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Abstract

In recent years, LIDAR technology has provided accurate fabesteground biomass (AGB) maps
in several forest ecosystems, including tropical forests. Mervés ability to accurately map forest
AGB changes in high-biomass tropical forests has seldomilveestigated. Here, we assess the
ability of repeated LIDAR acquisitions to map AGB stockd ahanges in an old-growth
Neotropical forest of French Guiana. Using two similarehemall-footprint LIDAR campaigns
over a four year interval, spanning ca. 20°kamd concomitant ground sampling, we constructed a
model relating median canopy height and AGB at a 0.25-ha andektiation. This model had an
error of 14% at a 1-ha resolution (RSE=54.7 Mg)rend of 23% at a 0.25-ha resolution
(RSE=86.5 Mg ha). This uncertainty is comparable with values previously tepdn other
tropical forests and confirms that aerial LiDAR is aficefnt technology for AGB mapping in
high-biomass tropical forests. Our map predicts a mean A@GBmMg ha" within the landscape.
We also created an AGB change map, and compared igmitind-based AGB change estimates.
The correlation was weak but significant only at the 0.25-hautsol One interpretation is that
large natural tree-fall gaps that drive AGB changesnatarally regenerating forest can be picked
up at fine spatial scale but are veiled at coarseradpasolution. Overall, both field-based and
LiDAR-based estimates did not reveal a detectable increads8B stock over the study period, a
trend observed in almost all forest types. Small footpribtAR is a powerful tool to dissect the
fine-scale variability of AGB and to detect the maawological controls underpinning forest

biomass variability both in space and time.

Keywords: LIDAR; Aboveground biomass; Forest carbon; Tropical forest; Foggsmic.
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1. Introduction
Tropical forests play an important role in the terrestigabon cycle. Tropical deforestation and
degradation are a large source of carbon (C) emissions enadrtitosphere, contributing some 7-
15% to the total anthropogenic C emissions since the early 2000st(@®ag011; Harris et al.
2012). This carbon loss from the terrestrial biosphere is thoudet approximately balanced by
forest regrowth and by an increase in terrestrial ecanyséebon storage ability through time
related to global or regional forcings, such as @ttilization, temperature increase, or rainfall
fluctuations (Lewiset al. 2009; Paret al. 2011). An effective strategy for mitigating anthropogenic
CO; emissions is to implement national and international goveenagieements that will help curb
deforestation and forest degradation (Agrawal et al. 20bIméet this challenge, it is essential to
implement robust techniques for the quantification of carbon stac#é changes in tropical forests
(Chave et al. 2005; Saatchi et al. 2011; Le Toan et al. 2044 & Kellner 2012).

Light detection and ranging sensors (LIDAR), a technology datog to the early 1980s (Arp
& Tranarg 1982; Aldred & Bonner 1985), has now made impressive gogral is being routinely
used to determine forest structural characteristics (Ledfisidy 2002). The high spatial resolution of
current airborne LIDAR systems and their ability to covegdaemote areas make it an attractive
option for conservation and/or management programs and for the ienbgtion of landscape-
scale GHG emission mitigation strategies (Agrawal.€2@l1). In mixed-species, closed-canopy
tropical forests, studies using a LIDAR system to infeegbstructural parameters date back at least
to the early 2000s (Dralat al. 2002, 2003), and they have since been applied broadly in the
Neotropics (e.g. d'Oliveirat al. 2012; Vincentt al. 2012; Asnegt al. 2013a; b), in South-East
Asia (Englharet al. 2013; Jubanslat al. 2013) and in Africa (Asnest al. 2012a; b; Vaglio Laurin
et al. 2014). Zolkost al. (2013) have conducted a meta-analysis including over 70 sthdtassed
LIiDAR for forest aboveground biomass (AGB) retrieval. Of helD studies were conducted in
forests with a mean AGB > 300 Mg haand only one of these studies was in the tropics (Hawaii;

Asneret al. 2009). In light of the fast pace of publications on this resetileme, two challenges
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appear to be outstanding.

First, it is important to document the errors associaifudMDAR-AGB models in the high-
biomass forested areas of the tropics, notably because thetalesobrs associated with LIDAR-
AGB models are expected to be significantly higher in $ugh-biomass areas (Zolkesal.

2013). Second, the direct monitoring of changes in AGB in tropacasfs is a crucial challenge in
carbon accounting programs, and it appears to be now possiblestrootely sensed instruments at
least in areas undergoing deforestation and degradation (&se2005). However, the ability of
this technique to describe the natural dynamics of old-growtktfore still outstanding.
Encouraging results have been obtained in temperate anceil banests (Hudaét al. 2012;
Bollandsast al. 2013; Neessett al. 2013; Skowronskét al. 2014). However, tests in tropical
forests have thus far been less conclusive. To our knowledgetwempublished studies have
sought to compare the performance of LIDAR and ground-basetodatasure the AGB
dynamics of tropical forests. The first study was conductéd &elva, Costa Rica, and used large-
footprint airborne LIDAR data (Dubayaal. 2010). The second study was conducted at Barro
Colorado Island, Panama, and used a combination of smallargedfootprint LIDAR (Meyelet

al. 2013). Both studies found a weak relationship between changd»AR metrics and field-
measured AGB changes. One possible interpretation is thagtiadgie of natural forest dynamics
is too subtle to be detectable by change in LIDAR metricdb@yahet al. 2010). However, the use
of large footprint sensors or systematic differences in acguacross LIDAR sensors may also
explain these results (Zolkesal. 2013).

Forests of the Guiana Shield hold the highest AGB valueshenidllest forests of the
Neotropics (Feldpausad al. 2011, 2012; Saatckt al. 2011). Their AGB stock is comparable to
that reported in central Africa and in some forests of Soush/&sia (Sliket al. 2013). Using two
LIDAR campaigns conducted at four-year intervals combinid wtensive and concomitant
ground sampling (15,438 trees monitored over almost 30 ha), wehefepatial and temporal

variation of AGB in an old growth tropical forest landscap€mnch Guiana (Fig. 1). We

4



96 specifically ask the two following questions: i) Can the gpatriation in AGB be detected

97 accurately using LIiDAR in tall, high-biomass, tropical forést§ How do LIiDAR-derived

98 temporal changes in AGB compare with field-derived estig?ate

99
100 2. Materialsand methods
101 2.1 Sudy area
102 Our study was carried out in the lowland rain forest of Frgbigiana at the Nouragues Ecological
103 Research Station (Fig. 1 and 2). The landscape corresmppadsitcession of hills, ranging
104 between 26-280 m asl, with a granitic outcrop (inselberg) read@idign asl. Rainfall is 2861 mm
105 y* (average 1992-2012), with a 2-mo dry season (< 100 mm fHoditiing September and
106 October, and a shorter dry season in March. Human actiwtylileely to have induced major
107 disturbances in recent history: now extinct Nouragues Amerindiangported to have inhabited
108 this area during the eighteenth century, but departed fudbér some 200 years ago. The forest
109 around the station harbours a diverse flora (Sabatier & Pr&966t van der Meer & Bongers
110 1996), with over 1700 angiosperm species recorded in the Natweivee
111
112 2.2 . LiDAR data acquisition
113 Two acquisitions of small footprint discrete return LIDAR weomducted in the Nouragues
114 research area. The first coverage was conducted in éps, sh November 2007 and November
115 2008 for a total area of 1,900 ha (Fig. S1a). This first acoguisitas based on a portable Riegl
116 laser rangefinder (LMS6Q140i-60) positioned on a helicopter figtrapout 30 mSca 150 m
117 above the ground. This rangefinder system is a time-of-fliglaisomement of 30 kHz laser pulse in
118 the infrared wavelength region (Quén) with a footprint of 0.45 m and a scan angle of 60°. The
119 average laser point density was ca. 4 infrend acquisitions were all conducted in last return mode
120 to maximise penetration (the system used did not havepheul&turn registering capacity). The

121 second acquisition occurred in March 2012 and covered awfa2e¢00 ha (Fig. S1b). Acquisition

5
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was based on a portable Riegl laser rangefinder (LMS-Q%60Baed on a Falcon aircraft at a
speed ca 45 mi*sabout 400 m above the ground. It used a 200 kHz laser pulse firtred
wavelength region (1.pm) with a footprint of 0.25 m and a scan angle of 45°. Meeage laser
point density was ca. 20 impfrtthe system had multiple returns registering capadityis pulse
density is much higher than most previous studies, ensuring a gomolygaenetration rate and thus
an accurate digital elevation model. In both acquisitionssyheems included two dual-frequency
GPS receivers coupled to an inertial navigation system,iagghiat a sub-decimeter differential
position can be calculated at the post-processing stage. Ehefareerlap of the two acquisitions
was ca. 1,400 ha. The two LIiDAR campaigns were contrdmstedprivate company

(http://www.altoa.fr/).

2.3. LiDAR data processing

A major challenge, especially in dense tropical forests, identify the LIDAR echoes that lie on
the probable ground surface (i.e. bare-earth points). The nahbare-earth points directly affects
the accuracy of the digital elevation model (DEM), whisklitdetermines the precision of the
canopy model (Dubayadt al. 2010). To maximize the accuracy of the DEM, we combined the
cloud data of the two acquisitions. Bare-earth points wiemtified in the global cloud data using
the TerraScan (TerraSolid, Helsinki) ‘ground’ routine, whichgifaess ground points by iteratively
building a triangulated surface model. We manually checkeddlie of points to assess possible
issues with this automatic procedure. This led to about @R&5darth points/m2 over the entire area
(out of c.a. 24 imp/m2 combining the two acquisitions). A DEMI gras subsequently generated at
1-m resolution using the “GridSurfaceCreate” procedure implemémfedSION v.3.2
(McGaughey 2012). This procedure computes the elevation of adatetirusing the average
elevation of all points within the cell (cells containing noebaarth points are filled by the
weighted average of the closest grid points).

Two canopy elevation models were produced with the 2007/8 datebefith the 2012
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dataset. Canopy point outliers were removed automatically ByilberData” procedure
implemented in FUSION (McGaughey 2012). The canopy model wastimstructed at 1-m
resolution using the 1-m resolution DEM and the “CanopyModel” procedyriemented in
FUSION. This procedure subtracts the elevation model from therelevation and then uses the
highest return value to compute the canopy surface modela$hstép consisted in applying a 3x3
neighbour window median filter to smooth the surface and thus ax@atunrealistic maxima or
minima. To construct the most recent canopy model, we only coeditie last return points (12.5
points/m2), so as to avoid systematic biases when comphartg/o LIDAR datasets. Median
canopy heightHlsg) constructed with LIDAR first returns correlated strongith that constructed
with the last returns (Pearsomn:s0.99), and the mean difference was 0.89 m (median of 0.83).
The 2007/8 LIDAR dataset had a sparser and more heterogeneouge@reaia more
heterogeneous point density in space than the 2012 datasetl{Figo &nalyse changes in forest
structure and carbon stocks, we thus discarded all grid aniteich more than 15% of the 12m
pixels contained less than 2 points/m2 in the 2007/8 datasethi@et half of the mean point
density). Exploratory analyses showed that this procedure remibwvedealistic grid values of

AGB change while preserving most of the grid units (90.3%h@bixels were kept in the analysis).

2.4. Field data

Seven permanent sampling plots covering a total area of B8.%&re established at the Nouragues
Ecological Research Station (Fig. 2). In these plotdivaih trees> 10 cm of diameter at breast
height (DBH) were mapped, censused, and botanically idehtifieexperts during the last decade
(67.3% of the 15,438 individuals were identified to at leastigdevel). DBH was measured at 1.3
m above the ground and to the nearest 0.1 cm. For trees \ithsbas, stilt roots or irregularities,
trunks were measured 30 cm above the highest irregularity, apdititeof measurement was
marked with permanent paint. The procedure implemented in skeof@ change in the DBH point

of measurement between two campaigns is fully descnibdek supplementary information. One
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10-ha plot (called “grand plateau”) and one 12-ha plot (“petiepld) were remeasured at the end
of 2008, and then again at the end of 2012 (data availabledrestplots.net; Lopez-Gonzaletz
al. 2009, 2011). These two plots are dominated by terra-firmetfovits small flooded forest
patches and a ca. 1-ha patch of liana-infested fore3ly(Benet al., in revision). In 2007, one 6-ha
terra-firme forest plot was inventoried ca. 7 km South @R&r Fig. 2). In 2012, smaller plots were
established to encompass the range of forest type vasabitie 1-ha plot in an occasionally
flooded forest (“Ringler”), two 0.25-ha plots in swamp ford@minated by the palfButerpe
oleracea, and one 0.25-ha plot in a low forest on shallow granitic bedrock

In addition to DBH measurements, we measured the total hadighittrees located in plots
<1 ha and in at least one 1-ha subplot in the three |plgest For a few trees for which accurate
measurements were impossible, total height was estimattatal 2,212 trees had total tree height
measured directly. Total tree height was measured byagiatithe tallest branches with a high-
resolution laser rangefinder (LaserAce 1000 rangefinderbleinsunnyvale CA). The built-in
inclinometer of this rangefinder has an accuracy of 0.2°, ardistance-measuring device an
accuracy of 10 cm at 75 m with a passive target, ansicduteon of 1 cm. We targeted the top
leaves or branches, moving 180 degrees around the tree inmloeate the highest point, and we
also relied on the opinion of at least two trained opesafiotal tree height was taken to be the
maximum value of several distance measurements. Cros®lsdmtrdifferent operators were
regularly conducted to assess the accuracy of our measuseamghthese validation checks
indicate that our tree height data were on average actorde nearest 0.5 m. To infer total tree
height for the trees that were not directly measured, weetkplot-specific tree height-diameter
allometries of the form:

1) In(H) =a+b xIn(D) +c x1In(D)? + ¢
whereH andD are total tree height and dbh, respectively, aisdhe error term, assumed to be
normally distributed with zero mean and residual standa@od @bg.-10g modet MOdel (1) was trained

using the tree height ground measurements. The height of allWesesubsequently estimated
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using Eq (1) and accounting for a known bias by applying the Baskerwiirection (see
supplementary information; Baskerville 1972):
2 H= 4y (O_log—logmodel2/2 +a+bIn(D) +c ln(D)z)

Model parameters are provided in the supplementary informatign2 and Table S1).

Ground plots were carefully geo-located by averaging sevé&al @dints at the corners of
the plots. We selected one corner and calculated the locdtiba three other corners using the size
and orientation of the plot on the field. A deviation of 18hirthe magnetic North Pole to the
geographic North Pole was assumed to account for the magimgfidarity over the Guiana Shield.
We cross-validated the geolocation using the location gt laee crowns clearly visible in the

LIiDAR canopy model (Fig. S3).

2.5. Ground AGB estimation
In the recent literature, stand-scale AGB was often reghamtearbon units and referred to as
aboveground carbon density (or ACD). Here we prefer to repbres in oven dry biomass units,
but it should be borne in mind that 1 kg of dry biomass holds onges€td8 kg of carbon (Thomas
& Martin 2012).Tree aboveground biomad& B;) was estimated using the equation of Chave et al.
(2014):

(3) AGB, = 0.0673 X (p X D% x H)%976
wherep is the wood density in g.cthand where total heiglif was either measured directly or
inferred from equation (2). Wood densityvas inferred from the taxonomy using a global database
(Chave et al. 2009). We assignedaalue to each individual tree that corresponded to the mean
for species found in the database. We considered only me#satr@gere made in tropical region of
South America (n=4,182) in order to limit the bias due to regjiaréation of wood density
(Muller-Landau 2004; Chave et al. 2006). When no reliable spiglgasfication or no wood
density information at the species level was availablemien wood density at higher taxonomic
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level (i.e. genus, family) or at the plot level was @issd to the tree.

The palmEuterpe oleracea was dominant in flooded areas. We thus constructed dispeci
biomass allometry from the destructive harvest data of Mirahdh (2012) (See supplementary
information and Fig. S4 for details and for other error metrics)

(4) AGB; = exp (—3.863 + 2.987 x In(D)) (N=13P10g-log moder0.292)

or

(5) AGB; =exp (—3.290 + 0.879 x In(D? x H))  (n=13;00g-log modeF0.205)

AGB was then summed across trees, and normalized by pldbasbtin AGB in Mg ha. To
estimate AGB in patches of bamboo forest, we conducted aickastrsampling in one 0.125-ha
plot of Guadua sp. bamboos. In one 10 m x 1 m subplot, we sampled all bamb@@cm
diameter (36 individuals). The above ground part (stem and leafv&3)individuals was oven-
dried and weighted, the total dry mass being 4.27 kg. Thimastwas then extrapolated to the
0.125-ha plot and the AGB of an isolated tre€edropia obtusa was added to the estimate using

Equation (3).

2.6. Relating LIDAR metrics and stand-scale AGB estimates

We carefully coregistered the LIiDAR cloud of points andghaind plots by using several GPS
datapoints per plot, and also by matching the ground position of emtérges with the LIDAR
canopy model (Fig. S2). LIDAR metrics were calculatedhiithe limits of the calibration plots,
ensuring the best spatial match between LIDAR and ground neeasuoits. Stand-scale AGB
estimate was fitted against several LIDAR metriceva different spatial resolutions: 1 ha (100 m x
100 m) and 0.25 ha (50 m x 50 m). To this end, we partitioneldumér plots into subplots. We
found that median height of the LIDAR canopy modgl,{ provided the best fit to ground-based
AGB (Table S2). A model selection usiAg, and any other of these additional LIDAR-based
metrics did not provide significantly better model fits thta& model includingdso alone (Table
S3). At both spatial resolutions, we thus fitted independentig-#oly linear ordinary least square
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model of the form:

(6) In(AGB) = a + b X In (Hg) +¢
wheree is an error term assumed to be normally distributed zéth mean. After the back-
transformation, accounting for the Baskerville correctiomdstscale AGB can thus be inferred

from Hsg using the following model:
) AGE = exp (a+ "2+ b x In (Hs,))
To facilitate the comparison with previous studies (e.g. &iasat al. 2011a; Asneet al. 2012b;

Asner & Mascaro 2014), we also provide equation (7) in the elgniviorm:

(8) AGB = A x Hg,?
2
whereA = exp (a + %) Such a power-law model has been shown to predict well AGB fr

LIDAR metrics (Mascaro et al. 2011a). To fit this stitial model, stand-scale AGB was inferred
from the 2012 ground data whit, was calculated from the 2012 LiDAR canopy model, except
for the “Pararé” plot where the field data were only atddéan 2007. In that special case, the
2007/8 LIDAR canopy model was used. We also tested whether AGB| mmuktruction based on
only the 2007/2008 data or based on only the 2012 data led to diffesetis. We found that the

two statistical models relatirtgso and AGB were very close and thus interchangeable: the mean
relative difference across model predictions was within @b%e estimate, and both had the same
uncertainty (Fig. S5). We henceforth use only the model bas#te®012 data, thought to be the

more accurate.

2.7. LiDAR AGB change

To estimate AGB changes using multiple LIDAR acquisitionsc@amaputed the difference of the
two AGB stock layers as derived from the LIDAR metrics divided the difference by the time
elapsed between the two acquisitions, to obtain an annuade@AGB. This procedure was

conducted at the 0.25-ha and 1-ha scales. This approach ig sintiila “indirect approach”

11



277 described in Meyeet al. (2013) and Skowronskt al. (2014), excepted that we used the same
278 LIDAR-AGB model to infer AGB from the two LIDAR datasefsee above; Fig. S5). To validate
279 these products, we compared AGB change as inferred from Li@&#Ras measured within the

280 limits of the calibration plots at 0.25 and 1 ha scale usahg) plots that were surveyed both in

281 2008 and 2012 (22 ha). The comparison was done with a reduced rigjdMA) regression that
282 minimizes the sum of squared distances both horizontally (attegdar the error in X) and

283 vertically (accounting for the error in Y) because neitherfield-based nor the LIDAR-based AGB
284 changes can be considered as true measurements. Significenassessed with a test based on the
285 Pearson's product moment correlation coefficient (function “cti.ite the R statistical software).
286 A second approach would have been to model AGB change difr@stlychange in LIDAR metrics
287 (Skowronskiet al. 2014). However, because we used the same inversion mode tord datasets,
288 our approach has exactly the same associated erroh@asaine residual standard error, RSE).
289

290 3. Results

291 3.1 Landscape variation in canopy height

292 Canopy height, as inferred by LIiDAR, revealed a strong sstiadture at the landscape scale (Fig.
293 2b, Table S4). The maximum registered canopy height was rof &7d 1% of the 1x1 m pixels had
294  a height > 50 m. A mosaic of low vegetation (<10 m), lowdts€10-25 m) and tall forests (>25 m)
295 occurred within the landscape (Fig. 2b and 2c; mean canopy peigikgetation type is given in
296 Table S4). The large patches of low vegetation (2% of thegedvscene) corresponded

297 predominantly to bamboo thickets or occasionally to Marantameldeliconiaceae patches; low
298 forests correspond to liana forests (1%), flooded forests (13%)-twp forests (9%). Tall forests
299 are typicatterra firme forests (72%).

300

301 3.2. Relation between LiDAR metrics and field AGB

302 Ground-based AGB was significantly predictedHyy both at the 0.25-ha (ratio of the RSE to the
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prediction mean, RSErel, of 22.3%; P<0.001; Fig. 3) and the tata @RSErel = 13.8%; P<0.001).
Alternative models or alternative LIiDAR-derived metrics dat display a better statistical
performance (table S2). The residuals of this model werexptaired by forest type at the 0.25-ha
scale (Kruskall-Wallis tesx?=2.07, P=0.72), or by variation in wood density across plots
(Pearson's=0.11, P=0.22) but were spatially autocorrelated (Morar@s3lt, P<0.001). The
exponenb relatingHsp to the AGB was close to 1 at the 1-ha scale, thusstaganship was found
to be nearly linear. At the 0.25-ha resolution, a few plots wetleers, displaying a much higher
ground-based AGB value than inferred using the LIDAR dat @i These outlying plots were
characterized by a disproportionate number of large-diamets:. tre

The AGB map revealed an important spatial structure @aj.related to topographical
variation (Supplementary information ; Fig. S6). Over the sardg, AGB showed a bimodal
distribution (Fig. 4b). The first mode corresponded to about 7 #tedbtal area, and was
characteristic of low-vegetation patches, bamboo thicket®fim# bare ground of the Inselberg
top. The second represented a continuum of closed-canopy foresilylsesiscape-scale, mean
AGB was estimated to be 344 Mg hg@xcluding the granitic outcrop). In comparison, mean AGB
across plots was 388 Mg hehence permanent plots tend to be biased towards high-A@8tgor
(tall forests have a mean landscape AGB of 382 My hable S4). Mean AGB per forest type

within the scene is provided in Table S4.

3.3. Relation between LiDAR metrics and field AGB change

We first compared ground-based AGB change measures and LilBA¥ed ones in the survey
plots. We found a significant correlation at 0.25-ha scalendiuat 1-ha scale (Fig. 5). In both
cases, the relationship was poor. Across the study ardaDXA&-derived AGB change map
showed that the median change was slightly positive during the péuidygl (median of +0.13 Mg
ha' yr'), indicating that most patches were accumulating carbongJigiowever mean AGB

change was slightly negative (mean of -0.79 MJ yxd). Together, these results suggest that the
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forest landscape has not increased in AGB during the study glerot some localized large
losses of carbon (defined as losses of > 25 Mgyiiain localized pixels). The slight negative
trend was observed in all forest types with the exceptioneofjtanitic outcrop (Table S4). To
verify that our results were not influenced by the differencensor type from one survey to the
next, we constructed independent LIDAR-AGB models using the tl@AR datasets and showed
that they provided undistinguishable predictions (mean relativeatiife to within 0.5%) with the

same associated error (Fig. S5).

4. Discussion

We used two small-footprint LIDAR campaigns to constructtaie map of canopy structure in
an old-growth, high-carbon stock, tropical forest of the Guiimald. The landscape was
surprisingly heterogeneous, with frequent occurrences of Igetagon patches (liana-infested
forests, palm-dominated swamps, bamboo-dominated patchesperssd within the high-canopy
forest matrix. We constructed and validated a statlsticalel to infer aboveground biomass (AGB)
stocks from LIiDAR data and we compared the field and LiDARr&ates of AGB changes over a

four-year period.

4.1. Inferring AGB from LiDAR

Small footprint LIDAR technology was able to detect the fingirged spatial variation in AGB
across a 2,400-ha landscape characterized by both high AGB (24delslg hd on average in our
study area, excluding the granitic outcrop) and a range of trdprest types. Recently, Taylor et
al. (2015) also found that LIDAR was appropriate to map AGBadsed-canopy forests on the Osa
Peninsula, Costa Rica, but their mean AGB was much lowerttie value reported here (mean of
150-200 Mg ha depending on the soil type, see their Figure 3A). In our stheyaverage AGB
stock in permanent plots was 388 Mg‘hhigher than the landscape-scale average inferred from

LiDAR, suggesting that our permanent plots are predominantpleshed in the dominant high-
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canopy vegetation type, which has a mean landscape AGB of 382 Mghe presence of a
mosaic of forest types has a direct bearing on carbon accountirgrpsd\n accurate estimate of
carbon storage at the landscape scale critically depentie oepresentativeness of carbon
sampling units. In our study area, topographical elevation wasdiredriver of forest carbon
stocks variation (see also Réjou-Méchetial. (2014) for a global cross-site analysis). Caution
should be thus exercised when regional-scale carbon stocksaredrffom permanent sampling
plots without assimilating any remote sensing observations boutiexplicitly taking into account
topographical variations (e.g. Maktial. 2006).

The potential of LIDAR for tropical forest AGB mapping is not ridwet most published
studies to date have been carried out in tropical fonadtsAGB typically < 300 Mg/ha (Zolkost
al. 2013). The relative error of our LIDAR-AGB model was 13.8%hatl-ha scale, only slightly
higher than previous studies (10-12%; Mascaro et al. 2011a; Megker2013), and 22.3% at the
0.25-ha scale. This confirms that small-footprint LIDAR camused to infer AGB even in high-
biomass tropical forests. A common interpretation of the IR@@suring reporting and verification
(MRV) guidelines is that AGB uncertainty should be no more g@# of the mean (Zolkaet al.
2013). Even in our high-biomass forest landscape, the error atchleanseets these requirements
with small footprint LIDAR.

We also attempted to improve the predictive power of this friydexploring its
dependence to plot-average wood density or to forest typeeSirials of our models were not
explained by either of these factors. However, we found hieaetresiduals were spatially
autocorrelated, probably because trees strongly vary inhtbigint-diameter allometric
relationships from one area to another one at the landscapdRcalS2). Such spatial
autocorrelation in the residuals suggests that the subplatetireependent. Thus the error
associated with our LIDAR-AGB model may have been underastioirand using several subplots
from a larger field plots is not an optimal strategy fréwns standpoint.

The performance of our power-law models were similar todhttined by Mascaret al.
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(2011a; b) and Asnet al. (2012b, 2013b), lending some credence to the view that universal
features in the LIDAR-AGB allometry may exist, in spifethe substantial variation in the power
law exponent across forest types (Aseteal. 2012). To account for this cross-site variation of
model exponents, Asneral. (2012b) and Asner & Mascaro (2014) developed generic models
where field data are used to account for cross-site vari@mood density and height-diameter
relationships. Asner & Mascaro (2014) found that their model acabémté¢he variation in the
LiDAR-AGB relationship across five contrasted tropical foréskawaii, Panama, Madagascatr,
Colombia and Peru). To further test their generic model, stedevhether it yielded correct results
in our study site, and found that it underestimated the stanelAG& by 16% (Fig. S7). Because
the generic model was originally calibrated with the AGBreés> 5 cm DBH, and validated in
our study with the AGB of trees 10 cm DBH, the underestimation is probably closer to
20%.Tayloret al. (2015) used the approach developed by Asner & Mascaro (2014) puetited
the parameters of the generic model with their loctd filata, showing that this model could be
applied in other forests but shedding no light on the issuerafrgder universality in Asner &
Mascaro (2014)'s model. For the sake of completeness, weasldacted the same approach as
Taylor et al. (2015) at our study site. We found that Asner & Mascaro (20ep&rameterized
model gave a RMSE of 53.5 Mg:hat the 1-ha scale, higher than with our model reported in
Equation 8 (RMSE=52.8 Mg.Hy The strategy of seeking a universal predictive equatiatimg
LiDAR metrics and AGB is an important step forward, st thsner and Mascaro (2014)'s model
would benefit from including more sites, such as our high-cartowhk $orest site. The present

study contributes one more study site to this endeavor (ravadatvailable in Table S5-6).

4.2. Inferring AGB change from repeated LiDAR acquisitions
We also compared the ability of repeated LIiDAR covesdgealetect AGB change due to natural
vegetation turnover with ground-based estimate. In our old-graopical forest, characterized by

a relatively slow dynamics, we showed that LIDAR was &bl®model, but with very large
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uncertainties, the fine-scale patterns of variation in ABBnge as measured from the ground.
Indeed, ground-based AGB change was significantly correlate®fR AGB change at the 0.25-
ha scale, but not at the 1-ha scale.

Our study was conducted in a remote forest landscape thaikislyitd have been exposed
to significant localized anthropogenic forest disturbanceseip#st two centuries. Thus, most of
the detected changes are likely related to the naturairdgaaf the ecosystem. Scaling the
estimated LIDAR-AGB change to the study area did not revel@tectable increase in AGB stock
over the study period. Most pixels increased in canopy heigidiém was positive) but the pixels
that lost height had larger losses than the gains. Thus fonest types were predicted to be a slight
source of atmospheric G@uring the study period. We emphasize that our LIDAR-AGB change
map is highly uncertain, and that given this uncertainty thehgplbthesis of no net change cannot
be rejected. That said, our result may still be comdasith a previous study conducted in the same
forest but based on tree plots only. Cheiva. (2008) found a modest forest carbon sink in the Petit
Plateau plot for the period 1992-2000 (+ 0.40 Mg &), and a larger sink in the Grand Plateau
plot (+2.29 Mg h# yr?), and this supported the hypothesis of an increase in AGBgiital rain
forests (Lewiset al. 2009). A reanalysis of the same field dataset for thieg@008-2012 gave a
very modest sink of + 0.47 Mg har? (Fig. 6), confirming that the area has not significantly
increased its AGB stock, as found with the LiDAR-based agproasimilar LIDAR-based
approach has been done recently in the Barro Colorado Isl@&idfBnama) where the old growth
part of the forest was found to have lost a significant amduhG8 between 1998 and 2009
(Meyeret al. 2013). A recent field-based approach confirmed that the old gfovests from BCI
have not significantly increased in AGB during the same péGodhmaret al. 2014). Together,
these observations are in line with the recent findings ohBniet al. (2015), who found a long-
term decreasing trend of carbon accumulation in 321 Amazonidmfis.

The AGB changes estimated with repeated LIiDAR acquisitiasspoorly related to the

changes estimated from the field. It suggests that grourettizal LiDAR-based measurements
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measure different components of forest dynamics and this mdyeb® several reasons. One
interpretation is that natural canopy dynamics is typically datathby many small-scale events at
the top of the canopy, which are associated with branchfatlger than treefalls (Kellner & Asner
2009). In our study area, van der Meer and Bongers (1996) previously temhduzareful survey of
canopy openings and they found that only a third of natural canopy gapsanger than 4 mz,
many such events being caused by branch-falls. A LIDAR seribg@rabably pick up these
changes in canopy structure but they cannot be detected in grouddsbaseys, which generally
focus on tree diameter. Such canopy dynamics thus probably cagdgrtbuncreasing the
uncertainty in the comparison between field-based AGB chatigeaéss and LiDAR-based AGB
changes (Fig. 5). However, it is unlikely that this eff@aes the main driver of uncertainties
because, contrary to our results, a larger mismatch befvedetnand LIDAR- AGB change
estimates would have been expected at smaller scdiesg Wranch-damage constitute a large
fraction of AGB change, than at larger scales. Another safrpossible mismatch between the
field and LIDAR's field of view is that canopy dynamics, senlgd.iDAR, does not correlate
simply with AGB change because woody biomass regenerates rmwig tlan leaf biomass after a
disturbance (Asneat al. 2006). Canopy closure following disturbance may also be fasteoie
disturbed areas (Asner, Keller & Silva 2004), blurring theatfof disturbance on AGB stocks from
a canopy field of view. Further, those trees which fall betadive have lost their canopy position
but not their woody biomass, while stand-level wood density can cliareg® stochastic and
deterministic shifts in species composition. Such changegeaerally accounted for by ground-
based tree-by-tree surveys but not by LIDAR measurements.yi-exadin small errors in co-
registration between LIDAR maps and ground data or temporalaits between the LIDAR and
the field campaigns, are likely to weaken the relatignbeiween LIDAR and natural vegetation
turnover. In our study, the temporal mismatch between thARiBnd the field campaigns was of
38% and thus probably increased the mismatch between fieldiBA&R- AGB change estimates.

In natural forests, a major natural cause of AGB chandeiktge and infrequent gaps
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formed by multiple tree falls (> 100%in area). Such rare events are accurately captured BYRLID
at the 0.25-ha resolution but are likely to be averaged ol dt-ha resolution. In theory, any
random change at the pixel scale that is lower than BARIAGB model RSErel (in our case
13.8% at the 1-ha scale) cannot be detected. Howevernifiebare concerted across large spatial
scales, as is often the case in anthropogenic forestdaeigna or regrowth, effects of smaller
amplitude may be detected (Asmeal. 2005). Note also that the eastern and central Amazonia is
characterized by a tree turnover that is about half agrtbasured in southern and western
Amazonia (Phillipset al. 2004). In western Amazonia, large changes in AGB are thusfregreent
than in our study area and we therefore speculate that AGB chmayginus be easier to detect by
LIDAR in these areas. Finally, in forests exposed to laggictivities and/or forest conversion,
LIDAR technology is certainly able to map disturbancesh@h accuracy (Englhae al. 2013;

Anderseret al. 2014).

5. Conclusion

Building on the outstanding advances of LIDAR-based technology,aese able to map forest
types and estimate AGB stocks of an old-growth tropical fafestench Guiana. Our results show
that AGB can be mapped even in a high biomass tropical f@a&n the continuous improvement
in LIDAR technology, as well as the decay in the associapedational costs, LIDAR technology
will soon provide highly accurate carbon maps over large arehs tnopics (Mascaret al. 2014).
This will considerably improve our ability to quantify the carlstored in the biosphere and thus
reduce the uncertainties in the global carbon budget. Fromotogeal point of view, these fine-
scale AGB maps may be used to detect the main ecolagioabls underpinning forest biomass
variability both in space and time. We also showed thadlyhamics of old-growth forests is seen
differently from a ground or a LIiDAR perspective but thatl#melscape estimate of those two
approaches gave consistent conclusions about the overall forest lsadyat. Hence, forest

dynamics monitoring would clearly benefit from combining the compi¢ang strengths and
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485 insights gained from a top-down and bottom-up views.
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List of Figure Captions

Figure 1. Geographic location of the study area in South America (top) @glot in French Guiana

(left). The study area of 2,400 ha (bottom right) is illusttdte a hillshade model.

Figure 2: Study area. (a) LIDAR elevation model constructed from combining bare-earth pwoints
the 2007/8 and 2012 LIiDAR datasets. A scale bar is givennwitte panel(b) LiDAR canopy
height model (top of canopy height) constructed at a 5-m resolutonthe 2012 LIiDAR dataset.
The dotted lines delineate the 2007/8 LIDAR campaign. (c) teéiga map obtained by height
segmentation of the 2012 canopy model and validated using géoébgraphy and ground
truthing. All areas smaller than 1000 m? were eliminated imouing the longest boundary with an
adjacent area (rmarea tool in the v.clean procedureRASS). Flooded areas were arbitrarily
delimited by a wetness index > 14 and they include both tenmyp(@eaen rarely) and permanently

flooded areas (see Supplementary information).Permanentisgrirpke plots are illustrated in red.

Figure 3: Relationship between the aboveground biomass density (AGB) and LiDAR Hsg for
() 119 plots of 0.25-ha and 1 plot of 0.125 ha (bamboo forest), a2@® (ipts of 1 ha. The
residual standard error (RSE) and the coefficients gbomeer-law model of equation (8) (see

methods) are provided in the bottom-right insets.

Figure 4. Biomass stocksin the Nouragues forests. (a) Map and (b) histogram of the AGB

inferred from the 2012 LIDAR-based model at 50-m resolutioe.mbdel used to convert LIDAR
metrics is displayed in equation (8); for parametersfigaee 4. The landscape mean and standard
deviation of AGB were of 339.7 + 122.2 Mg. h&imilar results were obtained at 100 m resolution

(not shown).
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Figure 5: Relationship between AGB change estimated from the field and from the LiDAR
Hso including (a) 88 plots of 0.25-ha plots, and (b) 22 plots of 1 havaladations were based on
72 0.25-ha plots and 19 1-ha plots, respectively (filledesjc Open circles represent the pixels
with less than 2 points/m? in the 2007/8 dataset and discaatadhe validations (see Methods for
the details on data filtering). The slope of a reduced majsr(BWMA) regression (solid black line),
the residual standard error (RSE), the Pearson’s correlatidnits corresponding value are

provided in insets. The 1:1 line is illustrated by grey dasineg.!

Figure 6: AGB change inferred from the LIDAR model at 50-m resolution. (a) Map over the
study area, and (b) histogram of the AGB changes witimten field based estimates (+ 0.47 Mg
ha-1 yr-1; red slashed line). LIDAR AGB change was caledlass the difference between the AGB
estimated from the two LIDAR datasets (2012 minus 2007 or 2008).u@Biisl containing more
than 15% of 1-m2 pixels with less than 2 LIDAR points/mtha 2007/8 dataset were discarded.

Similar results were obtained at 100 m resolution (not shown).
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Figure 2: Study area. (a) LIDAR elevation model constructed from combining bare-earth points
the 2007/8 and 2012 LIiDAR datasets. A scale bar is givennwitte panel(b) LIDAR canopy
height model (top of canopy height) constructed at a 5-m resofutionthe 2012 LiDAR dataset.
The dotted lines delineate the 2007/8 LIDAR campaign. (c) Wé&gat map obtained by height
segmentation of the 2012 canopy model and validated using adoébgraphy and ground
truthing. All areas smaller than 1000 m2 were eliminated mowng the longest boundary with an
adjacent area (rmarea tool in the v.clean procedureRASS). Flooded areas were arbitrarily
delimited by a wetness index > 14 and they include both tenmyp(@aen rarely) and permanently

flooded areas (see Supplementary information).Permanentisgrirpke plots are illustrated in red.
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Figure 3: Relationship between the aboveground biomass density (AGB) and LiDAR Hsgg for
(a) 119 plots of 0.25-ha and 1 plot of 0.125 ha (bamboo forest), a@d (ipts of 1 ha. The
residual standard error (RSE) and the coefficients gbomeer-law model of equation (8) (see

methods) are provided in the bottom-right insets.
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Figure 4: Biomass stocksin the Nouragues forests. (a) Map and (b) histogram of the AGB

inferred from the 2012 LIiDAR-based model at 50-m resolutior.mbdel used to convert LIDAR
metrics is displayed in equation (8); for parametersfigaee 4. The landscape mean and standard
deviation of AGB were of 339.7 + 122.2 Mg. h&imilar results were obtained at 100 m resolution

(not shown).
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Figure 5: Relationship between AGB change estimated from the field and from the LiDAR
Hso including (a) 88 plots of 0.25-ha plots, and (b) 22 plots of 1 havahdations were based on
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provided in insets. The 1:1 line is illustrated by grey dasineg.!
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Figure 6: AGB change inferred from the LIDAR model at 50-m resolution. (a) Map over the
study area, and (b) histogram of the AGB changes with the fredd based estimates (+ 0.47 Mg
ha' yr’: red slashed line). LIDAR AGB change was calculatethaglifference between the AGB
estimated from the two LIDAR datasets (2012 minus 2007 or 2@0R).units containing more
than 15% of 1-rhpixels with less than 2 LiDAR points/m? in the 2007/8 datasge discarded.

Similar results were obtained at 100 m resolution (not shown).
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