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Abstract The effect of variable mass density on the velocity gradient tensor is
addressed by means of a model problem. An equation system for both the velocity
gradient and the pressure Hessian tensor is solved assuming a realistic expansion
rate. The model results show the evolution of the velocity gradient tensor as the
density front is approached and are relevant to the physics of flame fronts.
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1 Introduction

The influence of local mass density variations upon the properties of the velocity
gradient tensor is especially significant in compressible flows or in reacting flows
with heat release. Intensity and orientation of both strain and vorticity may be
altered, which eventually plays on the growth rate and alignment of scalar gra-
dients. Through the velocity gradient, mass density gradients may thus influence
the mixing process, a phenomenon addressed in compressible turbulence [1,2] and
in turbulent flames [3–5].

Such indirect effects often stem from an intricate interaction. For instance,
there is now some evidence that, to a large extent, the small-scale physics of
turbulent flames is governed by the interplay of the respective gradients of velocity,
concentration, and mass density. Explaining the resulting phenomena may thus
requires, as a first step, analyzing each underlying mechanism separately. The
present work is based on this kind of approach.

The basic model problem is the evolution of the velocity gradient tensor un-
dergoing a given expansion rate. This is a one-way coupling in which heat release,
for instance, is forced in a restricted flow region, and subsequently affects the ve-
locity gradient properties. The equation system for the velocity gradient tensor,
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including the enhanced homogenized Euler equation (EHEE) model of Suman and
Girimaji [6] for the pressure Hessian tensor, is solved in a two-dimensional Euler
flow (Sect. 2). The evolution of strain structure is analyzed for large and low values
of the density ratio (Sect. 3).

2 Model problem

In an Euler flow, the evolution of the velocity gradient tensor, A = ∇u, is described
by the following equation:

DAij

Dt
= −AiαAαj −Πij , (1)

where theΠij ’s are the components of the pressure Hessian tensor, Π = ∇[(∇p)/ρ],
with p and ρ being respectively the pressure and the mass density.

In the two-dimensional case, Eq. (1) can be expressed by a four-equation sys-
tem:

Dσn

Dt
= −δσn +Π22 −Π11, (2)

Dσs

Dt
= −δσs −Π12 −Π21, (3)

Dω

Dt
= −δω +Π12 −Π21, (4)

DP

Dt
= −

1

2
(σ2 − ω2 + P 2)−Π11 −Π22, (5)

where δ(t) is the expansion – or dilatation – rate, δ(t) = −1/ρ � Dρ/Dt, σn =
A11−A22 and σs = A12+A21 are, respectively, the normal and shear components
of strain, σ = (σ2

n+σ2

s )
1/2 is the strain intensity, ω = A21−A12 is the vorticity, and

P = A11 +A22 is the velocity divergence which – as a result of mass conservation
– coincides with the dilatation rate: P ≡ δ.

The model problem is based on assuming the expansion rate as:

δ(c) = 4δmc(1− c), (6)

with c(t) = (ρo/ρ(t) − 1)/(ρo/ρ∞ − 1) where ρo ≡ ρ(0), and ρ∞ ≡ lim
t→∞

ρ(t);

the density ratio is defined by ρo/ρ∞. The parabolic function modelling δ(c) is
inspired from numerical simulation data for the velocity divergence across a flame
front [7]. From the definitions of c(t) and δ(t):

Dc

Dt
=

(

c+
1

q

)

δ, (7)

with q = ρo/ρ∞ − 1. In this study, we state δm = q, with q > 0, which means
ρ∞ < ρo – and δ > 0 – as a result, for instance, of heat release. Note that from the
approach of Tien and Matalon [8] δ ≃ q/τf in the reaction zone of a flame front,
where τf is the flame timescale. Stating δm = q thus comes to normalize δm by
1/τf . This choice is convenient, for it makes δ(c) depend on a single parameter.
Figure 1 shows c(t) and δ(t) for q = 5 and q = 1.
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Fig. 1 Evolution of c and δ; (1) c(t) for q = 5; (2) for q = 1; (3) δ(t) for q = 5; (4) for q = 1

The evolution of the velocity tensor is computed from Eqs. (2)-(4), with the
EHEE modelled equation for Π12, Π21, and Π22 [6]:

DΠij

Dt
= −AαjΠiα −AαiΠαj − (n− 1)AααΠij , (8)

– in which n is the ratio of specific heats –, while component Π11 is computed
from Eq. (5) with P derived from Eqs. (6) and (7).

A study spanning a range of initial conditions is not within the scope of this
work. As a first step, the physical relevance of the model is checked with a single
set of initial conditions, namely: c(0) = 10−4, σn(0) = −δm, σs(0) = 0.1|σn(0)|,
ω(0) = σ(0), together with isotropy of tensor Π, namely Π12(0) = Π21(0) = 0,
and Π11(0) and Π22(0) derived from Eq. (5) at t = 0, with Π11(0) = Π22(0).

In Fig. 2, A11, A22 and δ/A22 are plotted against c, for q = 5. Interestingly,
the behaviour shown in Fig. 2 is akin to the structure of normal strain (aN ≡ A11)
and tangential strain (aT ≡ A22) across a flame front [9,7].

3 Effect of dilatation on strain structure

The evolution of strain tensor properties, namely strain eigenvalues, λ1 = (−σ +
δ)/2 and λ2 = (σ + δ)/2 [10] as well as orientation of the strain eigenvectors, e1
and e2, is examined for both q = 5 (large density ratio) and q = 1 (low density
ratio ) with the same latter initial conditions.

3.1 Large density ratio

Because it determines the sign of the lowest strain eigenvalue, the ratio of di-
latation rate to strain intensity, δ/σ, is a significant parameter of the dynamics
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Fig. 2 Diagonal components of A, (1) A11, (2) A22; (3) ratio δ/A22, vs. c, for q = 5

of a scalar gradient in a non-solenoidal flow [10]. As shown in Fig. 3, dilatation
makes the smallest eigenvalue, λ1, positive – which thus means two extensional
strain directions – over most of the c-range, where δ/σ > 1. It is only at the edges
(c < 0.12, and c > 0.92), where δ/σ < 1, that λ1 < 0, which thus leads to one
compressional and one extensional strain directions.
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Fig. 3 Ratio δ/σ and sign of strain eigenvalues vs. c; q = 5
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The orientation of strain eigenvectors is shown by Φ = arctan(σn/σs)/2−π/4,
the angle between axis x1 and the direction of the largest strain, e2 (Fig. 4). For
small c, Φ < −π/4, which means that direction x1 mostly undergoes the influence
of the smallest strain. As c increases, counterclockwise rotation of strain axes
brings the direction of the largest strain near x1, and this orientation is hold all
over the intermediate c-range. As c reaches the upper range, rotation of strain
axes is reversed, and the direction of the lowest strain comes back close to x1.
These changes in strain axes orientation, in particular, alignement of the largest
strain with the direction of anisotropy, are consistent with the evolution of strain
approaching a flame front [5,11].
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Fig. 4 Angle Φ between x1 and the direction of largest strain, e2, vs. c; q = 5; a solid arrow
indicates compressional strain, while a dashed arrow indicates extensional strain; direction of
the largest strain is shown by a bold dashed arrow

In this two-dimensional Euler flow, rotation of strain principal axes is pro-
moted by anisotropy of the pressure Hessian tensor [12]. The rotation rate of strain
eigenvectors is indeed given by Ω = 2DΦ/Dt = σ−2(σsDσn/Dt − σnDσs/Dt),
and then, from Eqs. (2) and (3), Ω = σ−2[σs(Π22 −Π11) + σn(Π12 +Π21)]. Fig-
ure 5 clearly shows the anisotropy of Π revealed by Π11 prevailing over the other
components, and the resulting rotation rate, Ω.

3.2 Low density ratio

Similar features of strain evolution are retrieved for q = 1 with, however, a lesser
influence of expansion rate. The lowest strain eigenvalue again gets positive for
intermediate c values as expansion rate exceeds strain intensity, but this time over
a somewhat shorter range (Fig. 6).
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Fig. 5 Rotation rate of strain principal axes, Ω, and components of pressure Hessian tensor,
Πij , vs. c; q = 5; (1) Ω; (2) Π11; (3) Π12 and Π21; (4) Π22

The influence of density ratio is more obvious in strain axes orientation (Fig. 7).
The direction of the largest strain comes much less close to x1 over the intermediate
c-range, and the latter is more narrow as well. This directly results from a weaker
rotation rate, Ω, for q = 1 (not shown). Indeed the lower q, the smaller the
respective magnitudes of strain components, σn and σs, and of anisotropic terms,
Π22 −Π11 and Π12 +Π21; and the level of σ−2 – greater for q = 1 than for q = 5
– is not enough to balance this difference.

4 Conclusion

The mechanisms underlying the influence of dilatation on the velocity gradient
tensor can be reliably addressed with a model problem. Assuming a likely evolution
of the expansion rate, the solution of an equation system for the components of
the velocity gradient and of the pressure Hessian includes a number of features
regarding the evolution of the dynamic field as a density front is approached.

The ratio of dilatation rate to strain intensity, a critical parameter in the
variable-mass-density kinematics of scalar gradient, is derived. More specifically,
the evolution of normal and tangential strains is reminiscent of strain structure at
the crossing of a flame front. Finally, the pressure Hessian anisotropy resulting from
forcing the expansion rate promotes the rotation of strain principal axes, which
subsequently aligns the largest strain with the direction of anisotropy, a result
relevant to questions at issue in the physics of flames. Extension of the approach
to the three-dimensional case as well as to the coupling of the velocity gradient
dynamics with the physics of a reacting scalar gradient is a work in progress.
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Fig. 6 Ratio δ/σ and sign of strain eigenvalues vs. c; q = 1
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Fig. 7 Angle Φ between x1 and the direction of largest strain, e2, vs. c; q = 1; a solid arrow
indicates compressional strain, while a dashed arrow indicates extensional strain; direction of
the largest strain is shown by a bold dashed arrow

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict

of interest.



8 M. Gonzalez

Acknowledgement

This is a post-peer-review, pre-copyedit version of an article published in Springer
Nature Applied Sciences. The final authenticated version is available online at:
http://dx.doi.org/10.1007/s42452-020-03513-4

References

1. Danish, M., Suman, S., Girimaji, S.S.: Influence of flow topology and dilatation on scalar
mixing in compressible turbulence. J. Fluid Mech. 793, 633-655 (2016)

2. Boukharfane, R., Bouali, Z., Mura, A.: Evolution of scalar and velocity dynamics in planar
shock-turbulence interaction. Shock Waves 28, 1117-1141 (2018)

3. Swaminathan, N., Grout, R.W.: Interaction of turbulence and scalar fields in premixed
flames. Phys. Fluids 18, 045102 (2006)

4. Dopazo, C., Cifuentes, L.: The physics of scalar gradients in turbulent premixed combustion
and its relevance to modeling. Combust. Sci. and Tech. 188, 1376-1397 (2016)

5. Zhao, S., Er-ray, A., Bouali, Z., Mura, A.: Dynamics and kinematics of the reactive scalar
gradient in weakly turbulent premixed flames. Combust. Flame 198, 436-454 (2018)

6. Suman, S., Girimaji, S.S.: Dynamical model for velocity-gradient evolution in compressible
turbulence. J. Fluid Mech. 683, 289-319 (2011)

7. Dopazo, C., Cifuentes, L., Martin, J., Jimenez, C.: Strain rates normal to approaching
iso-scalar surfaces in a turbulent premixed flame. Combust. Flame 162, 1729-1736 (2015)

8. Tien, J.H., Matalon, M.: On the burning velovity of stretched flames. Combust. Flame 84,
238-248 (1991)

9. Chakraborty, N., Rogerson, J.W., Swaminathan, N.: The scalar gradient alignment statistics
of flame kernels and its modelling implications for turbulent premixed combustion. Flow
Turbulence Combust. 85, 25-55 (2010)
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