
according to the phylogeny (MARphylo). By contrast,
the eigenvector method produced a coverage too liberal
to be useful, although, interestingly, decreasing with
the proportion of missing values. Overall, the coverage
depended mostly the true tree and method used, and
only marginally on the mechanism and rate of missing
values (Table 2). The strong influence of the true tree
on the estimate and its coverage is mainly driven by a
strong instability of the eigenvector method regarding a
particular tree (Tree #11 in Supplementary Fig. S4 and
Table S1). Removing this tree from the analysis does

not qualitatively impact the results shown in Fig. 4.
However, this example makes an interesting point about
the eigenvector method being potentially very sensitive
to the nature of a phylogenetic tree.

DiscussioN

The aim of this article is to introduce a simple and
readily implementable method (i.e., Rubin’s rubles)
to account for phylogenetic uncertainty in PCMs.
More practically, we explored the use of Rubin’s rules
simultaneously handling phylogenetic uncertainty and
species sampling uncertainty (i.e., missing trait data;
see Paterno et al. 2018). Via a simulation study using
a simple PGLS, we compared the proposed method
using Rubin’s rules with other existing methods across
different levels of branch length and topological noise,
and we also assessed the number of trees required to
accurately account for phylogenetic uncertainty. Further,
we tested the practicality of our method to handle
missing trait data under differentimputation procedures
and missing-data mechanisms. Four main results have
emerged from our simulation study.
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TABLE 2.
simulation study on missing values

Variance partitioning using a linear model to model the distribution of the inferred slope and confidence interval coverage in the

Parameter contribution to R2

Parameter True Proportion
estimation Model R? tree Method Mechanism of missing
Slope 0.39 0.41 0.43 0.0078 0.15
CI coverage

Slope 0.65 0.33 0.59 0.026 0.056

The total R? of the linear model is given, followed by the relative contribution (i.e. relative Pratt’s measure; Pratt 1987) from each parameter to

the total R?. Relative contributions sum up to 1.

First, in terms of error rate, methods ignoring phylo-
genetic uncertainty performed poorly and had a bad
coverage for the slope CI. These findings are concordant
with the previous work by de Villemereuil et al.
(2012) comparing different methods. Both our proposed
methods using Rubin’s rule and the AIC-based method
were much closer to the expected results using a PGLS
with the true tree. Hence, using a consensus tree (either
being a strict consensus or a majority rule based one) will
yield too narrow CI, meaning that any test framework
linked to it (e.g., slope significance testing) will yield an
uncontrolled type I error rate.

The second main result is that the behavior of
the methods accounting for phylogenetic uncertainty
differed between them and depends on the level of
phylogenetic noise in the tree distribution. Whereas
the AIC-based method was consistently slightly too
liberal, our proposed method using Rubin’s rule was,
by contrast, slightly conservative. The method assuming
infinite sample size (“original df”) was less conservative
than the method correcting for small sample size
(“corrected df”). This conservative behavior depended
on the level of noise: our proposed method became
more conservative as the level of phylogenetic noise
increased. The AIC-based method was, on the contrary,
less sensitive to the level of noise.

The third main result is that the number of phylogen-
etic trees needed to correct for phylogenetic uncertainty
is surprisingly low. The required number of trees is far
less than 1000 (as in Garamszegi and Mundry 2014), and
probably less than 100 (as in de Villemereuil et al. 2012). It
is likely to be a matter of dozens. In our simulation, sets
of 50 randomly selected trees achieved almost always
over 99% relative efficiency; in other words, using 50
trees should be almost as good as using an infinite
number of trees. For low to medium levels of noise,
even a sample size as low as 10 trees almost always
yielded over 99% relative efficiency. As a whole, we
recommend the use of over 50 phylogenetic trees in a
PCM to account for phylogenetic uncertainty. However,
for any given analysis and tree set, we recommend
checking the number of trees needed to reach a relative
efficiency of 99% (Nakagawa 2015). In practice, indeed,
the required number of trees required to achieve high
efficiency will strongly depend on the phenotypic data
(e.g., phylogenetic signal), the complexity of the model
and the variability in the tree estimates (e.g., strong

topological and branch length uncertainty). We note
that the statistical literature has discussed other criteria
apart from the relative efficiency to determine how many
imputations one requires (see Graham et al. 2007; White
et al. 2011).

As mentioned, the AIC-based method (Garamszegi
and Mundry 2014) accounted for phylogenetic uncer-
tainty performed well, although with slightly liberal
CIs. Therefore, the AIC-based method is definitely
an option to correct for phylogenetic uncertainty. The
method based on Rubin’s rules (or multiple imputation),
despite being slightly conservative, has the advantage
of being a theoretical founded, yet simple method (we
note that being conservative is probably preferred to
being slightly liberal). This is, given that the imputation
step is “proper,” which is the case here as long as
the trees come from a Bayesian posterior distribution
and the estimates are maximum likelihood estimators
(e.g., BEAST/PGLS combination; for the definition on
proper multiple imputation, see Rubin 1987; Nielsen
2003). However, there is another clear benefit of using
the proposed method.

This leads to our fourth point, that is, multiple
imputation can simultaneously handle missing trait
data (species sampling uncertainty) and phylogenetic
uncertainty in a comparative dataset. Especially, using
the matrix method (PhyloPars; Bruggeman et al. 2009;
implemented as Rphylopars by Goolsby et al. 2017) to
account for missing phenotypic values, while accounting
for the phylogenetic uncertainty at the same time,
yields estimate with little bias on the slope and almost
calibrated coverage of the CI. Using the eigenvector
method, as suggested in Penone et al. (2014) does
not seem to yield satisfying results, however. The
sensitivity of the matrix method (Rphylopars) to the
rate and mechanism of missing data was relatively
small, suggesting that the method should perform fairly
well in many different circumstances. An exception
to this is that when missing values are missing at
random according to the phylogeny, the matrix method
is slightly too conservative, while it is slightly too
liberal for the two other missing-data mechanisms we
tested here. Given the pervasive nature of missing
data, we suggest multiple imputation may be useful
for virtually every comparative dataset (Nakagawa and
Freckleton 2008; Garamszegi and Moller 2011). Note
that Rphylopars is intended to produce point estimate
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of the missing phenotypic value with standard errors,
which can be used to produce multiple imputation as
we did. However, this process might not conserve all
the properties of the multiple imputation model (e.g.,
it might slightly decreased covariance between species
in the multiple imputation). Work is being conducted
on a more proper multiple imputation method using
a matrix method for missing values in the context of
phylogenetic comparative analysis (S. Blomberg, per-
sonal communication, see also the package in develop-
ment at https://github.com/pdrhlik/phylomice). We
provide implementations of our method using R
(https:/ / github.com/devillemereuil /SimulTrees).

It is notable that the procedure known as “data
augmentation” can also be used for dealing with missing
data instead of multiple imputation. The term data aug-
mentation is used in a number of ways in the statistical
literature, but here we follow the usage by McKnight
et al. (2007); that is, in this procedure, uncertainty of
missing data is incorporated into parameter estimates
during analysis (see the original usage of this term as in
Tanner and Wing 1987). A data augmentation procedure
is implemented, for instance, in MCMCglmm (Hadfield
2010). However, there is one disadvantage to data aug-
mentation, which does not affect multiple imputation.
Data augmentation assumes the use of just identified
or overidentified models (Enders and Bandalos 2001;
Enders 2010). That s, a particular model (for imputation)
includes enough or more predictor variables, so that
missing values can be recovered accurately from these
predictors. In contrast, because multiple imputation
separates the steps of data imputation and analysis, we
do not need to clutter a statistical model for analysis
(i.e., the analysis step) with many variables, which
assist in recovering missing values (known as auxiliary
variables; Enders 2010; Nakagawa 2015). Technically
speaking, auxiliary variables are supported to make
missing values to fulfill the assumption of missing at
random, MAR (Little and Rubin 2002). In a multiple
imputation procedure, we need add auxiliary variables
only to a statistical model for imputation (ie., the
imputation step). For example, known data on species
body size can be used during the imputation step
to help impute missing data on species longevity,
given the strong correlation between the two. However,
because multiple imputation separates imputation and
analysis, body size does not need to be a part of the
final model. The use of multiple imputation probably
has wider applications over data augmentation. Most
importantly, to integrate phylogenetic uncertainty in a
comparative dataset with missing data, one just needs
to conduct extra imputations—for example, more m as
in Equations (1-4)—to include the adequate number of
trees, which can be measured by the efficiency index as
in Equation (13).

Another notable point is that although we focused
on the application of Rubin’s rules on PGLS in this
paper, its application clearly goes beyond trait evolution
models like PGLS. The use of Rubin’s rules should
also be useful for models investigating lineage diver-

sification (O’Meara 2012; Pennell and Harmon 2013).
For example, one should be able to incorporate phylo-
genetic uncertainty into the estimation of birth-death
(speciation—extinction) parameters from phylogenetic
trees. Likewise, one could integrate both phylogenetic
and species sampling uncertainty into such parameter
estimation from trait-dependent diversification models.

In conclusion, the method using Rubin’s rules is
readily usable for all comparative biologists. Clearly, the
use of multiple imputation used with the matrix method
is extremely useful not only for imputing missing trait
data, but also for integrating phylogenetic uncertainty,
even simultaneously, as we have shown above. We expect
such a simultaneous use of these two aspects of multiple
imputation to be common in phylogenetic comparative
analyses in the near future.
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