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Comparison of Correlation-Based OFDM Radar
Receivers

Steven Mercier, Student Member, IEEE, Stéphanie Bidon, Senior Member, IEEE,
Damien Roque, Senior Member, IEEE, and Cyrille Enderli

Abstract—Various correlation-based receivers have been pro-
posed in passive bistatic and active monostatic radar exploiting
orthogonal frequency-division multiplexing (OFDM) communica-
tions signals, but too little has been dedicated to establishing their
relations and advantages over each other. Accordingly, this paper
provides an analytical comparison of the common filters in such
waveform sharing scenarios, along with a performance analysis
regarding three criteria: computational complexity, signal-to-
interference-plus-noise-ratio and resilience to ground clutter. The
last two especially assess the possible detrimental effects of the
random sidelobes (or pedestal) induced by the data symbols in
the range-Doppler map. Although simulations show that none
of the filters performs unanimously better, the ones employing
circular correlations globally evidence attractive results.

Index Terms—Active monostatic radar-communications (Rad-
Com), orthogonal frequency-division multiplexing (OFDM), pas-
sive bistatic radar (PBR), random sidelobes, waveform sharing

I. INTRODUCTION

AS the electromagnetic spectrum congestion gets increas-
ingly tangible, investigations for making a more efficient

use of the radio frequencies are flourishing [1]–[4]. Especially,
since communications and radar systems hold a significant part
of this resource, they are naturally in the spotlight of this on-
going research. Among the variety of proposed solutions has
emerged the idea of exploiting a single waveform to fulfill
both functions simultaneously.

Passive bistatic radar (PBR) has for instance gained a
lot of interest over the last decades with the proliferation
of broadcast transmitters [5]–[7] and cellular networks [8],
[9]. These readily available communications transmitters can
indeed be exploited as illuminators of opportunity for low-cost
and covert radar sensing. The joint waveform solution has
also been suggested for RadCom, namely monostatic active
radar and communications [10]–[12]. In this case, whether
the waveform is specifically co-designed to this dual usage or
simply exploited to transcend its initial purpose (either sensing
or communicating), it would additionally benefit hardware
integration and thereby save other valuable resources such as
weight, volume and energy.

In both PBR and RadCom, a candidate that keeps drawing
attention is the orthogonal frequency-division multiplexing
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(OFDM) waveform. OFDM indeed relies on low-complexity
transmitters and receivers based on fast Fourier transforms
(FFT) while being robust against channel’s frequency se-
lectivity [13]. Accordingly, it is now part of an increasing
number of communications systems such as digital audio
broadcasting (DAB) [14], terrestrial digital video broadcasting
(DVB-T) [15] or long term evolution (LTE) [16], and therefore
provides a substantial coverage for PBR [7], [9], [17]. OFDM
has also demonstrated its capability for RadCom systems, for
instance in radar networks [18], [19] and intelligent transporta-
tion systems such as vehicles [20], [21].

Still, in these applications, the OFDM waveform is initially
intended for communications. As such, it bears sequences of
data symbols to convey a message, as well as periodic elements
such as pilots and cyclic prefixes (CP) to ease its recovery [13].
For a radar receiver, these features are however quite uncon-
ventional and result in non classical (potentially detrimental)
effects in range-Doppler maps obtained via correlation-based
algorithms.

The problem is theoretically even more exacerbated in the
case of PBR since the transmitted signal employed in the
correlation is a priori unknown. Interestingly enough, though,
when exploiting digitally modulated waveforms under mild
conditions, perfect demodulation and remodulation of the
baseband transmitted signal can be achieved, and is therefore
generally presumed in OFDM PBR [17], [22]. In this context,
correlation-based OFDM radar receivers are possibly the same
in PBR and in RadCom; hence their literature should be
pooled.

In fact, several correlation-based OFDM radar receivers
have been independently proposed by one community or the
other so far (e.g., see [7], [17], [23], [24]), but little has
been devoted to unifying the whole framework. As such,
despite some preliminary work [25], [26], receivers have never
been clearly related to one another, and their performance
have rarely been assessed on well-defined metrics, or else
in restrictive scenarios. Particularly, the disturbance induced
by the data symbols in the range-Doppler map, referred to as
random sidelobes, or pedestal, which is commonly considered
as a stochastic interference component adding up to thermal
noise, has only been quantified for two filters while assuming
delays up to the CP duration [26]. Furthermore, the behavior
of these linear receivers in presence of ground clutter have
mostly—but not exclusively (e.g., see the recent work [27])—
been observed in terrestrial PBR scenarios, in which clutter is
mainly static and quite localized in range.

In this paper we describe and compare the most commonly
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encountered correlation-based OFDM radar receivers, in both
PBR and RadCom literature. Our contribution is to moti-
vate and analytically relate the different receivers, but also
to provide a performance analysis based on three criteria:
(i) computational complexity; (ii) signal-to-interference-plus-
noise-ratio (SINR), where the interference term stands for the
aforementioned pedestal component; closed-form expressions
are especially developed for any target in the range-Doppler
map including ranges exceeding the CP; (iii) resilience to
ground clutter, exemplified in a simulated RadCom forward-
looking airborne scenario where it is highly extended. Subse-
quent clutter mitigation and target detection stages are however
not carried out in this work.

The remainder of this paper is organized as follows. In Sec-
tion II, the joint radar-communications OFDM transmitter and
single-scatterer radar channel are first described. The various
correlation-based radar receivers from the literature are then
introduced, particular attention being paid to their relation with
each other. Section III derives the output range-Doppler maps
expressions, taking into account the aforementioned symbols-
induced pedestal. Section IV compares the performance of the
radar receivers in terms of complexity, SINR and resilience to
clutter, for a certain variety of scenarios. Finally, concluding
remarks and prospects are compiled in Section V.

Notation:
We use Z for the set of integers. IN and ĪN denote the

finite sets {0, . . . , N − 1} and {−N, . . . ,−1}, respectively,
and \ the set difference. E {·} is the expectation operator, ‖·‖
the `2-norm and sgn is the signum function anywhere but in
0 where we set sgn(0) , 1. The so-called Dirichlet kernel is
defined as:

DN (u) ,
1

N

N−1∑
n=0

ej2π
n
N u.

II. OFDM RADAR SYSTEM MODEL

In this paper, although the OFDM waveform is jointly used
for radar and communications, we mainly focus on the radar
system model. We refer for instance to [13] for the well-
covered OFDM communication part.

A. Joint OFDM transmitter
The OFDM transmitter sends frames of M consecutive

blocks—or sweeps—using simultaneously K orthogonal sub-
carriers over the bandwidth B, to a remote OFDM receiver.

Within a frame, each subcarrier k of a block m conveys
a complex elementary symbol ck,m, being either data, pilot
or null, according to the exploited system (e.g., DAB [14],
DVB-T [15], LTE [16], etc.). To anticipate multipath effects
in the channel, each block m is prefixed by a replica of its
last ∆ ∈ IK samples, prior to transmission. This portion of
the block is referred to as the cyclic prefix (CP), in contrast
to the so-called useful part.

Provided that K � 1, the baseband expression of a
transmitted OFDM frame critically sampled at rate B is
therefore [28]

s[p] =

M−1∑
m=0

(
1√
K

K−1∑
k=0

ck,me
j2π k

K (p−mL)

)
g[p−mL] (1)

where g denotes the rectangular pulse, arbitrarily chosen here
to ensure ‖g‖2 = K, namely

g[p] ,

{√
K
L if p ∈ IL

0 otherwise
(2)

and L , K+ ∆ is the extended block length, or indifferently,
the pulse repetition interval (PRI). It is worth recalling that
a longer CP comes at the cost of a reduced transmission’s
spectral efficiency η ∝ K/L.

B. Radar channel

In the rest of the paper, we adopt the formalism used in
monostatic radar scenario though it could be easily replaced
by that of PBR (e.g., bistatic range instead of range).

While propagating in the direction of the communication
receiver at the speed of light c, the transmitted narrowband
OFDM signal (1) is partly backscattered towards the radar
receiver by a single point target1 deemed to be characterized
by:

• a zero-mean complex amplitude α;
• a radial velocity v inducing a simple frequency shift on
s equal to FD , 2vFc/c � B with Fc the transmitter’s
carrier frequency;

• an unambiguous range R0 = l0δR, with l0 ∈ IK the
so-called range gate and δR , c/(2B) the radar range
resolution.

We especially assume these parameters to be constant during
a frame. Therefore, as we ignore clutter for now, the baseband
signal at the input of the radar receiver critically sampled at
B is given by [28]

r[p] = α exp(j2πfDp/L)s[p− l0] + w[p] (3)

where fD , FDL/B denotes the target’s normalized Doppler
frequency, and w the thermal noise modeled as a zero-mean
white circular Gaussian contribution, with variance σ2.

Note that after proper synchronization and direct path
removal, a similar signal model is obtained on the surveillance
channel of a bistatic radar receiver (e.g., see [17, Eq. (5)]).

C. Correlation-based OFDM radar receiver

Whether it is considered in the monostatic or the bistatic
topology, signal (3) is then usually processed to obtain an
estimate of the illuminated radar scene in the range-Doppler
domain. To that end, several correlation-based receivers have
been proposed so far. Herein we recall the motivations and
definitions of those mostly encountered in the OFDM PBR
and RadCom literature. They are intentionally normalized so
as to ensure the same peak power for a target at zero range and
zero Doppler, when considering unit-variance data symbols.
Names, acronyms and output notations we give to these filters
are summarized in Table I.

1Extension to multitarget is straightforward but not treated here for the sake
of clarity.
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TABLE I
MAIN CORRELATION-BASED OFDM RADAR RECEIVERS

Full name Acronym Notation

Matched filter MF χ(r,s)

Proximate matched filter PMF χ̃(r,s)

Proximate matched filter after
CP-removal

PMF-CP χ̃(ř,s)

Proximate matched filter with circular
correlation

PMF-CC χ̃(ř,s0)

Reciprocal filter RF χ(r,s̄)

Proximate reciprocal filter PRF χ̃(r,s̄)

Proximate reciprocal filter after
CP-removal

PRF-CP χ̃(ř,s̄)

Proximate reciprocal filter with
circular correlation (symbol-based)

PRF-CC χ̃(ř,s̄0)

1) Matched filtering approaches: Since range-Doppler pro-
cessing is usually a prior step to radar detection, conventional
approaches based on matched filtering have naturally been
suggested.

a) Matched filter (MF): The filter matched to r in (3)
is known to be the optimum linear filter in terms of signal-
to-noise-ratio (SNR) at the coordinates of the target, namely
(l0, fD). Presuming the coherent processing interval (CPI) is
equal to the OFDM frame length, the MF output is given by the
cross-correlation over LM samples2 between Doppler shifted
versions of r and a replica of the assumed known transmitted
signal s, namely [7], [29]

χ(r,s)(l, ν) ,
1√
KM

LM−1∑
p=0

r[p]s∗[p− l]e−j2πνp/L. (4)

However, to introduce the subsequent filters with more con-
venience, we rather rewrite it under the form

χ(r,s)(l, ν) ,
1√
M

M−1∑
m=0

χ(r,s)
m (l, ν)e−j2πνm (5)

where the function χ(r,s)
m denotes the same cross-correlation,

but this time computed over a single block m of the received
signal r, i.e., over L samples:

χ(r,s)
m (l, ν) =

1√
K

L−1∑
p=0

r[p+mL]s∗[p+mL− l]e−j2πνp/L.

(6)
In fact, we will see in what follows that the main correlation-
based OFDM radar receivers of the literature can be expressed
through slight changes in (5)–(6).

b) Proximate matched filter (PMF): The high computa-
tional load of the MF (see Section IV-B) may be prohibitive
in practice. Therefore, despite the integration loss incurred by

2Given the received signal model (3), this implies discarding the last l0
useful samples of r. In a realistic scenario where M � 1, the impact of
such truncation is however negligible and will therefore be omitted in our
development.

such simplification (see Section IV-C), the MF is often ap-
proximated by ignoring the phase rotation due to the Doppler
of the target within a block [22, Eq. (9)], [23]. In other words,
the PMF reduces (6) to a single cross-correlation—or range
compression—for each sweep m, prior to computing a Fourier
transform over the sweeps:

χ̃(r,s)(l, ν) ,
1√
M

M−1∑
m=0

χ(r,s)
m (l, 0)e−j2πνm. (7)

In practice, since the Doppler dimension is also discretized, an
FFT algorithm is actually performed in (7), thereby decreasing
drastically the receiver’s complexity.

Notice that both the MF (5) and PMF (7) described so
far are common radar receivers, regardless of the waveform.
However, as it will be seen in the next Sections, in addition
to thermal noise, an unconventional pedestal component, or
random sidelobes, induced by the radar returns and involving
the transmitted data symbols is susceptible to appear in the
range-Doppler map. To limit the level of this interference,
processings that take advantage of the OFDM structure have
been advocated.

c) PMF after CP-removal (PMF-CP): One of these
receivers consists in removing the CP from each block of
the received signal r, prior to applying the PMF, yielding the
PMF-CP receiver [7], [17]

χ̃(ř,s)(l, ν) ,
1√
M

M−1∑
m=0

χ(ř,s)
m (l, 0)e−j2πνm (8)

where χ
(ř,s)
m is deduced from (6) by replacing the signal r

with ř, defined as

ř[p] ,

√
L

K
r[p]

∑
m0∈Z

ǧ[p−m0L] (9)

where ǧ is the conventional OFDM receive pulse-shape that
fulfills the perfect symbol reconstruction condition given g [30,
Eq. (6)], viz

ǧ[p] ,

{√
L
K if p ∈ IL \ I∆

0 otherwise.
(10)

Due to the CPs in the transmitted signal s, each function
χ

(ř,s)
m (l, 0) actually reduces on the range domain l ∈ I∆ to a

circular correlation between

rm , [r[∆ +mL], . . . , r[L− 1 +mL]] and

sm , [s[∆ +mL], . . . , s[L− 1 +mL]].

That way and as it will be evidenced in Section IV-C, if rm is
simply a circularly shifted version of sm, then thanks to the
subcarrier orthogonality of the OFDM waveform, a limited—
possibly null—pedestal is produced in the range bins l ∈ I∆.
Such condition is especially met when the scatterer is static,
with delay smaller than the CP duration.



4

d) PMF with circular correlation (PMF-CC): Interest-
ingly, and as suggested by [25], the latter achievable pedestal-
limited region can be extended to the whole range domain
of interest l ∈ IK by fully circularizing the correlation in
function χ

(ř,s)
m of the PMF-CP. This results in the PMF-CC

receiver

χ̃(ř,s0)(l, ν) ,
1√
M

M−1∑
m=0

χ(ř,s0)
m (l, 0)e−j2πνm (11)

where χ(ř,s0)
m (l, 0) denotes the circular correlation between rm

and sm, as s0 is the per-block circularized version of s, namely

s0[p+mL]

,

{
s[p+K +mL] if p ∈ ĪK−∆−1

s[p+mL] if p ∈ IL.

Nonetheless, since the main interest of circular correlation lies
in its efficient computability with an FFT algorithm, we prefer
expressing it as

χ(ř,s0)
m (l, 0) (12)

=
L

K
FFT−1

K {FFTK{rm} � FFT∗K{sm}} [l], l ∈ IK

with FFTK a unitary FFT of size K and � the Hadamard or
element-wise product, and where, given (1) and (2)

FFT∗K{sm} =

√
K

L
c∗m (13)

with cm , [c0,m, . . . , cK−1,m].

In plain English, (11)–(12)–(13) therefore mean that the PMF-
CC basically: (i) estimates the time-frequency shifted elemen-
tary symbol in each subband of the received signal, as in a
regular linear OFDM communication receiver; (ii) multiplies it
by the conjugate of the (known) elementary symbol actually
transmitted in that subband; (iii) computes a 2-dimensional
FFT, transforming the subband-slow time domain into the
range-Doppler domain of interest.

It is worth noting that the PMF-CC architecture can be
easily extended to apply Doppler shifts multiples of the
subcarrier spacing in (12) for compensating fast intra-block
Doppler phase rotations and solving Doppler ambiguity [31].
This extension is no longer a rigorous proximate filter, though.

2) Reciprocal filtering approaches: Most of the previous
correlation-based receivers have also been considered for
reciprocal—in place of matched—filtering. The reciprocal
filter (RF) aims at equalizing the spectrum of the transmitted
signal [32]. Beyond its ability to attenuate the spurious peaks
due to signal periodicities such as pilots (e.g., see [22]),
this zero-forcing-like technique has also been advocated to
further reduce the aforementioned random sidelobes of strong
returns observed with the conventional matched filtering ap-
proaches [25], [26], [33].

By construction of the OFDM waveform, reciprocal filtering
simply consists in our context in replacing in (5)–(7)–(8)–(11)
the replica of the transmitted signal s (or the substitute s0) by
the signal s̄ (or s̄0) that conveys the sequence

{
1/c∗k,m

}
k,m

instead of {ck,m}k,m. One may then notice that:

• there is no difference between the matched and recip-
rocal strategies in the case of unit-variance phase-shift
keying (PSK) constellations, as opposed for instance to
amplitude-PSK (APSK) or quadrature amplitude modu-
lations (QAM);

• the proximate reciprocal filter with circular correlation
(PRF-CC), which was quite recently introduced in PBR
under the acronyms MCC [25] and CHAD [26], actually
corresponds to the so-called symbol-based processing
proposed a few years earlier in the active radar litera-
ture [24].

The latter remark particularly emphasizes the need to unify
the literature on OFDM radar, which is one of the purposes
of this paper.

3) Hybrid approaches: Hybrid versions of the previous
filters are also found in the OFDM radar literature. Particularly,
in terrestrial PBR, the direct path and clutter are frequently
rejected from the surveillance channel via orthogonal projec-
tion in the subband domain—reached out with the PMF-CC
and PRF-CC approaches—for computational convenience. The
signal is then transformed back into the range domain to apply
a more conventional MF or PMF processing [7], [34]–[36].
It is nonetheless worth noticing that these techniques assume
the absence of a significant clutter pedestal and have naturally
been proved defective otherwise [37]. Moreover, the improve-
ment brought by stacking circular and linear correlations has
per se not been discussed.

III. CORRELATION-BASED RECEIVERS OUTPUTS

Herein, we provide the outputs of the filters presented in
Section II, namely the range-Doppler maps expressions, in
absence of thermal noise w. While referring to Appendix A
for the details of derivation, we sum up the results for the
matched filtering approaches in (14a)–(14d). Their reciprocal
counterparts are simply deduced by replacing the term c∗k′,m′
with 1/ck′,m′ in each equation.

For the sake of compactness and to highlight the similar-
ities between the expressions, we have introduced the pulse-
ambiguity functions

A(g,g)(l, f) ,
1

K

L−1∑
p=0

g[p]g∗[p− l]ej2πfp (15)

A(g,ǧ)(l, f) ,
1

K

L−1∑
p=0

g[p]ǧ∗[p− l]ej2πfp (16)
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MF χ(r,s)(l, ν) '
M�1

αej2π(fD−ν)l0/L
∑
k,m

∑
k′,m′

ck,mc
∗
k′,m′Ψk′,m,m′,l,νA

(g,g)

(
l − l0 + (m′ −m)L,

fD − ν
L

+
k − k′

K

)
(14a)

PMF χ̃(r,s)(l, ν) '
M�1

αej2πfDl0/L
∑
k,m

∑
k′,m′

ck,mc
∗
k′,m′Ψk′,m,m′,l,νA

(g,g)

{l0,ν}

(
l − l0 + (m′ −m)L,

fD

L
+
k − k′

K

)
(14b)

PMF-CP χ̃(ř,s)(l, ν) '
M�1

αej2πfDl0/L
∑
k,m

∑
k′,m′

ck,mc
∗
k′,m′Ψk′,m,m′,l,νȦ

(ǧ,g)

{l0,ν}

(
l − l0 + (m′ −m)L,

fD

L
+
k − k′

K

)
(14c)

PMF-CC χ̃(ř,s0)(l, ν) '
M�1

αej2πfDl0/L
∑
k,m

∑
k′,m′

ck,mc
∗
k′,m′e

j2πν(m−m′)Ψk′,m,m′,l,νA
(g,ǧ)

(
−l0 + (m′ −m)L,

fD

L
+
k − k′

K

)
(14d)

with Ψk′,m,m′,l,ν = ej2π
k′
K

(l−l0+(m′−m)L)ej2π(fD−ν)m/
√
KM

as well as improper versions

A
(g,g)
{l0,ν} (l, f) ,

1

K

(
L−l0−1∑
p=0

g[p]g∗[p− l]ej2πfp

+e−j2πν
L−1∑

p=L−l0

g[p]g∗[p− l]ej2πfp
 (17)

Ȧ
(ǧ,g)
{l0,ν} (l, f) ,

1

K

(
L−l0−1∑
p=0

ǧ[p+ l0]g∗[p− l]ej2πfp

+e−j2πν
L−1∑

p=L−l0

ǧ[p+ l0 − L]g∗[p− l]ej2πfp
 . (18)

We emphasize that the derived range-Doppler map expres-
sions are valid for any target described in Section II-B. This
contrasts with the restriction to targets below the CP (i.e.,
l0 ∈ I∆) that has been almost exclusively investigated in the
OFDM radar literature so far. In this particular case, in (14d)
we have

A(g,ǧ)(−l0 + (m′ −m)L, f) (19)

= e−j2πfl0A(g,ǧ)(0, f)δm,m′

while in (14c) we get, ∀l ∈ IK ,

Ȧ
(ǧ,g)
{l0,ν}(l − l0 + (m′ −m)L, f) (20)

= ej2πf(l−l0+(m′−m)L)A(g,ǧ)(−l + (m−m′)L, f).

Accordingly, if the range observation is restricted to l ∈ I∆

as well, we can inject (19) into (20), to yield

Ȧ
(ǧ,g)
{l0,ν}(l − l0 + (m′ −m)L, f)

= A(g,ǧ)(−l0 + (m′ −m)L, f)

thus proving that the PMF-CP (14c) and the PMF-CC (14d)
(or indifferently, the PRF-CP and PRF-CC) are rigorously
equivalent on the range domain l ∈ I∆. As a result, the
performance comparison between the PMF-CP and the PRF-
CC established in [26] (referred to as CAF and CHAD,
respectively) eventually measures the advantage brought by the
reciprocal filter PRF-CC over its matched counterpart PMF-
CC for typical DVB-T signals in terms of pedestal level, when
not exceeding the CP. As such, the remainder of this paper can

be seen as a generalization of this performance comparison: to
the full range domain of interest (i.e., considering l0, l ∈ IK);
to other filters commonly used in the OFDM radar literature;
and to alternate performance criteria.

IV. PERFORMANCE COMPARISON

In this Section, we compare the theoretical performance
of the different filters of Table I regarding two common
criteria: computational complexity and SINR. The behavior
of the filters in presence of ground clutter is also examined on
synthetic range-Doppler maps.

A. Preliminary assumptions

For the sake of simplicity, we assume in what follows
that the complex symbols ck,m in (1) are only data. Al-
though unrealistic from the communication viewpoint, assum-
ing neither pilot nor null symbol in the transmitted signal
s indeed allows us to: (i) compact the SINR expressions
derived in Section IV-C; (ii) focus our complexity analysis
of Section IV-B on the correlation-based receivers per se, as
we can ignore the stages aimed at handling the ambiguities
related to such symbols (e.g., see [22]). The data symbols
are especially presumed independent and uniformly drawn
from a constellation that is proper [38] and that satisfies also
E {1/ck,m} = 0 and E

{
ck,m/c

∗
k,m

}
= 0, such as PSK, APSK

or QAM. We denote σ2
c , E

{
|ck,m|2

}
, σ2
c−1 , E

{
1/|ck,m|2

}
and µc4 , E

{
|ck,m|4

}
.

Again, for simplicity, but without loss of generality, we
assume in what follows that the Doppler dimension is also
critically sampled (i.e., ν is of the form ν = n/M with
n ∈ IM ), and that the target is perfectly on-grid with
n0 , fDM ∈ IM denoting its Doppler bin index. We recall
that we suppose M � 1 to ignore the effects of the truncation
of r by the radar receivers.

B. Computational complexity

We report in Table II the number of complex operations
required by each receiver to compute a range-Doppler map
of size K × M , along with a numerical application based
on our realistic simulated scenario of Section IV-D in terms
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TABLE II
COMPUTATIONAL COMPLEXITY OF THE MAIN CORRELATION-BASED OFDM RADAR RECEIVERS

Complex multiplications Complex additions MACs in the S&A scenario (Table IV)

MF/RF LM(K + 1)M (LM − 1)KM 4.53E10

PMF/PRF (L+ 1/2 log2(M))KM (L− 1 + log2(M))KM 5.68E08

PMF-CP/PRF-CP (K + 1/2 log2(M))KM (K − 1 + log2(M))KM 5.05E08

PMF-CC/PRF-CC (log2(K) + 1 + 1/2 log2(M))KM (2 log2(K) + log2(M))KM 8.95E06

of multiply–accumulate operations (MACs). They have been
counted assuming that:
• operations such as normalization, conjugation or CP

removal can be neglected;
• divisions are equivalent to multiplications;
• linear correlations and partial circular correlations (e.g.,

with the PMF-CP) are computed in the time domain;
• performing an FFT of size N requires N/2 log2(N) com-

plex multiplications and N log2(N) complex additions;
• complex additions and multiplications are worth 2 and 4

MACs, respectively.
First, comparing the first and second rows, we clearly notice
that the Doppler-phase approximation introduced in (7) highly
reduces the computational load of the radar receiver, as ex-
pected. The following rows then show us that the receiver’s
complexity additionally decreases as it exploits the structure
of the OFDM waveform. The presence of numerous FFTs
in the PMF-CC and PRF-CC receivers especially results in
significant computational savings.

C. SINR performance

With the aim of defining an informative metrics for further
radar detection, we derive hereafter the first two moments
of the range-Doppler maps, generically denoted by χ. We
emphasize that the latter are the filters responses to a single
target amid white noise and not pure ambiguity functions.

1) First- and second-order moments: On the one hand,
since it is assumed that the thermal noise is zero-mean and
that E {α} = 0, we straightforwardly obtain E {χ[l, n]} = 0.

On the other hand, we show in Appendices B and C that
the power E

{
|χ[l, n]|2

}
can be split into3

E
{
|χ[l, n]|2

}
= P

(χ)
t [l, n] + P

(χ)
i [l, n] + P (χ)

w (21)

where each term can be easily identified for each filter from
the expressions summed up in (26a)–(27d):

• P
(χ)
t [l, n] ∝ KM |DK(l − l0)|2 |DM (n0 − n)|2 the tar-

get’s signature power component;
• P

(χ)
i [l, n] the so-called pedestal (or random sidelobes)

power component;
• P

(χ)
w ∝ σ2 the post-processing thermal noise power.

3Although it is not developed here for the sake of compactness, it can
actually be shown with the same procedure as used in Appendices B and C that
the covariance matrix, abusively denoted E {χ[l, n]χ∗[l′, n′]}, is diagonal
(i.e., E {χ[l, n]χ∗[l′, n′]} = 0 for [l′, n′] 6= [l, n]).

Although P (χ)
t [l, n] and P (χ)

w are usual in conventional radar,
it is worth noticing that:

• the target peak P
(χ)
t [l0, n0] may incur a loss monitored

by a pulse-ambiguity squared-modulus term4. This inte-
gration loss can be attributed to either or both: (i) the
uncompensated Doppler phase within a pulse, as for the
so-called proximate filters (see (26b)–(26d) and (27b)–
(27d)); (ii) a delay higher than the CP duration leading
to block mismatching in circular correlations, as for the
PMF-CC and PRF-CC (see (26d) and (27d));

• the post-processing noise power P (χ)
w endures an increase

by factor L/K when removing the CP from the blocks of
the received signal r, as for the PMF-CP, PMF-CC and
their reciprocal counterparts (see (26c)–(26d) and (27c)–
(27d)).

For its part, the pedestal power component P (χ)
i [l, n] is

specifically related to the presence of random elements (i.e.,
the data symbols ck,m) in the transmitted signal (1). It is
worth underlining that since we assume the data symbols to
be known, they could in theory be used to remove the pedestal
of each scatterers (e.g., see [39]). This strategy is out of the
scope of this work. Instead, we consider data symbols as a
stochastic component in the range-Doppler map challenging
detection performance.

In this context, we observe that contrary to what is broadly
admitted in the literature, the pedestal in OFDM radar is not
systematically white in the range-Doppler domain as its power
may depend on the cell under test [l, n]. Actually, from (26d)
and (27d), whiteness is verified only for the PMF-CC and
PRF-CC. Otherwise, its power globally increases with the
distance between the range-Doppler bin [l, n] and that of the
target [l0, n0].

Besides and as expected by design, depending on the filter-
ing approach (namely matched or reciprocal), we observe that
the three power components involve different order statistics
of the data symbols. This point is examined in more details
hereafter.

2) Post-processing SINR: Detection performance of con-
ventional radar systems are highly determined by the post-
processing SNR metrics [40]. For our OFDM-based radar
system, to additionally account for the pedestal component,

4The modulus of the pulse-ambiguity functions (15)–(18) are indeed
bounded from above by 1.
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TABLE III
WAVEFORM AND CHANNEL PARAMETERS FOR SINR SIMULATIONS

Parameter Variable Value

Number of subcarriers K 128

Cyclic prefix length ∆ 16

Number of blocks M 32

Constellation ck,m QPSK

Target power E
{
|α|2

}
0 dBW

Input noise power σ2 0 dBW

we rather define a post-processing SINR as

SINRχ[l, n] ,
P

(χ)
t [l0, n0]

P
(χ)
i [l, n] + P

(χ)
w

, [l, n] 6= [l0, n0]. (22)

Notice that the impacts of each filter on the different power
components of (21) are therefore jointly quantified here, unlike
in [26].

a) QPSK modulation: Let us first assume the use of
a unit-variance QPSK modulation, so that the matched (26)
and reciprocal (27) filtering approaches are equivalent. The
SINR obviously highly depends on the pulse-ambiguity func-
tions (15)–(18) and on the relative position that is observed in
the range-Doppler map. Consequently, we consider various tar-
get scenarios and display in Figs. 1–3 different Doppler cuts of
the post-processing SINRs. For each cut, the theoretical SINRs
computed with (22), in solid lines, are represented along
with the results obtained through Monte-Carlo simulations,
in markers, to validate our derivations. The waveform and
channel parameters used for these simulations are provided
in Table III.

The target scenario of Fig. 1 is representative of the best
situation for the PMF-CC. The target is in fact static with a
range gate l0 ≤ ∆, so that no pedestal is produced by the
processing [28]. Therefore, despite its increased noise level
by factor L/K = −0.51 dB, as evidenced in the first range
bins of Fig. 1a, the PMF-CC outperforms the other filters in
the rest of the range-Doppler map (e.g., see the other range
bins in the same figure, or the cut of Fig. 1b), including the
MF and PMF. Indeed, although the latter achieve the highest
SINR value, they eventually suffer from the growth of their
pedestal power in line with |l− l0| and/or |n−n0|. Especially,
since the target is static here, attempting to compensate the
nonexistent rotating Doppler phase within each block even
seems to be detrimental for the MF, as hinted by Fig. 1b.
Finally, in both Doppler cuts, the PMF-CP exhibits the same
SINR as the PMF-CC on the first ∆ range bins, as expected
by design.

In Fig. 2, the former target is now assumed to move with a
non-negligible velocity. As a result, the 3 proximate filters in-
duce both an integration loss on their target peak and a pedestal
rise (see the pulse-ambiguity squared-modulus terms in (26b)–
(26c)–(26d)), yielding a degraded SINR compared to Fig. 1. In
contrast, the MF still performs globally well. In range-Doppler

bins distant from that of the target, it nonetheless once again
gets outpaced by the uniformly-performing PMF-CC.

Fig. 3 finally depicts the case where the target is moving
while being far beyond the CP. Filters globally perform the
same as in Fig. 2, except the PMF-CC which now incurs
a major integration loss jointly imputable to the significant
target’s Doppler frequency—as in the previous situation—and
CP overshooting.

b) Amplitude modulations: Now let us consider the case
of amplitude modulations—still assumed to have unit variance,
by convention—and examine the impact on the SINR of
the reciprocal strategy with respect to the usual matched
approach. After few rearrangements, we show that the SINR
ratio between the RF and MF boils down to (23). Since
only the pulse-ambiguity squared-modulus terms change when
considering the other filters, the following remarks hold as
well.
• In noise-dominated scenarios such that σ2 ≥ E

{
|α|2

}
we get4:

SINRχ(r,s̄) [l, n]

SINRχ(r,s) [l, n]
≤ µc4

σ2
c−1

, [l, n] 6= [l0, n0]. (24)

This upper bound is basically the ratio between the
power of the absolute square and the mean of the inverse
absolute square of the data symbols. For classical QAM
modulations, it is lower than 1 and declines as the con-
stellation size increases, as depicted in Fig. 4. Matched
filtering approaches are therefore undoubtedly preferable
in these scenarios.

• In presence of a highly reflective scatterer, i.e., at least
when σ2 < E

{
|α|2

}
, the analysis becomes trickier as the

pulse-ambiguity squared-modulus terms vary with respect
to either or both the target’s and observation’s parameters,
[l0, n0] and [l, n], respectively. As such, the SINR of the
reciprocal strategies may appear locally better around the
target peak while performing poorly in the rest of the
range-Doppler domain. Nonetheless, the case PRF-CC vs
PMF-CC is easier to treat as they only depend on [l0, n0]
(e.g., see [26]).

D. Behavior in presence of ground clutter

We assume from now on that a ground clutter component
rc is present in the received signal r, thereby adding to the
initial model (3). Hereafter we describe its model and observe
its impact on the filters outputs in a simulated scenario.

1) Clutter model: We model ground clutter as statistically
independent patches, spreading in both range and azimuth
dimensions. More specifically, at each range R0ic

= icδR with
ic ∈ IIc , we assume Nc equally spaced patches around the
radar, characterized by
• a complex amplitude ρic,nc ;
• a nominal Doppler frequency FDic,nc

� B;
so that the corresponding baseband received signal critically
sampled at rate B is, as for targets, of the form

rc[p] =

Ic−1∑
ic=0

Nc−1∑
nc=0

ρic,nc exp(j2πfDic,nc
p/L)s[p− ic] (25)
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Fig. 1. SINR Doppler cuts for target at [l0, n0] = [∆/2, 0] (i.e., target prior to the CP, static)
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Fig. 2. SINR Doppler cuts for target at [l0, n0] = [∆/2,M/4] (i.e., target prior to the CP, with Doppler close to 22 % of the subcarrier spacing)
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Fig. 3. SINR Doppler cuts for target at [l0, n0] = [L/2,M/4] (i.e., target exceeding the CP by a factor 4.5, with Doppler close to 22 % of the subcarrier
spacing)
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SINRχ(r,s̄) [l, n]

SINRχ(r,s) [l, n]
=

1

σ2
c−1

+
µc4 − 1

σ2
c−1

∣∣∣A(g,g)
(
l − l0, n0−n

LM

)∣∣∣2∑
k′ 6=0

∣∣∣A(g,g)
(
l − l0, n0−n

LM
+ k′
K

)∣∣∣2 +
∑
k′

∣∣∣A(g,g)
(
l − l0 − sgn(l − l0)L, n0−n

LM
+ k′
K

)∣∣∣2 + σ2

E{|α|2}

.

(23)
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Fig. 4. Ratio µc4/σ
2
c−1 for usual QAM modulations.

with fDic,nc
, FDic,nc

L/B and where Pρic,nc
, E

{
|ρic,nc

|2
}

is computed from the radar equation for area clutter [41].
2) Simulation: The impact of ground clutter on the different

correlation-based OFDM processings recalled in this paper has
already been largely observed in terrestrial PBR. Since clutter
returns are mainly static and below the CP duration in these
scenarios, the subband domain (especially through the PRF-
CC) is usually advocated to naturally limit its pedestal level
as evidenced in Fig. 1 (e.g., see [25], [26]). As a supplement
to the existing work, we therefore examine in the following
the impact of a more spread clutter, encountered for instance
in RadCom airborne scenarios. The parameters used for the
simulation are provided in Table IV. Note that a unit-variance
QPSK modulation is assumed here, so that the matched and
reciprocal strategies are once again equivalent.

Consider an active forward looking OFDM radar placed on
an unmanned combat aerial vehicle (UCAV) for simultaneous
communication and Sense & Avoid (S&A). The RadCom
system operates at the carrier frequency Fc = 5 GHz, over
a bandwidth of B = 10 MHz. The platform is at the altitude
Hp = 550 m, moving horizontally at the speed vp = 120 m/s.
The transmit and receive antennas are positioned orthogonally
to the platform motion. They are identical perfect uniform
rectangular arrays composed of 8× 4 half-wavelength spaced
elements having cosine patterns and no backlobes. They are
steering into the direction5(φmax, θmax) = (0◦, 10◦) where they
achieve their maximum gain GRXmax = GTXmax ' 20.0 dBi.
Moreover, their 3-dB azimuthal and elevation beamwidths are
∆φ ' 25.7◦ and ∆θ ' 12.8◦, respectively.

Assuming a flat-earth model, the static ground
clutter patch (ic, nc) has the Doppler frequency
FDic,nc

= 2vpFc cos(θic) sin(φnc
)/c with θic =

arccos
(√

1− (Hp/R0ic
)2
)

being its elevation angle,
and φnc

its azimuth angle. Besides, it is assumed to follow
a circularly-symmetric complex normal distribution, namely
ρic,nc

∼ CN (0, Pρic,nc
). A constant gamma model is used

to compute the area reflectivity of each patch [41], with

5(φmax, θmax) must change over time to cover the 220◦ azimuthal and 30◦

elevation apertures required for S&A [42].

TABLE IV
UCAV SENSE & AVOID SIMULATION PARAMETERS

Parameter Variable Value

Platform altitude Hp 550 m

Platform velocity vp 120 m/s

Carrier frequency Fc 5 GHz (C-band)

Antennas maximum gain GRXmax = GTXmax 20.0 dBi

Antennas beamwidth (∆φ,∆θ) (25.7◦, 12.8◦)

Antennas direction (φmax, θmax) (0◦, 10◦)

Various system losses Lsyst 5 dB

Bandwidth B 10 MHz

Transmitted power Ps 10 W

Number of subcarriers K 1024

Cyclic prefix length ∆ 128

Number of blocks M 80

Constellation ck,m QPSK

Input noise power σ2 −130 dBW

Gamma γ −3 dB

γ = −3 dB. In this simulation, we have set Nc = 360 and
Ic = 2K, so that clutter exceeds by far the CP.

The target is assumed to be an airliner just taking-off, at
altitude 96 m, distance R0 = 2325 m, with a radar cross
section of 100 m2 and a radial velocity of v = 35.8 m/s
thereby respecting the required 20 s of advanced warning for
S&A [42]. The white Gaussian noise w is simulated with input
power σ2 = −130 dBW. The resulting range-Doppler maps
after platform velocity compensation are depicted in Fig. 5.
For information, the CP range is symbolized with a horizontal
blue line, and a magnification is made on the target area.

As intended, we observe that the clutter main contribution
is highly extended in both range and velocity. Besides, its
pedestal is white only with the PMF-CC (Fig. 5d), as justified
in Section IV-C1. More importantly, one may notice that its
level is substantially lower at the output of the PMF-CC,
compared to the others. With this filter, the pedestal induced by
the clutter scatterers below the CP duration is indeed greatly
prevented. Concomitantly, the target peak power measured
for the PMF-CC is quite close to that of the other range-
Doppler maps, since the target does not significantly exceed
the CP here. It results that this filter seems quite favorable for
detection in such scenario, although a more in-depth analysis
would be required to rigorously conclude, particularly as the
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pedestal might not be normally distributed [28]. We still
notice that the average pedestal level exceeds −110 dB for
all filters, that is roughly 20 dB more than the theoretical
post-processing white noise power. Such interference level, in
complement to the clutter ridge itself, would therefore cause
severe degradations in the radar performance and need to be
further handled, as attempted for instance in [37].

V. CONCLUSION

In this paper, we have proceeded with a comparison of
the main correlation-based radar receivers encountered in
the joint radar-communications OFDM literatures of PBR
and RadCom. The filters have first been compared from an
analytical point of view, with particular emphasis put on the
commonalities and differences between one another. Over-
lapping processings have especially been evidenced between
PBR and RadCom authors, thereby justifying our attempt
to unify this framework. The filters have then been com-
pared via simulations in terms of performance. Particularly,
in the prospect of target detection, a SINR metrics has been
defined in the output range-Doppler maps. It accounts for
the processing integration losses as well as their tolerance
to noise, and to the so-called target’s pedestal owing to the
presence of data symbols into the dual-function OFDM signal.
A complexity analysis has also been carried out, and the
overall impact of strong extended clutter, typically encountered
in airborne scenarios, has been investigated. These metrics
tend to show that processings based on circular correlation
(with either a matched or a reciprocal strategy), which have
the most acceptable computational complexity, seem also to
be the most resilient in presence of significant near clutter
returns. These advantages may however be moderated by
the substantial integration losses they induce to very distant
targets. Ultimately, the best choice of correlation-based radar
receiver is largely dictated by the scenario to be faced.
In any case, clutter mitigation was shown to be even more
critical than in conventional radar due to the unusual pedestal
component incurred by OFDM in the range-Doppler maps.
It shall therefore be addressed in future work. A thorough
detection performance analysis should also be conducted.
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(d) PMF-CC χ̃(ř,s0). Measured average background power: −106.01 dBW.
Measured target peak: −86.23 dBW.

Fig. 5. Range-Doppler maps in presence of ground clutter after platform velocity compensation (the Doppler dimension is oversampled by a factor 4)

[34] Zhao, Z., Wan, X., Shao, Q., Gong, Z., and Cheng, F., “Multipath clutter
rejection for digital radio mondiale-based HF passive bistatic radar with
OFDM waveform,” IET Radar Sonar Navig., vol. 6, no. 9, pp. 867–872,
Dec. 2012.

[35] Schwark, C. and Cristallini, D., “Advanced multipath clutter cancellation
in OFDM-based passive radar systems,” in IEEE Radar Conf., May
2016, pp. 1–4.

[36] Searle, S., Gustainis, D., Hennessy, B., and Young, R., “Cancelling
strong Doppler shifted returns in OFDM based passive radar,” in IEEE
Radar Conf., Apr. 2018, pp. 0359–0354.

[37] Mercier, S., Bidon, S., Roque, D., and Enderli, C., “Clairvoyant clutter
mitigation in a symbol-based OFDM radar receiver,” in Int. Radar Conf.,
Sep. 2019.

[38] Neeser, F. D. and Massey, J. L., “Proper complex random processes with
applications to information theory,” IEEE Trans. Inf. Theory, vol. 39,
no. 4, pp. 1293–1302, 1993.

[39] Mercier, S., Roque, D., and Bidon, S., “Successive self-interference
cancellation in a low-complexity WCP-OFDM radar receiver,” in Proc.
IEEE Asilomar Conf. Signals, Syst. Comput., Oct. 2018, pp. 712–716.

[40] Brennan, L. E. and Reed, L. S., “Theory of adaptive radar,” IEEE Trans.
Aerosp. Electron. Syst., vol. AES-9, no. 2, pp. 237–252, March 1973.

[41] Nathanson, F., Reilly, J., and Cohen, M., Radar Design Principles:
Signal Processing and the Environment. Scitech Pub., 1999.

[42] Kemkemian, S., Nouvel-Fiani, M., Cornic, P., Bihan, P. L., and Garrec,
P., “Radar systems for “sense and avoid” on UAV,” in Int. Radar Conf.,
Oct. 2009, pp. 1–6.



12

SECOND-ORDER MOMENTS OF THE RANGE-DOPPLER MAPS (FOR M � 1)
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∣∣∣Ȧ(ǧ,g)
{l0, nM }

(
l − l0,

n0

LM

)∣∣∣2 +
(
µc4 − σ

4
c

) ∣∣∣Ȧ(ǧ,g)
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(
−l0,

n0

LM

)∣∣∣2

+σ2
cσ

2
c−1

∑
k 6=0

∣∣∣∣A(g,ǧ)
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APPENDIX A
RANGE-DOPPLER MAPS EXPRESSIONS IN A NOISE-FREE SINGLE TARGET SCENARIO

Herein we expand the derivations leading to (14a)–(14c). For its part, (14d) is easily deduced from its reciprocal version derived
in [28].
1) Matched filter: Using successively (4)–(3)–(1), we obtain:
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Given the support of g (2), the summation over p reduces to indices p ∈ {0, . . . , L− 1} only for m ∈ IM−1. Since we neglect
the truncation of r, we instead presume it is true for all m ∈ IM , that is
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By introducing the pulse-ambiguity function A(g,g)(l, f) (15) we finally get (14a).
2) Proximate matched filter: First, note that the PMF (7) can be rewritten as
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Following the same procedure as for the MF (i.e., using successively (3), (1) and approximation (28)), we thus obtain
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since bp+l0L c = 0 if p ∈ {0, . . . , L− l0 − 1}, and 1 if p ∈ {L− l0, . . . , L− 1}. Finally, introducing the improper pulse-
ambiguity function (17) leads to (14b).
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3) Proximate matched filter after CP-removal: As for the PMF, the PMF-CP (8) can be rewritten
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given the definition of the pulses g (2) and ǧ (10). This gives
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which boils down to (14c) after identifying the improper pulse-ambiguity function (18).

APPENDIX B
SECOND-ORDER MOMENTS OF THE RANGE-DOPPLER MAPS IN A NOISE-FREE SINGLE TARGET SCENARIO

Herein we detail the derivations of the expressions (26a) and (27a) in absence of noise. Extension to the rest of (26) and (27)
is straightforward.
1) Matched filter: Based on the expression of the range-Doppler map we obtained for the MF (14a), we have
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fD − ν
L

)∣∣∣∣2 + σ4
c

∣∣∣∣A(g,g)

(
l − l0,

fD − ν
L

)∣∣∣∣2 S1 + σ4
cS2

)
(32)
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where we set

S1 ,
1

KM

∑
k0,m0

∑
(k1,m1)
6=(k0,m0)

ej2π
k0−k1
K (l−l0)ej2π(fD−ν)(m0−m1)

S2 ,
1

KM

∑
k0,m0

∑
(k′0,m

′
0)

6=(k0,m0)

∣∣∣∣A(g,g)

(
l − l0 + (m′0 −m0)L,

fD − ν
L

+
k0 − k′0
K

)∣∣∣∣2 .
On the one hand, we have S1 that simplifies into

S1 =
1

KM

 ∑
k0,m0

∑
k1,m1

ej2π
k0−k1
K (l−l0)ej2π(fD−ν)(m0−m1) −KM

 = KM |DK(l − l0)|2 |DM ((fD − ν)M)|2 − 1 (33)

and on the other hand, we have

S2 =
1

KM

∑
k0,m0

 ∑
k′0 6=k0

∣∣∣∣A(g,g)

(
l − l0,

fD − ν
L

+
k0 − k′0
K

)∣∣∣∣2

+
∑

m′0 6=m0

∑
k′0

∣∣∣∣A(g,g)

(
l − l0 + (m′0 −m0)L,

fD − ν
L

+
k0 − k′0
K

)∣∣∣∣2


=
1

KM

∑
k0

 ∑
k′0 6=k0

∣∣∣∣A(g,g)

(
l − l0,

fD − ν
L

+
k0 − k′0
K

)∣∣∣∣2

+(M − 1)
∑
k′0

∣∣∣∣A(g,g)

(
l − l0 − sgn(l − l0)L,

fD − ν
L

+
k0 − k′0
K

)∣∣∣∣2


=
∑
k 6=0

∣∣∣∣A(g,g)

(
l − l0,

fD − ν
L

+
k

K

)∣∣∣∣2 +
M − 1

M

∑
k

∣∣∣∣A(g,g)

(
l − l0 − sgn(l − l0)L,

fD − ν
L

+
k

K

)∣∣∣∣2 (34)

owing to the limited support of the pulse g (2) (i.e., g[p] = 0 if p /∈ {0, . . . , L− 1}) and to the K-periodicity in frequency of
the pulse-ambiguity function A(g,g)(l, f) (15). Remark that the second sum in S2 reduces to 0 in the target range bin l = l0.
Finally, injecting (33) and (34) in (32) while considering critical sampling in Doppler (i.e., ν = n/M ) directly yields the
expression in (26a) under our assumption M � 1.
2) Reciprocal filter: Considering this time the reciprocal version of (14a), we get:

E
{
|χ(r,s̄)(l, ν)|2

}
= E

{
|α|2

} ∑
k0,m0

∑
k′0,m

′
0

∑
k1,m1

∑
k′1,m

′
1

E

{
ck0,m0c

∗
k1,m1

ck′0,m′0c
∗
k′1,m

′
1

}
Ψk′0,m0,m′0,l,ν

Ψ∗k′1,m1,m′1,l,ν

×A(g,g)

(
l − l0 + (m′0 −m0)L,

fD − ν
L

+
k0 − k′0
K

)
A(g,g)∗

(
l − l0 + (m′1 −m1)L,

fD − ν
L

+
k1 − k′1
K

)
.

The case study for the expectation operator is the same as for the MF, namely E
{
ck0,m0

c∗k1,m1

ck′0,m
′
0
c∗
k′1,m

′
1

}
6= 0 if and only if:

• Case 0: (k′1,m
′
1) = (k1,m1) = (k′0,m

′
0) = (k0,m0) for which E

{
ck0,m0

c∗k1,m1

ck′0,m
′
0
c∗
k′1,m

′
1

}
= 1.

• Case 1: [(k′1,m
′
1) = (k1,m1)] 6= [(k′0,m

′
0) = (k0,m0)] for which E

{
ck0,m0

c∗k1,m1

ck′0,m
′
0
c∗
k′1,m

′
1

}
= 1.

• Case 2: [(k′1,m
′
1) = (k′0,m

′
0)] 6= [(k1,m1) = (k0,m0)] for which E

{
ck0,m0

c∗k1,m1

ck′0,m
′
0
c∗
k′1,m

′
1

}
= σ2

cσ
2
c−1 .

This yields

E
{
|χ(r,s̄)(l, ν)|2

}
= E

{
|α|2

}(∣∣∣∣A(g,g)

(
l − l0,

fD − ν
L

)∣∣∣∣2 +

∣∣∣∣A(g,g)

(
l − l0,

fD − ν
L

)∣∣∣∣2 S1 + σ2
cσ

2
c−1S2

)
where the expressions of S1 and S2 after simplification were found in (33) and (34). Once again, if considering critical sampling
in Doppler (i.e., ν = n/M ) as well as M � 1 we obtain (27a).
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APPENDIX C
SECOND-ORDER MOMENTS OF THE RANGE-DOPPLER MAPS IN A NOISE-ONLY SCENARIO

Hereafter we derive the expressions of the noise power at the output of the MF, PMF and PMF-CP, reported in (26a)–(26c).
Extension to their reciprocal counterparts (i.e., RF, PRF and PRF-CP) (27a)–(27c) is straightforward. The cases of the PMF-
CC (26d) and PRF-CC (27d) are deduced from [28].
1) Matched filter: Given (4), the noise component at the output of the MF is

χ(w,s)(l, ν) ,
1√
KM

LM−1∑
p=0

w[p]s∗[p− l]e−j2πνp/L

Since w is a white noise with variance σ2 that is statistically independent from the data symbols, we get

E
{
|χ(w,s)(l, ν)|2

}
=

1

KM
σ2

LM−1∑
p=0

E
{
|s∗[p− l]|2

}
=

1

KM
σ2 1

K

LM−1∑
p=0

∑
k,m

∑
k′,m′

E
{
c∗k,mck′,m′

}
g∗[p− l −mL]g[p− l −m′L]e−j2π

k
K (p−l−mL)ej2π

k′
K (p−l−m′L)

=
1

KM
σ2σ2

c

∑
k,m

1

K

LM−1∑
p=0

|g[p− l −mL]|2

'
M�1

1

KM
σ2σ2

c

∑
k,m

1

K

L−1∑
p=0

|g[p]|2

'
M�1

σ2σ2
c (35)

since we chose ‖g‖2 = K. The output noise power after critical sampling in Doppler is thus E
{
|χ(w,s)[l, n]|2

}
= σ2σ2

c .
2) Proximate matched filter: We re-express the output of the PMF as in (29). Regarding the noise we thus have

χ̃(w,s)(l, ν) ,
1√
KM

LM−1∑
p=0

w[p]s∗[p− l]e−j2πνb
p
L c.

Similarly as for the MF, we then get

E
{
|χ̃(w,s)(l, ν)|2

}
'

M�1

1

KM
σ2σ2

c

∑
k,m

1

K

L−1∑
p=0

|g[p]|2

'
M�1

σ2σ2
c . (36)

After critical sampling in Doppler, the noise power at the output of the PMF is also E
{
|χ̃(w,s)[l, n]|2

}
= σ2σ2

c .
3) Proximate matched filter after CP-removal: Similarly as with the PMF, the noise at the output of the PMF-CP is

χ̃(w̌,s)(l, ν) ,
1√
KM

LM−1∑
p=0

w̌[p]s∗[p− l]e−j2πνb
p
L c.

We thus follow the same procedure that led to (35) and (36) except that one g[p] must be replaced with

L

K
g[p]

∑
m0

ǧ[p+ l − (m0 −m)L]
∑
m′0

ǧ[p+ l − (m′0 −m)L] =
L

K

{
ǧ[p+ l] if p ∈ {0, . . . , L− l − 1}
ǧ[p+ l − L] if p ∈ {L− l, . . . , L− 1}

given (31) and the support of ǧ (10), so that

E
{
|χ̃(w̌,s)(l, ν)|2

}
'

M�1

L

K
σ2σ2

c .

The noise critically sampled at the output of the PMF-CP has thus power E
{
|χ̃(w̌,s)[l, n]|2

}
= L

Kσ
2σ2
c .


