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Abstract

Current approaches to fair valuation in insurance often follow a two-step approach, com-

bining quadratic hedging with application of a risk measure on the residual liability, to obtain

a cost-of-capital margin. In such approaches, the preferences represented by the regulatory

risk measure are not reflected in the hedging process. We address this issue by an alternative

two-step hedging procedure, based on generalised regression arguments, which leads to port-

folios that are neutral with respect to a risk measure, such as Value-at-Risk or the expectile.

First, a portfolio of traded assets aimed at replicating the liability is determined by local

quadratic hedging. Second, the residual liability is hedged using an alternative objective

function. The risk margin is then defined as the cost of the capital required to hedge the

residual liability. In the case quantile regression is used in the second step, yearly solvency

constraints are naturally satisfied; furthermore, the portfolio is a risk minimiser among all

hedging portfolios that satisfy such constraints. We present a neural network algorithm for

the valuation and hedging of insurance liabilities based on a backward iterations scheme.

The algorithm is fairly general and easily applicable, as it only requires simulated paths of

risk drivers.
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1 Introduction

Fair valuation of insurance liabilities has become a fundamental feature of modern solvency

regulations in the insurance industry, such as the Swiss Solvency Test, Solvency II and C-ROSS

(Chinese solvency regulation), see e.g. CEIOPS (2010). Broadly speaking, insurance regulations

distinguish between liabilities that are completely replicable in deep, liquid and transparent

markets and liabilities for which this is not possible. In the first case, by no-arbitrage arguments,

the fair value should correspond to the initial cost of the replicating portfolio. Otherwise, the

fair value is defined as the sum of the expected present value (called best-estimate) and a risk

margin that is based on cost-of-capital arguments.

Since insurance liabilities are often a combination of traded and non-traded risks, one cannot

classify insurance liabilities as perfectly replicable or non-replicable. In this context, it is not

so evident how the regulatory valuation should proceed and the valuation is therefore usually

performed in two steps. In a first step, a hedging portfolio for the liabilities is set up, based

on the available traded assets via typically a quadratic objective function (Wüthrich and Merz,

2013, Pelsser and Schweizer, 2016, Wüthrich, 2016). In a second step, a risk margin is added to

account for the residual risk via a risk measure or an actuarial principle. See for instance Möhr

(2011), Happ et al. (2015) and Dhaene et al. (2017).

As far as the hedging procedures are concerned, several objective functions have been pro-

posed in the literature. Some papers considered maximising the expected utility of the hedger

(see Henderson and Hobson, 2004) or minimising the risk by quadratic hedging (Schweizer, 1995).

The major drawback of using a quadratic penalty function is that it penalises equally both gains

and losses. Furthermore, quadratic hedging, leading to residuals with zero expectation, is di-

vorced from the preferences encoded in regulation, which require neutralisation of a risk measure

such as Value-at-Risk (VaR). Föllmer and Leukert (2000) and François et al. (2014) proposed to

use general expected penalties that only penalise losses. Föllmer and Leukert (1999) defined the

quantile hedging scheme, which maximises the probability that the hedging loss does not exceed

a certain threshold at maturity, given an initial capital. In this paper, by quantile hedging, we

mean hedging with a quantile regressor as considered in Koenker and Bassett Jr (1978) which

is a related but different objective compared to the quantile hedging of Föllmer and Leukert

(1999).

The first contribution of our paper is the introduction of a new valuation framework for

the multi-period fair valuation of insurance liabilities based on a two-step hedging procedure.

The framework we present makes use of sequential local quadratic and quantile risk-minimising

strategies to take into account all intermediate solvency requirements. By considering a local

approach, not only we focus on the loss at maturity but also on the difference between the hedging

portfolio and the liability value at intermediate times (for instance on a yearly basis) which is of

paramount importance in a regulatory context given yearly solvency constraints. Moreover, by

switching from a quadratic to an alternative loss function, we target the tail risk rather than the

mean of the residual loss and therefore account explicitly, as part of the hedging and valuation
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process, for those extreme events that drive capital requirements.

The two-step approach can be summarised as follows. In a first step, a portfolio of traded

assets aimed at replicating the liability as close as possible (in the quadratic sense) is determined

similar to Föllmer and Schweizer (1988). Such portfolio replicates the liability on average. In a

second step, the residual liability is managed by generalised error functions, which are associated

with setting different statistics of residual loss (e.g. VaR or Expectile) to zero. In particular, our

focus is on local quantile hedging using the asymmetric Koenker-Basset error (cf. Koenker and

Bassett Jr, 1978) given the use of VaR in regulation. Interestingly, the resulting hedging portfolio

appears as a Tail Value-at-Risk deviation risk minimiser among all portfolios which satisfy VaR

constraints (Rockafellar et al., 2008). Hence, one can achieve a better risk management by

quantile-hedging the residual risk rather than setting up a VaR capital buffer (cf. Lemma 2.7).

Finally, the fair value is then defined as the sum of the cost of the quadratic hedging portfolio

and the cost-of-capital for the quantile hedging of the residual liability.

Standard implementation of local hedging strategies requires dynamic programming in dis-

crete time, which leads to expensive computational time (see Černỳ, 2004 and Augustyniak et al.,

2017). Some recent papers proposed machine-learning based algorithms to speed up the global

hedging problem (Fécamp et al., 2019 and Carbonneau and Godin, 2020) but we are not aware

of similar algorithms for local quantile hedging.

The second main contribution is the proposition of a general algorithm for the valuation

and hedging of insurance liabilities based on a backward iteration scheme. Contrary to the

standard dynamic programming approach, our algorithm does not present a nested structure

and only requires sample paths of the main risk drivers. This is of practical importance, as

typically the stochastic asset models used in insurance do not have simple tractable forms;

instead insurers have access to the output of Economic Scenario Generators (Varnell, 2011),

which provide precisely a matrix of sample paths for multiple assets. In this paper, we focus

on a neural network implementation for quantile hedging, but the algorithm remains valid with

other non-linear optimisers and for general loss functions. Furthermore, this paper provides a

practical implementation to generate future scenarios for the fair values and their corresponding

hedging portfolios.

The paper is organised as follows. Section 2 starts by motivating our two-step valuation

approach in a one-period setting and its connection to the Solvency II regulatory framework.

Moreover, we show that the two-step valuation is market-consistent and actuarial in the sense of

Dhaene et al. (2017). In Section 3, we generalise the valuation approach in a dynamic multi-period

setting by sequential risk-minimisation. Section 4 presents a general procedure for implementing

the dynamic hedging problem and proposes a neural network algorithm based on Monte-Carlo

simulations of the financial and actuarial risk drivers. Section 5 provides a detailed numerical

example illustrating the neural network approximation. Finally, brief conclusions are given in

Section 6.
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2 Fair valuation in a one-period setting

We start investigating the one-period case. Let (Ω,F ,P) be a probability space and denote

C ⊆ L2(Ω,F ,P) the set of all claims with maturity T = 1. We assume that the financial market

consists of asset 0, which is risk-free with deterministic interest rate r ≥ 0 and n risky assets.

The vectors y = (1, y1, . . . , yn) and Y = (Y0, Y1, . . . , Yn) respectively represent the assets value

at time 0 and time 1 where Y0 = er, yi ≥ 0, Yi ∈ C for any i = 1, 2, . . . , n. A trading strategy

β = (β0, . . . , βn) is a real valued vector where βi provides the units of capital invested in asset i

at time 0. We assume that the strategy is not modified over time and denote B = Rn+1 the set

of all trading strategies. The value of the trading strategy at time 0 and 1 is obtained as

β · y =

n∑
i=0

θi · yi and β ·Y =

n∑
i=0

θi · Yi.

We further assume that all the assets are non redundant which implies β ·Y = 0 if only if

β = (0, . . . , 0)1 and that any tradable asset can be bought and/or sold in any quantity in a deep,

liquid and transparent market with negligible transactions costs and other market frictions; all

inequalities between random variables are understood to hold P-almost surely.

2.1 Two-step valuation with a quadratic loss function

The actuarial solvency regulations require a fair valuation of assets and liabilities, that is, their

value should correspond to the amount of capital for which they could be transferred to another

company or exchanged on the market. For this reason the valuation of a contingent claim strictly

depends on whether it is tradable on the financial market.

Similar to Dhaene et al. (2017), we denote by Ch ⊆ C the class of claims perfectly hedgeable

on the market. For any S ∈ Ch it is possible to find a strategy ν ∈ B such that, S = ν ·Y. In

this case, the fair value of the liability S is simply given by the value of the trading strategy at

time 0, ν · y.

Moreover, we denote by C⊥ ⊆ C the class of claims independent of the vector of traded

assets Y = (Y0, Y1, . . . , Yn). For such claims, the position of the insurer cannot be hedged in the

financial market and therefore the fair value of S ∈ C⊥ is calculated by an actuarial premium

principle. In a solvency framework, with capital requirements calculated according to the Value-

at-Risk (VaR) risk measure, the standard choice is the cost-of-capital premium principle, see for

instance CEIOPS (2010) and Pelsser (2011). It is defined as follows:

π(S) = E [S] + i(VaRα(S)− E [S]), (1)

1This assumption ensures that the quadratic minimisation problem has a unique solution, see e.g. Černỳ and
Kallsen (2009)
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where i is the cost-of-capital rate and

VaRα(X) = inf{x ∈ R |P(X ≤ x) ≥ α}, for any risk X and α ∈ (0, 1).

Thus, π(S) is understood as the expected value (net premium) of S, loaded by the cost of the

capital required to hold the liability S − E[S]. Specifically, it is assumed that the insurer’s

shareholders require a return i on VaRα(S −E [S]), that is, on the assets required to support S,

net of the expected value.

Many claims that insurance companies face are not perfectly hedgeable, but nevertheless

not independent of the payoffs of the traded assets. We call these claims hybrid claims when

S ∈ C\(Ch ∪ C⊥) and these are the focus of our paper.

In this case, some (generally imperfect) hedging of S by Y is possible and typically a two-step

approach is followed (see Möhr, 2011 and Albrecher et al., 2018). First, the insurer determines

a hedging portfolio that is as close as possible to the liability S. To measure “closeness”, the

most popular objective function is the quadratic loss function, providing a trading strategy

that minimises the L2-distance between the liability and the hedging portfolio (see Pelsser and

Schweizer, 2016):

θS = arg min
β∈B

E
[
(S − β ·Y)2

]
. (2)

For the rest of the paper θS will always denote the trading strategy associated with the quadratic

loss function and the index S will be dropped when no confusion is possible. Standard least-

squares arguments provide the solution to problem (2), θ = (E [Yᵀ ·Y])−1E [S ·Yᵀ] and ensure

that the expected value of the hedging portfolio matches the expected value of the liability:

E [θ ·Y] = E [S] . (3)

Second, the insurer values the residual risk R(S,θ) := S − θ ·Y, which could not be hedged,

by the cost of capital principle π. Following such a method, the fair value φ(S) is calculated as

the sum of the cost of the hedging portfolio and the premium principle of the residual risk (see

Dhaene et al., 2017):

φ(S) = θ · y + π(R(S,θ))

= θ · y + iVaRα(S − θ ·Y), (4)

where we used the property (3).

The fair value (4) can be seen as a generalisation of the premium principle (1), where (a) the

net premium E[S] is replaced by the cost of the hedging strategy θ ·y, which once again matches

on average the liability S and (b) the cost of capital is calculated on the residual S−θ ·Y, rather

than S − E[S].
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2.2 Valuation with general loss functions

The valuation approach we just discussed relies on the use of a quadratic loss function `(x) = x2

to penalise deviations of the hedging portfolio payoff from the liability. Here, we generalise the

two-step valuation approach, addressing two specific concerns:

• The quadratic loss function penalises losses and gains equally. As an insurer, the major

concern is to avoid a shortfall, namely situations where S > θ ·Y. Various authors (for

instance Föllmer and Leukert, 2000 and François et al., 2014) proposed alternative penalty

functions that only penalise losses or penalise losses and gains asymmetrically.

• The total level of assets that the insurer has to hold with respect to their liabilities is

typically given by a risk measure, e.g. in the case of Solvency II, VaR0.995. It is then not

obvious why a quadratic hedging strategy should be used, which results in a residual risk

with mean zero, rather than a hedging strategy that produces a VaR0.995-neutral portfolio.

To elaborate on these points, consider a convex loss function ` : R→ [0,+∞), with `(0) = 0

and the resulting hedging strategies

ξ
(`)
S = arg min

β∈B
E [`(S − β ·Y)] . (5)

Again, we drop the subscript to write ξ(`), if no confusion ensues. Different choices of the loss

function lead to the risk-neutrality (or unbiasedness) of the residual risk with respect to different

risk measures. Specifically, under mild conditions we have that (see Thm 3.2 in Rockafellar et al.,

2008)

Γ(`)(S − ξ(`) ·Y) = 0,

where Γ(`) is the risk measure given by

Γ(`)(X) = arg min
c∈R

E [`(X − c)] . (6)

Slightly different versions of risk functionals as defined in (6) are treated in the literature using

a first order condition to find the minimiser in (5), see for instance the zero-utility premium

principles discussed in Deprez and Gerber (1985), the class of shortfall risk measures introduced

by Föllmer and Schied (2002), the generalised quantiles investigated by Bellini et al. (2014), the

optimised certainty equivalent in Ben-Tal and Teboulle (2007), the elicitable functionals studied

in Gneiting (2011) and the references therein. The implications of different choices of ` are

elaborated on in detail by Rockafellar and Uryasev (2013). Three important examples are:

1. If `(x) = x2, we have that Γ(`)(X) = E[X] and ξ(`) = θ, as seen before.

2. Let `(x) := `α(x), where

`α(x) =
α

1− α
x+ + x−, α ∈ (0, 1) (7)
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is the normalised Koenker-Bassett loss function, see Koenker (2005). Then, Γ(`α)(X) =

VaRα(X). We henceforth denote the trading strategy associated with this loss function by

ξ(`) := ξ. This strategy satisfies

VaRα (S − ξ ·Y) = 0. (8)

This case is important to us, given the desired feature that the VaR of the residual risk is

zero, indicating that sufficient assets have been allocated to satisfy regulatory requirements.

3. Alternatively, with slight abuse of notation, consider the loss function `(x) := `τ (x) where

`τ (x) = τ(x+)2 + (1− τ)(x−)2, τ ∈ (0, 1).

The resulting risk measure Γ(`τ )(X) is the τ -expectile. Expectiles generalise the mean

(which is obtained by setting τ = 0.5) and for τ ≥ 0.5, are coherent risk measures, thus

addressing a common criticism of VaR, while remaining within the tractable class of short-

fall risk measures (see for instance Delbaen et al., 2016). One can see hedging with `τ (x)

as a modification of quadratic hedging, where, for τ > 0.5 additional weight is given to

the downside risk. Expectile regression was introduced by Newey and Powell (1987) and

then further generalised to M -quantiles by Breckling and Chambers (1988). We return to

expectile hedging strategies in Section 2.3.

In this paper, we focus on the use of the quantile hedging strategy

ξ = arg min
β∈B

E [`α(S − β ·Y)] , (9)

where `α(x) is given in (7).

By changing the hedging objective from a quadratic to an asymmetric loss function targeted

at large losses, our hedging strategy becomes more conservative. Specifically, by (8), if we set

up the strategy ξ for α = 0.995, by construction, the portfolio will cover the liability S with

probability α = 0.995. The regression problem (9) is well-known as the quantile regression

pioneered by Koenker and Bassett Jr (1978). As we use it for hedging objectives, we refer to

this minimisation as quantile hedging ; this should not be confused with the quantile hedging of

Föllmer and Leukert (1999) which targets another objective.

Moreover, as the quantile hedging strategy is a risk minimiser with respect to a convex loss

function, we will avoid situations where capital requirements can be reduced by shifting losses to

the extreme tails, beyond the VaR level. Hence one of the key criticisms of VaR, see e.g. Section

4.4 of Danıelsson (2002), is addressed, as illustrated in the following example.

Example 1. We consider a simple example, where there is only one risky asset correlated with

the liability S. Assume that the risk measure used is VaR0.9 and that the risk-free asset has

return 1 (zero interest rates, in particular y0 = Y0 = 1). The liability S follows a Lognormal
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distribution with parameters µ = 0.1 and σ = 0.3, such that VaR0.9(S) = 1.623. The asset Y1 is

a derivative on S, with a price of y1 = 1 and pay-off:

Y1 = 1.5 · 1{S≤VaR0.9(S)} − 3 · 1{S>VaR0.9(S)}.

Hence, the derivative offers a high return when S is less than VaR0.9(S), but produces an even

larger loss when S exceeds VaR0.9(S). Investment in such an asset would be capital efficient, as

it moves the loss beyond the 90% confidence level, thus making it ‘invisible’ to VaR0.9. On the

other hand, prudent risk management would require the holder of S to short Y1, in order to be

able to hedge their tail risk.

To make these considerations precise, we look at two investment strategies:

A Invest β0 = 0 in the risk-free asset Y0 and β1 = VaR0.9(S)/1.5 = 1.082 in Y1. The resulting

portfolio Value-at-Risk is:

VaR0.9(S − β1Y1) = VaR0.9

(
S −VaR0.9(S)

(
1{S≤VaR0.9(S)} − 2 · 1{S>VaR0.9(S)}

))
= VaR0.9

(
S −VaR0.9(S) + 3VaR0.9(S)1{S>VaR0.9(S)}

)
= VaR0.9 (S −VaR0.9(S)) + 3VaR0.9(S)VaR0.9

(
1{S>VaR0.9(S)}

)
= 0,

where the 3rd equality is by comonotonic additivity of VaR.

B Invest ξ = (ξ0, ξ1) in the assets (Y0, Y1) , where ξ is the quantile hedging strategy at level

α = 0.9. By construction we have

VaR0.9(S − ξ0 − ξ1Y1) = 0.

The corresponding optimal positions are

ξ0 = 1.697,

ξ1 = −0.174.

Hence, it is indeed seen that a negative exposure to Y1 is produced. Furthermore, the cost

of this strategy is equal to ξ0 + ξ1 = 1.523 > 1.082 = β1. Hence the Strategy B is more

expensive, while achieving the same zero VaR for the portfolio as Strategy A.

We compare these two strategies with respect to the cumulative distribution function (cdf) of

their residual risks in Figure 1. The persistent tail risk arising from Strategy A is clearly visible,

indicating how this strategy, while cost efficient, reflects poor (unethical even) risk management.

This is not a problem we face with the quantile hedging Strategy B.

4
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Figure 1: Cumulative distribution functions of the residual risks R(S,β) (left) and R(S, ξ) (right),
corresponding, respectively, to the Strategies A and B of Example 1.

2.3 Two-step valuation with quadratic and quantile hedging

While we consider the quantile hedging strategy to yield a portfolio that is more suitable for fair

valuation in a solvency context, compared to quadratic hedging, valuation still needs to take into

account that only a fraction of the cost of capital requirements is borne by policyholders. Here

we propose a two-step valuation approach, where quadratic hedging is used as a first step and

quantile hedging is subsequently applied on the residual liability. This approach enables us to

decompose the cost of quantile hedging to a part that is fully borne by policyholders and a ‘cost-

of-capital’ part, generalising in this way (4). Before proceeding, we briefly recall the definition

of a valuation and its properties as introduced in Dhaene et al. (2017).

Definition 2.1 (Valuation). A valuation is a mapping

ρ : C → R, S 7→ ρ(S),

that is normalised ρ(0) = 0 and translation invariant

ρ(S + a) = ρ(S) + e−ra, ∀S ∈ C, a ∈ R.

Here we list some properties that a valuation may satisfy and which will be discussed in the

following. For any S, S1, S2 ∈ C we say that a valuation ρ is
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1. Positive homogeneous if

ρ(λS) = λρ(S), for any λ ≥ 0;

2. Market-Consistent if

ρ(S + Sh) = ρ(S) + ν · y,

for any hedgeable payoff: Sh = ν ·Y for some ν ∈ B;

3. Actuarial if

ρ(S⊥) = e−rE[S⊥] + RM(S⊥),

for any claim S⊥ ∈ C⊥, where RM : C⊥ → R is a mapping that does not depend on current

asset prices y;

4. Fair if ρ is market-consistent and actuarial.

The market-consistency property means that the valuation is marked-to-market for any hedgeable

part of a liability, while a valuation is actuarial if it is marked-to-model for any claim which is

independent of the financial market.

Definition 2.2 (Two-step valuation). Consider the liability S. Let θ be the quadratic hedging

strategy for S and let η(`) be the hedging strategy for the residual risk R(S,θ) = S − θ ·Y with

a generic loss function `, that is:

η(`) := arg min
β∈B

E
[
`
(
R(S,θ)− β ·Y

)]
. (10)

Then, the two-step valuation for S is defined as

ρ(`)(S) := θ · y + i η(`) · y. (11)

The remainder of the paper focuses on the two-step valuation where the quantile hedging

strategy is considered in the second step, called the mean-quantile valuation. From now on, we

drop the upper-script ` if we consider quantile hedging in the second step. In this section, we

also briefly discuss the two-step valuation with the expectile loss function (3) in the second step,

that we call the mean-expectile valuation.

Using the translation invariance property of the ordinary least square regression it is imme-

diate to verify that the two-step valuation is indeed a valuation according to Definition 2.1.

In the cost-of-capital approach for (4), a capital c = VaRα(R(S,θ)) is set up and kept risk-free

until year 1 to guarantee that

VaRα(S − θ ·Y − c) = 0.

10



In the two-step valuation proposed in this section, we set up a strategy η such that

VaRα(S − θ ·Y − η ·Y) = VaRα

(
R
(
R(S,θ),η

))
= 0.

In the next lemma, we show that performing quantile hedging on the liability or performing

quadratic hedging on the liability and then quantile hedging on the residual risk leads to the

same hedging strategy. Hence our two-step approach is consistent with constructing an asset

portfolio that “quantile-hedges” the liability S.

Lemma 2.3. a) If ξ is the unique quantile hedging strategy for S as defined in (9), and if θ

and η are the hedging strategies as defined in (2) and (10), then we have that

ξ = θ + η.

b) If the quantile hedging strategy for S is not unique, denote by {ξj}j∈A the set of minimisers

of (10), ` := `α. Then, for any j ∈ A, we have that

ξj = θ + ηj ,

where ηj ∈ {ηj}j∈A, the set of quantile hedging strategies for the residual risk S − θ ·Y.

Proof. a) Let us first consider the case where the quantile hedging solution is unique. The

proof is by contradiction. Assume that ξ 6= θ + η and define η∗ = ξ − θ. By (9) we have

E [`α(S − ξ ·Y)] = E [`α(S − (θ + η∗) ·Y)] < E [`α(S − (θ + η) ·Y)] ,

which contradicts the definition of η:

η = arg min
β∈B

E [`α(S − θ ·Y − β ·Y)] .

b) For the non-uniqueness case, take ξj ∈ {ξj}j∈A and define ηj = ξj − θ. By definition, we

have that

E
[
`α(S − ξj ·Y)

]
= E

[
`α(S − θ ·Y − ηj ·Y)

]
.

Therefore, ηj should be a quantile hedging strategy for the residual risk, otherwise this

would contradict the optimality of ξj . Analogously, if ηj is a quantile hedging strategy for

the residual risk then ξj = θ + ηj must be a quantile hedging strategy for S.

Remark 2.4. Lemma 2.3 holds equally if we consider a two-step valuation where the second step

is obtained using expectile hedging instead of quantile hedging, we find again

ξ(`τ ) = θ + η(`τ ).
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In the following result, we show that the mean-quantile valuation is positive homogeneous

and fair.

Theorem 2.5. The mean-quantile valuation is positive homogeneous and fair.

Proof. The positive homogeneity (also known as scale equivariance) is directly obtained by the

positive homogeneity of θ and η (see Koenker, 2005). To prove that the mean-quantile valuation

is fair, we show that the valuation is market-consistent and actuarial.

• First, we notice that the solution of the quadratic hedging problem is additive:

θS+Sh = θS + θSh .

Since Sh can be hedged with ν, we have that θSh = ν. Therefore, we find that

ρ(S + Sh) = ν · y + θS · y + i ηS+Sh · y

= ν · y + ρ(S)

where ηS+Sh is the quantile hedging strategy of the residual loss of S + Sh:

R(S + Sh,θS+Sh) = S + Sh − θSh ·Y − θS ·Y = S − θS ·Y = R(S,θS),

which ends the proof.

• By standard least-squares arguments, the quadratic hedging strategy of S⊥ is

θS⊥ = (E[S⊥], 0, . . . , 0).

Otherwise stated, if a liability is independent of risky assets, the hedging strategy only

invests risk-free. Therefore, we find that

ρ(S⊥) = e−rE[S⊥] + i ηS⊥ · y,

where ηS⊥ is the quantile hedging strategy for R(S⊥,θS⊥) = S⊥−E[S⊥]. Since R(S⊥,θS⊥)

is independent of the risky assets, we find that the quantile hedging strategy is (cf. Theorem

4 in Dhaene et al., 2017)

θS⊥ = (VaRα(S⊥ − E[S⊥]), 0, . . . , 0),

which implies that the two-step valuation of S⊥ is

ρ(S⊥) = e−rE[S⊥] + e−riVaRα(S⊥ − E[S⊥]).

The mean-quantile valuation corresponds then to the standard cost-of-capital principle and
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the mean-quantile valuation is fair.

Theorem 2.6. The mean-expectile valuation is positive homogeneous and fair.

Proof. To verify the positive homogeneity of the valuation it is sufficient to check that the

expectile strategy is positive homogeneous. Note that for any a > 0, S ∈ C,β ∈ B we have:

E[`τ (aS − aβ · Y )] = a2E[`τ (S − β · Y )],

that implies arg minβ∈B E[`τ (aS − β · Y )] = a arg minβ∈B E[`τ (S − β · Y )]. The fairness of

the mean-expectile valuation follows exactly the same steps of the one for the mean-quantile

valuation and is therefore omitted.

Hereafter, we show that applying quantile hedging to the residual risk will reduce the tail of

the residual risk compared to making an investment in the risk-free asset.

Let us assume that we want to hedge R(S,θ) = S − θ · Y and the regulator imposes that

VaRα(R(S,θ) − β · Y) = 0 for some trading strategy β ∈ B. To achieve this, there are two

possibilities:

• Consider an investment in the risk-free asset equal to VaRα(R(S,θ)). We denote this

strategy by ν.

• Consider the quantile hedging strategy η such that VaRα(R(S,θ)− η ·Y) = 0.

The quantile hedging strategy is the minimiser of the Tail Value-at-Risk (TVaR) deviation of

the residual risk among all the strategies which satisfy the VaR regulatory constraint. We recall

that TVaR is a coherent risk measure defined as

TVaRα(X) =
1

1− α

∫ 1

α

VaRu(X)du, for any finite mean risk X and any α ∈ (0, 1)

and the TVaR deviation (dTVaR) is defined as dTVaRα(X) = TVaRα(X)−E(X) for any X ∈ C.

Lemma 2.7. Consider ν and η as defined above. The quantile hedging strategy is the minimiser

of the TVaR deviation of the residual risk:

dTVaRα(R(S − θ ·Y,η)) ≤ dTVaRα(R(S − θ ·Y,β)),

for all hedging strategies β such that VaRα(R(S,θ)− β ·Y) = 0. This is in particular the case

for β = ν.

Proof. This is a direct application of Theorem 3.2. in Rockafellar et al. (2008).

13
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Figure 2: Liability S (left) and residual R(S,θ) (right) against value of the risky asset Y1.

Example 2. Here we show how our proposed valuation methodology works in a single-period

setting, where the liability S is highly – but non-linearly – correlated with a tradeable asset Y .

A more realistic dynamic version of this model is discussed in detail in Section 5.

We consider a portfolio of equity-linked life insurance contracts, which guarantee a survival

benefit to all policyholders who are still alive at maturity time T = 1. The insurance liability

can be expressed as

S = N ×max (Y1,K) , (12)

where N represents the number of survivors at time 1, among an initial population of 1000

policyholders. We make the following assumptions: N ∼ Bin(1000, 0.9); Y1 ∼ LN(0.1, 0.22); the

value of the risky asset at time 0 is y1 = 1; interest rates are zero, that is, y0 = Y0 = 1; the

guarantee level is K = 1. The analysis is carried out on a sample of 200,000 simulated scenarios.

On the left of Figure 2, we plot samples of S against Y1. One can see the strong (nearly

deterministic) positive relationship between the two, indicating that Y1 can be used to hedge S.

On the right of Figure 2, we show the residuals of the quadratic hedging strategy, R(S,θ) against

Y1. The residuals are clearly not independent of the the tradeable asset, indicating that quantile

or expectile hedging of those residuals will be meaningful. In other words, we would expect that

our two-step valuation ρ would give different answers than the valuation φ defined in (4).

In Table 1 we present the following trading strategies:

1. θ: the result of quadratic hedging of S.
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2. ξ: the result of quantile hedging of S, with α = 0.99.

3. ξ(`τ ): the result of expectile hedging of S, with τ = 0.998. The value of τ was calibrated

so that the Value-at-Risk and expectiles of S match, i.e. VaRα(S) = Γ(`τ )(S).

4. (VaRα(R(S,θ)), 0): investing the VaR of the residuals R(S,θ) in the risk-free asset.

5. η: the result of quantile hedging of R(S,θ).

6. η(`τ ): the result of expectile hedging of R(S,θ).

We can observe that ξ and ξ(`τ ) place a substantially higher investment into the risk-free asset,

compared to θ, reflecting the more stringent criterion encoded in the respective loss functions –

recall that E
[
R(θ, S)

]
= 0, VaRα

(
R(ξ, S)

)
= 0, Γ(`τ )

(
R(ξ(`τ ), S)

)
= 0. At the same time, the

investment in the risky asset is somewhat higher for θ, reflecting a lower sensitivity to adverse

movements in asset values. The remaining three strategies pertain to hedging the residuals of the

first (quadratic hedging) step. We see that this second step, for quantile and expectile hedging,

involves a reduction in the exposure to the risky asset.

Table 1: Investment in risk-free and risky asset, from hedging strategies associated with the
two-step valuation of S.

Strategy risk-free asset risky asset cost of strategy
θ 247 709 956
ξ 460 658 1118
ξ(`τ ) 450 663 1113

(VaRα(R(S,θ)), 0) 163 0 163
η 213 -52 161
η(`τ ) 204 -47 157

In Figure 3, we show the densities of the residuals corresponding to the strategies of 4.–6.

above. We can see that quantile and expectile hedging lead to a somewhat different shape,

compared to a quadratic regression that is followed by investing the VaRα of the residual risk

in the risk-free asset. We quantify the difference between the three densities, by stating the

corresponding TVaR deviations:

dTVaRα

(
R(S,θ)−VaRα(R(S,θ))

)
= 194.2

dTVaRα

(
R(R(S,θ),η)

)
= 182.5

dTVaRα

(
R(R(S,θ),η(`τ ))

)
= 182.6

Hence, the application of quantile and expectile hedging reduces the tail of the residuals, com-

pared to the quadratic hedging case. For quantile regression, this observation is a direct im-

plication of Lemma 2.7. Of course different conclusions may be reached, if the criterion for
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Figure 3: Densities of residuals, for quadratic hedging of S, followed by investing the VaR of the
residual in the risk-free asset (black); quantile hedging of S (blue); and expectile hedging of S
(red).

measuring the variability of residuals changes. For example, considering the standard deviation

of residuals privileges quadratic regression, leading to σ
(
R(S,θ)−VaRα(R(S,θ))

)
= 49.0, while

σ
(
R(R(S,θ),η)

)
= 50.3; note though the difference between the two is small.

Finally, we state the fair value of S, as calculated via the three different hedging approaches

4.-6., for cost-of-capital rate i = 0.1:

φ(S) = θ · y + i ·VaRα

(
R(S,θ)

)
= 972.6

ρ(S) = θ · y + i · η · y = 972.4

ρ(`τ )(S) = θ · y + i · η(`τ ) · y = 972.

Hence, in this example, the impact on the valuation of S is very limited, even though the hedging

strategies and, importantly, the statistical behaviour of residuals, are different.

4

3 Two-step valuation in a multi-period setting

We extend the previous setup to a model over multiple time periods. We consider a filtered

probability space: (Ω, (Ft)t∈{0,1,...,T},P), where F0 = {∅,Ω}, FT = F and the σ-algebra Ft
represents the information available up to time t, t ∈ {0, 1, . . . , T}.
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Again we consider n+ 1 traded assets. We denote Y(t) = (ert, Y1(t), . . . , Yn(t)) the vector of

asset prices at time t ∈ {1, 2, . . . , T} and assume that the asset portfolio can be freely recalculated

at each time t, hence we do not require trading strategies to be self-financing. A trading strategy

is an n+1 vector β(t) = (β0(t), . . . , βn(t)), where each βi(t) is predictable (i.e. Ft−1-measurable)

and represents the unit of capital invested in asset i in the time interval [t − 1, t), for any

i = 0, 1, . . . , n and t ∈ {1, 2, . . . , T}. We denote B(t) the set of trading strategies available for

the time interval [t− 1, t).

In this section, we study the problem of an insurer who needs to determine the fair valuation

at any times t < T for an insurance liability S which matures at time T . In Barigou et al. (2019),

this objective was achieved by a backward iteration in which for each time period the liability

is hedged by quadratic hedging and the non-hedged residual part is priced via an actuarial

valuation, e.g. the standard deviation principle. While this approach is fair in the sense of

Theorem 2.5, it does not take into account the yearly solvency requirement in its valuation,

namely that the hedging portfolio should cover the fair value of the liability with a confidence

level α (generally α = 0.995).

Here, we extend our two-step hedging approach from a one-period to a multi-period setting.

In the first step of the valuation, a quadratic hedging strategy is set up and we know by the

relation (3) that its expected payoff corresponds to the expected liability. In the second step of

the valuation, we apply a quantile hedging strategy to the residual loss, and by construction, the

yearly solvency capital requirement will be satisfied. The cost of this strategy is then included

in the valuation through an appropriate cost-of-capital risk margin.

3.1 Fair valuation by iterated two-step valuation

Consider an insurance liability S which matures at time T . The quadratic and quantile hedging

strategies at time T − 1 are determined by

θ(T ) = arg min
β∈B(T )

ET−1
[
(S − β(T ) ·Y(T ))2

]
,

η(T ) = arg min
β∈B(T )

ET−1 [`α(S − θ(T ) ·Y(T )− β(T ) ·Y(T ))] ,

where `α is the Koenker-Bassett error given in (7). By the properties of quantile hedging, the

payoff of both hedging strategies will cover the liability with a confidence level of α, hence

satisfying the regulatory constraint:

VaRα,T−1 (S − θ(T ) ·Y(T )− η(T ) ·Y(T )) = 0.

The fair value at time T − 1 of the liability is then defined as the cost of the quadratic hedging

strategy and a cost-of-capital risk margin for the quantile hedging strategy:

ρT−1(S) = θ(T ) ·Y(T − 1) + i η(T ) ·Y(T − 1).
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We can now repeat iteratively the two-step valuation until we reach the fair value at time 0, at

each step hedging the fair value of one period ahead. For the fair value ρt+1(S), both hedging

strategies are given by

θ(t+ 1) = arg min
β∈B(t)

Et
[
(ρt+1(S)− β(t+ 1) ·Y(t+ 1))2

]
η(t+ 1) = arg min

β∈B(t)
Et [`α(ρt+1(S)− θ(t+ 1) ·Y(t+ 1)− β(t+ 1) ·Y(t+ 1))] .

Then, the fair value at time t is given by

ρt(S) := θ(t+ 1) ·Y(t) + i η(t+ 1) ·Y(t), (13)

and the yearly solvency constraints are satisfied by construction:

VaRα,t (ρt+1(S)− θ(t+ 1) ·Y(t+ 1)− η(t+ 1) ·Y(t+ 1)) = 0, ∀t ∈ {0, 1, . . . , T − 1}. (14)

We now provide a simple example of our multi-period two-step valuation in a multivariate

normal setting. In such a framework, explicit solutions for the fair valuation can be obtained.

Example 3. We consider a multi-period model with two assets only: Y(t) = (Y0(t), Y1(t)),

t = 0, 1, . . . , T . We assume that Y0(t) = 1 for all t (i.e. the risk-free asset has zero interest rate)

and that the returns of the risky asset, Rt = Y1(t)
Y1(t−1) , t = 1, . . . , T are i.i.d. Moreover, we write

the liability development of S as

S = s0 + S1 + · · ·+ ST ,

where s0 is constant, St is the liability development at time t which is Ft-measurable, St’s are

independent, and E[St] = 0 for t = 1, . . . , T, we remark that such a decomposition was also

considered in Tsanakas et al. (2013). Furthermore, (Rt, St) are bivariate normally distributed,

with constant correlation c. For the sake of brevity we define:

κ =
E[Rt − 1]

σ(Rt)
,

γt = σ(St),

where κ is constant, while γt is deterministic but time varying. First, we determine the quadratic

hedging strategy at time T − 1:

θ(T ) := arg min
β∈B(T )

ET−1
[
(S − β ·Y(T ))2

]
.
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By standard arguments, we get:

θ1(T ) =
CT−1(S, Y1(T ))

VT−1(Y1(T ))
,

θ0(T ) = ET−1[S]− θ1(T )ET−1[Y1(T )],

such that the cost of the quadratic hedging strategy is given by:

θ(T ) ·Y(T − 1) = ET−1[S]− CT−1(S, Y1(T ))

VT−1(Y1(T ))
(ET−1[Y1(T )]− Y1(T − 1))

= s0 +

T−1∑
j=1

Sj − κγT c.

In a second step, we determine the risk margin by computing the quantile hedging strategy for

the residual:

η(T ) := arg min
β∈B(T )

ET−1 [`α(S − θ(T ) ·Y(T )− β ·Y(T ))] .

By the normality assumption, we have that

(S − θ(T ) ·Y(T )) ⊥ Y1(T ) =⇒ η1(T ) = 0,

i.e. there is no investment in the risky asset. The related cost is then given by

η(T ) ·Y(T − 1) = VaRα,T−1(S − θ(T ) ·Y(T )),

= ET−1[S − θ(T ) ·Y(T )] + λσT−1[S − θ(T ) ·Y(T )], (λ := Φ−1(α))

= λγT
√

1− c2.

The resulting fair value of S is then given by

ρT−1(S) = θ(T ) ·Y(T − 1) + iη(T ) ·Y(T − 1)

= s0 +

T−1∑
j=1

Sj − κγT c+ iλγT
√

1− c2.

By noting that with respect to FT−2, the only random element in ρT−1(S) is ST−1, we find that

ρT−2(S) = θ(T − 1) ·Y(T − 2) + iη(T − 1) ·Y(T − 2)

= s0 +

T−2∑
j=1

Sj − κ(γT + γT−1)c+ iλ(γT + γT−1)
√

1− c2.

The cost of capital of all future capital requirements is used when valuing the liability at a
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particular time, which is in agreement with the Solvency II risk margin. An inductive argument

would lead to:

ρ0(S) = s0 − κc
T∑
j=1

γj + iλ
√

1− c2
T∑
j=1

γj .

Hence, the fair value of the liability is composed of three terms: first the expected liability

s0, a second term accounting for the dependence between the excess risky asset returns and the

liability increments, and, third, is the cost-of-capital risk margin which takes into account the

non-hedgeable risk. We note that the risk margin vanishes as c → 1 since the liability can be

completely hedged in this case. 4

3.2 Time-consistency of the valuation framework

Time-consistency is an important concept for characterising the relationship between different

static valuations. It means that the same value is assigned to a liability regardless of whether it

is calculated in one step or in two steps backwards in time.

Definition 3.1. A sequence of valuations (ρt)
T−1
t=0 = {ρ0, . . . , ρT−1} is time-consistent if:

ρt(S) = ρt (ρt+1(S)) , for any liability S and t = 0, 1, . . . , T − 2. (15)

By construction, our valuation framework is time-consistent. Indeed, from (13) we see that

the fair valuation at time t is obtained by applying the one-period two-step valuation on ρt+1,

which itself comes from the two-step valuation on ρt+2 and so on. Therefore, the time-consistency

condition (15) is directly satisfied.

4 Dynamic hedging by neural networks

The backward recursive scheme presented above is similar to the one solving the local quadratic

hedging problem (Föllmer and Schweizer, 1988), which is usually implemented by dynamic pro-

gramming. Since the optimal hedging strategy is a function of conditional expectations, a popular

technique consists of constructing a Markov grid with the use of a multinomial tree model for the

risky asset dynamics (see e.g. Augustyniak et al., 2017, Coleman et al., 2006 and Godin, 2016).

The Markov property is key to reduce the dimensionality of the dynamic programming algo-

rithms, because it implies that conditional expectations with respect to Ft reduce to conditional

expectations with respect to assets prices at time t only, i.e. Y(t).

In this paper, we present a general procedure to solve the dynamic quadratic-quantile hedging

problem in a Markovian setting. The procedure involves an iterated non-linear optimisation

which is solved by neural networks. We note however that other non-linear regression methods

(such as gradient boosted trees) can be used as well. Moreover, we present the algorithm for

the mean-quantile valuation but, in principle, the whole procedure remains valid for any loss

20



function `.

4.1 General algorithm for the dynamic hedging problem

We recall that the iterated dynamic hedging problem is given by

θ(t+ 1) := arg min
β∈B(t+1)

Et
[
(ρt+1(S)− β ·Y(t+ 1))2

]
η(t+ 1) := arg min

β∈B(t+1)

Et [`α(ρt+1(S)− θ(t+ 1) ·Y(t+ 1)− β ·Y(t+ 1))]

ρt(S) := θ(t+ 1) ·Y(t) + i η(t+ 1) ·Y(t)

(16)

for any t = T − 1, . . . , 0, starting with ρT (S) = S and `α is the Koenker-Bassett error (7).

From now on, we assume that there exists a m-dimensional process Z(t) which drives all

the processes of interest. In an insurance context, Z(t) may represent for instance the risky

asset processes and the number of policyholders alive at time t. The filtration F driving the

information contains all observations about the process Z: Ft = σ(Z(u) | u ≤ t).
To avoid path-dependence issues in the hedging framework and reduce the complexity of the

dynamic hedging algorithm, we make the standard assumption that Z is Markovian. We note

that many standard financial and actuarial processes do follow the Markov property.

Assumption 1. Z has the Markov property with respect to the filtration F , i.e.

P(Z(t+ 1) ≤ x | Ft) = P(Z(t+ 1) ≤ x | Z(t)).

By Assumption 1, the candidate hedging strategies in the dynamic hedging problem (16) can

be expressed as β = g(Z(t)) where g : Rm → Rn+1 is a function which takes the random process

at time t as inputs and outputs the hedging positions in the (n + 1) assets. Since we cannot

consider numerically any possible function g, we assume that the optimal function g belongs a

family of non-linear functions G.

Moreover, in order to approximate the expectation operator in (16), we use a Monte-Carlo

sample by generating M random simulations. We denote by Z(i)(t), for i = 1, . . . ,M , the M

random observations of the random process at time t, for t = 0, 1, . . . , T . Therefore, the dynamic

hedging problem (16) can be expressed by the following iterative algorithm:

θ(t+ 1) := gt+1 (Z(t))

with gt+1 = arg min
g∈G

1

M

M∑
i=1

(
ρ
(i)
t+1(S)− g(Z(i)(t)) ·Y(i)(t+ 1)

)2
η(t+ 1) := ht+1 (Z(t))

with ht+1 = arg min
g∈G

1

M

M∑
i=1

`α

(
ρ
(i)
t+1(S)− θ(t+ 1) ·Y(i)(t+ 1)− g(Z(i)(t)) ·Y(i)(t+ 1)

)
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ρ
(i)
t (S) := θ(t+ 1) ·Y(i)(t) + i η(t+ 1) ·Y(i)(t).

(17)

for any t = T−1, . . . , 0, starting with ρ
(i)
T (S) = S(i). We note that the algorithm (17) provides the

fair valuation of S at any time t as well as the quadratic and quantile hedging strategies. Indeed,

by Lemma 2.3, the quantile hedging strategy ξ for ρt+1(S) is the sum of the quadratic hedging

strategy θ for ρt+1(S) and the quantile hedging strategy η for the residual loss. Algorithm 1

presents the procedure in its compact form.

Algorithm 1 Backward resolution of the dynamic fair valuation problem

1: ρT ← S
2: for t = T − 1, T − 2, ..., 0 do

3: gt+1 = arg ming∈G
1
M

∑M
i=1

(
ρ
(i)
t+1(S)− g(Z(i)(t)) ·Y(i)(t+ 1)

)2
4: ht+1 = arg ming∈G

1
M

∑M
i=1 `α

(
ρ
(i)
t+1(S)− g(Z(i)(t)) ·Y(i)(t+ 1)

)
5: ρ

(i)
j (S) = gt+1

(
Z(i)(t)

)
Y(i)(t) + i

(
ht+1

(
Z(i)(t)

)
− gt+1

(
Z(i)(t)

))
Y(i)(t)

6: end for

4.2 Implementation by neural networks

In order to implement the Algorithm 1, we need to resort to a non-linear optimisation. In

this paper, we implement the algorithm by the use of neural networks (NNs) as these are well

suited for this problem. The universal approximation theorem of Hornik et al. (1989) states that

networks can approximate any continuous function on a compact support arbitrarily well if we

allow for arbitrarily many neurons q1 ∈ N in the hidden layer. From the universal approximation

theorem, we do know that the optimal g function can be approached by a neural network with

sufficient layers and neurons. The number of neurons and layers that we need is rather subjective

and subject to empirical studies. Here, we follow the work of Fécamp et al. (2019) and consider

three hidden layers of 10 neurons with Relu activation functions. For completeness, we briefly

explain the mathematical structure of a neural network in the next paragraph, see Goodfellow

et al. (2016) for more details.

The neural network takes an input of dimension m (the dimension of the risk process Z)

and outputs a vector of dimension n + 1 (the number of units invested in the (n + 1) assets).

The network is characterised by a number of layers L + 1 ∈ N\{1, 2} with m`, ` = 0, . . . , L, the

number of neurons (units or nodes) on each layer: the first layer is the input layer with m0 = m,

the last layer is the output layer with mL = n+1, and the L−1 layers between are called hidden

layers, where we choose for simplicity the same dimension m` = p, ` = 1, . . . , L− 1. The neural

network is then defined as the composition

x ∈ Rm 7→ N (x) = AL ◦ ϕ ◦AL−1 ◦ . . . ◦ ϕ ◦A1(x) ∈ Rn+1.
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Here, A`, ` = 1, . . . , L, are affine transformations represented by

A`(x) =W`x+ β`,

for a matrix of weights W` and a “bias” term β`. The non-linear function ϕ : R → R is called

the activation function and is applied component-wise on the outputs of A`, i.e., ϕ (x1, . . . , xp) =

(ϕ (x1) , . . . , ϕ (xp)). Standard examples of activation functions are the sigmoid, the ReLU, the

elu and tanh.

5 Numerical example: Portfolio of equity-linked contracts

In this section, we determine the multi-period two-step valuation for a portfolio of equity-linked

contracts, extending the one-period Example 2. We consider a portfolio of equity-linked life

insurance contracts, which guarantee a survival benefit to all policyholders who are still alive at

maturity time T . The insurance liability can be expressed by

S = N(T )×max
(
Y (1)(T ),K

)
, (18)

with N(t) a mortality process counting the number of survivors at time t among an initial

population of lx policyholders of age x, Y (1)(t) a risky asset process, and K a fixed guarantee

level. To account for the dependence between financial and actuarial risks, we assume that the

dynamics of the stock process and the population force of mortality are given by

dY (1)(t) = Y (1)(t) (µdt+ σdW1(t)) (19)

dλx(t) = cλx(t)dt+ ηdW2(t), (20)

with c, η, µ and σ positive constants, W1(t) = δW2(t) +
√

1− δ2X(t), and W2(t) and X(t) are

independent standard Brownian motions. We note that the stochastic force of mortality λx(t)

represents the systematic mortality risk, namely the risk that the whole population lives more (or

less) than expected. The Ornstein–Uhlenbeck process without mean reversion (20) was among

others considered in Luciano and Vigna (2008) and Luciano et al. (2017) and was found to

provide an appropriate fit to cohort life tables.

The survival function is then defined by

Sx(t) := P (Tx > t) = exp

(
−
∫ x+t

x

λx(s)ds

)
,

where Tx is the remaining lifetime of an individual who is aged x at time 0.

Moreover, to express the unsystematic mortality risk and pooling effects, deaths of individuals

are assumed to be independent events conditional on the population mortality. Further, if we

denote D(t + 1) the number of deaths during year t + 1, the dynamics of the number of active
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contracts can be described as a nested binomial process as follows: N(t+ 1) = N(t)−D(t+ 1)

with D(t+1)|N(t), qx+t ∼ Bin(N(t), qx+t). Here, qx+t represents the one-year death probability

qx+t := P (Tx ≤ t+ 1|Tx > t) = 1− Sx(t+ 1)

Sx(t)
, for t = 0, . . . , T − 1.

Knowing the dynamics of N(t) and Y (1)(t), we can simulate M scenarios for the mortality and

the equity risk factors for t = 1, . . . , T . It is clear that in this example, the observable processes

of interest at time t are the stock price and the number of survivals: Z(t) := (Y1(t), N(t)).

Therefore, we have two neural networks:

gt+1 : R2 → R2, (Y1(t), N(t)) 7→ gt+1(Y1(t), N(t)) = θ(t+ 1), (21)

ht+1 : R2 → R2, (Y1(t), N(t)) 7→ ht+1(Y1(t), N(t)) = ξ(t+ 1), (22)

corresponding to the quadratic and quantile hedging strategies for the portfolio of equity-linked

contracts, respectively.

Hereafter, we provide a numerical analysis for the fair dynamic valuation of the insurance

liability S introduced above. Our numerical results are obtained by generating 200000 sample

paths for N(t) and Y (1)(t), for t = 1, . . . , T. The benchmark parameters for the financial market

are r = 0.01, µ = 0.02 σ = 0.1,K = 1, δ = −0.5 and Y (1)(0) = 1. The mortality parameters

(λx(0) = 0.0087, c = 0.0750, ξ = 0.000597) follow from Luciano et al. (2017) and correspond to

UK male individuals who are aged 55 at time 0. We assume that there are lx = 1000 initial

contracts at time 0 with a maturity of T = 10 years.

Figure 4 represents prediction intervals for the evolution of the fair valuations, ρt(S), for

t = 0, . . . , T −1, obtained by the NN Algorithm 1 (left) along with the final payoff S (right). We

observe that, as the maturity of the contract increases, the confidence intervals are wider due to

the higher uncertainty. Moreover, we remark that the evolution of the fair value through time is

smooth and provides a good match to the final payoff.

So far, we did not discuss the rebalancing cost of the quantile hedging portfolio. We recall

that, by construction, the hedging portfolio is rebalanced every year in order to satisfy the yearly

solvency constraints:

VaRα,t (ρt+1(S)− ξ(t+ 1) ·Y(t+ 1)) = 0, ∀t ∈ {0, 1, . . . , T − 1}. (23)

Therefore, if e.g. α = 0.95, there is a probability of at most 0.05 that the hedging portfolio will

not be sufficient to cover the (fair value of) liability. However, there is a priori no guarantee that

the payoff of the hedging portfolio will be sufficient to cover the cost of the hedging portfolio for

the next year. The rebalancing cost at time t is given by

Rebalancing cost at time t = ξ(t+ 1) ·Y(t)− ξ(t) ·Y(t), ∀t ∈ {1, . . . , T − 1}.
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Figure 4: Left: Evolution of the fair valuation from time 0 to maturity time T = 10. Right: His-
togram of the final payoff S = N(T )×max

(
Y (1)(T ),K

)
. Shades in the fan represent prediction

intervals at the 50%, 80% and 95% level.

Based on our neural network approximation, Figure 5 depicts prediction intervals for the

rebalancing cost of the hedging portfolio for any t = 1, . . . , T −1 along with the total rebalancing

cost:

Total rebalancing cost =

T−1∑
t=1

ξ(t+ 1) ·Y(t)− ξ(t) ·Y(t).

First, we notice that intervals of the yearly costs are approximately centered around zero, meaning

that there is no yearly rebalancing cost on average. Moreover, we can observe that with high

probability, the rebalancing cost is lower than 40, which is approximately 3% of the expected

liability. On the aggregate level, Figure 5 also shows that that, on average, the rebalancing cost

is very low and with high probability (α = 0.95), the total rebalancing cost will be no more than

10% of the expected liability. Therefore, the cost of the iterated quantile hedging appears to lie

at reasonable levels. On Figure 6, we show the final loss of the dynamic hedging strategy. We

observe that, with high probability, the hedging portfolio will cover the liability S, which follows

from the property (23) of quantile hedging.

The neural network estimation allows us to study the non-linearities in the quantile hedging

strategy. By expression (22), the neural network delivers two outputs for any time t, correspond-

ing to the investment in the risk-free asset Y0(t) and Y1(t), respectively. Figure 7 represents the

number of assets held at time t = 5 as a function of the stock price at time 5. As expected, we

notice that the investment in the stock is an increasing function of the stock price to better match
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Figure 5: Left: Rebalancing cost of the hedging portfolio at any rebalancing times t = 1, . . . , T−1.
Right: total rebalancing cost. Shades in the fan represent prediction intervals at the 50%, 80%
and 95% level.

Figure 6: Histogram of the final loss S − ξ(T ) ·Y(T ).
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Figure 7: Number of asset units bought at time t = 5 in the risk-free asset and risky asset under
the quantile hedging strategy as function of the asset price Y (1)(5). This strategy corresponds
to the expression (22): h6(Y1(5), N(t)) = ξ(6), with fixed mortality N(t) = E[N(5)].

the terminal liability. On the other hand, due to a compensating effect, the risk-free investment

is a decreasing function of the stock price and reaches zero for high stock prices.

Finally, we also studied key metrics of the quantile hedging residuals in order to assess the

accuracy of the neural network algorithm. By Rockafellar et al. (2008) and Rockafellar and

Uryasev (2013), it is well-known that the quantile hedging strategy satisfies both relations:

VaRα,t (ρt+1(S)− ξ(t+ 1) ·Y(t+ 1)) = 0, ∀t ∈ {0, 1, . . . , T − 1},

E [`α(ρt+1(S)− ξ(t+ 1) ·Y(t+ 1))] = dTVaR [ρt+1(S)− ξ(t+ 1) ·Y(t+ 1)] ,

for all t in {0, 1, . . . , T − 1}. An appropriate quantile hedging algorithm should therefore have

residuals with a VaR close to zero and the average Koenker-Bassett error close to the TVaR

deviation. Table 2 reports the VaR of the residuals, the average Koenker-Bassett error and the

TVaR deviation for all t. We observe that the empirical VaR is indeed close to zero and small

compared to the expected payoff E [S] ≈ 1162. Moreover, the K-B error is close to the TVaR

deviation, hence showing the accuracy of our algorithm. The remaining difference is essentially

due to the estimation and simulation error of our approach, which can be further reduced by

increasing the simulations or the complexity of the neural network at the cost of a more expensive

computational time.
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Time Residuals

VaR K-B error dTVaR
1 0.054 5.905 4.243
2 1.108 50.284 50.245
3 -0.031 29.518 29.518
4 1.280 28.183 28.076
5 1.041 28.307 28.228
6 -2.228 29.712 29.406
7 0.966 29.840 29.763
8 0.325 30.685 30.674
9 -2.306 33.829 33.323

10 -1.462 38.812 38.629

Table 2: This table reports Value-at-Risk (VaR), Koenker-Bassett error (K-B error) and Tail
Value-at-Risk deviation (dTVaR) of quantile hedging residuals at confidence level α = 0.95.

6 Concluding remarks

We discussed the fair valuation of insurance liabilities in a multi-period discrete-time setting.

As insurance liabilities are not directly traded in the financial market, the valuation requires a

decomposition into a “hedgeable part” and a “residual part”. For the first part, it seems that the

quadratic objective has become a standard practice probably due to its analytical tractability and

the fact that the resulting hedging portfolio targets the expected liability (Pelsser and Schweizer,

2016). However, there is still an open debate on how to appropriately treat the residual part and

define an appropriate “risk margin” (see e.g. Pelkiewicz et al., 2020 for a review on the Solvency

II risk margin). In the literature, different approaches were considered to value the residual risk,

either by an Esscher valuation operator (Deelstra et al., 2020), a standard-deviation principle

(Barigou et al., 2019, Ghalehjooghi and Pelsser, 2020, Chen et al., 2020, Delong et al., 2019), or

a cost-of-capital principle (Pelsser, 2011).

Of the above valuation principles, the cost-of-capital approach takes account of the need to set

up VaR-neutral portfolio; but in this approach VaR-neutrality becomes divorced from hedging

considerations. Rather than using a cost-of-capital principle on the residual risk, we propose to

quantile-hedge it. While both approaches lead to a VaR-neutral portfolio, our proposed approach

has two noticeable advantages. First, the quantile hedging portfolio is a TVaR deviation risk

minimiser and therefore better accounts for the tail risk (see Lemma 2.7, Examples 1, 2). Second,

our quadratic-quantile approach shows that the residual risk can still be partially hedged if one

switches from a quadratic to a quantile hedging objective. This is especially relevant when there

is a non-linear relationship between the insurance liability and traded instruments.

Moreover, we proposed a simulation-based general algorithm for the practical implementation

of our approach. In this paper, we focused on a neural network implementation for quantile

hedging but the algorithm can be easily adapted for a general loss function ` and other non-

linear optimisers.

28



7 Acknowledgements

Karim Barigou acknowledges the financial support of the AXA research fund project on “Niveaux
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Föllmer, H. and Schweizer, M. (1988), ‘Hedging by sequential regression: An introduction to the

mathematics of option trading’, ASTIN Bulletin: The Journal of the IAA 18(2), 147–160.

François, P., Gauthier, G. and Godin, F. (2014), ‘Optimal hedging when the underlying as-

set follows a regime-switching markov process’, European Journal of Operational Research

237(1), 312–322.

Ghalehjooghi, A. S. and Pelsser, A. (2020), ‘Time-consistent and market-consistent actuarial

valuation of the participating pension contract’, Scandinavian Actuarial Journal 0(0), 1–29.

Gneiting, T. (2011), ‘Making and evaluating point forecasts’, Journal of the American Statistical

Association 106(494), 746–762.

30



Godin, F. (2016), ‘Minimizing CVaR in global dynamic hedging with transaction costs’, Quan-

titative Finance 16(3), 461–475.

Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep learning, MIT press.
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