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 10 
 11 

Highlights 12 

• A new conceptual design of pillared elastic metasurface (~0.495λ) with constructive 13 

interference (PEMC) is proposed to manipulate flexural waves. 14 

• We systematically reveal the phase shift of transmitted waves across the improved 15 

subunits and establish an analytical model for multi-resonator subunits to accurately 16 

predict the phase shift and amplitude of the transmitted wave. 17 

• The intrinsic physical of the constructive and destructive interferences through out-18 

of-plane vibration of the plate for the two adjacent subunits are analyzed. 19 

• Finally, we experimentally verify deflecting and focusing functionality of the 20 

proposed PEMC without any drilling or grooving the original plate surface. 21 

 22 
 23 

Abstract 24 

In engineering, plate structures are one type of the main load-bearing structures. 25 

However, most of designed plate-like metamaterials/metasurfaces need to be heavily 26 

grooved or drilled on the original plate surface, which will inevitably cause some 27 
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destruction to the strength and stiffness of the host plate structures. To overcome this 1 

weakness, we propose a new conceptual design of pillared elastic metasurface (~0.495λ) 2 

to manipulate flexural waves in plates by considering constructive interference. The 3 

interference, which manifests itself as the coupling through out-of-plane vibration of 4 

the plate for the two adjacent subunits, is analyzed to reveal the physical mechanisms. 5 

In addition, we reveal the mechanism of the phase shift of transmitted waves across the 6 

sub-wavelength subunits and establish an analytical model for the multi-resonator 7 

subunits to accurately predict the phase shift and amplitude of the transmitted wave. 8 

We theoretically design and experimentally demonstrate the deflecting and focusing 9 

functionalities of the proposed elastic metasurface. Our design can provide a new route 10 

to broad applications of the constructive interference in elastic 11 

metamaterials/metasurfaces, which can be used to efficiently engineer arbitrary wave 12 

profiles. 13 

 14 

Keywords: Elastic metasurfaces, Constructive interference, Flexural waves, 15 

Metamaterials, Elastic waves 16 

  17 
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1. Introduction 1 

Metasurface is one kind of ultrathin metamaterials, with a more compact and easily 2 

fabricated form. It has been recently proposed to realize extreme features of bulky 3 

metamaterials [1-8]. The studies on the metasurfaces with phase gradients, based on the 4 

generalized Snell’s law (GSL) [9], have made a significant progress in the fields of 5 

optics [9-11] and acoustics [12-15]. Recently, the development of elastic metasurfaces, 6 

with complex inherent properties of different elastic wave types and mode conversions, 7 

has also attracted wide attentions of researchers. 8 

The existing elastic metasurfaces can be classified into body wave metasurfaces 9 

[16-20], surface wave metasurfaces [21], and plate wave metasurfaces [22-33], 10 

according to the manipulated wave type. Among them, the plate wave metasurface is a 11 

hot one due to the universality of plate waves in engineering. For the first time, the 12 

concept of the optic metasurface or acoustic metasurface was extended to elastic wave 13 

metasurface in the field of solid mechanics by Zhu and Semperlotti [22]. They 14 

investigated the anomalous refraction of Lamb waves (plate waves in a relatively thick 15 

plate [34]) based on mode conversion by using geometric tapers. Meanwhile, Liu et al. 16 

[23] designed a zigzag structure metasurface by grooving the plate to achieve a source 17 

illusion device for flexural waves (plate waves in a relatively thin plate [34]). In order 18 

to further improve transmittance, a high transmission metasurface for deflecting and 19 

focusing in-plane longitudinal waves in a plate [24] was proposed by breaking the 20 

intrinsic proportional density-stiffness relation. Furthermore, in one [33] of our 21 

previous works, phase accumulation of the multi-resonators was used to experimentally 22 
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design and demonstrate the pillared metasurface, which is capable of deflecting 1 

vertically and obliquely incident flexural waves with high transmissions. 2 

On the other hand, some tunable plate wave metasurfaces [35-38] were also 3 

proposed. An adaptive metasurface [35] capable of modulating A0 Lamb waves in a 4 

plate were designed through the piezoelectric units. Furthermore, a programmable plate 5 

wave metasurface [36] with sensing-and-actuating units was introduced to adapt and 6 

reprogram flexural wave control functionalities in real time. Recently, a switchable 7 

multifunctional fish-bone elastic metasurface [37] is proposed to manipulate the 8 

transmitted plate waves. More recently, plate wave metasurfaces had been applied to 9 

total mode conversions from in-plane longitudinal waves to shear waves [39], splitting 10 

flexural waves [40], asymmetrical flexural wave transmission [41] and isolating 11 

vibration [42]. 12 

Almost all of the above mentioned elastic metasurfaces need to be grooved on the 13 

complete plate surface, which avoids the coupling interference (CI) between two 14 

adjacent subunits to design them independently. The CI is similar to the Fano 15 

interference [43-46], which results from the coupling between individual unit-scatters 16 

in the continuum background, i.e., the host plate. However, the CI in our work pays 17 

more attention to the coupling of the adjacent subunits deviating from the resonance 18 

frequency. 19 

In the present research, we improve the model reported in our previous paper [33] 20 

by the iron pillared-resonator subunits. The lowest dispersion band and vibration mode 21 

analyses are used to explain the working mechanism of the phase shift of transmitted 22 
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waves. Furthermore, we indeed propose an analytical model for multi-pillared subunit 1 

to accurately predict the amplitude and phase shift of the transmitted wave. Based on 2 

the improved subunit model, the physical mechanisms of CI between the adjacent 3 

subunits are revealed, which can be classified into the constructive and destructive 4 

interferences. Further, by considering the CI, we propose the pillared elastic 5 

metasurface with constructive interference (PEMC) to manipulate flexural waves 6 

propagating in a plate. Finally, experimental validations are carried out to demonstrate 7 

the deflecting and focusing capabilities of the designed PEMCs. 8 

2. Theoretical design of the subunit of PEMC 9 

Fig. 1(a) depicts the PEMC structure (enlarged one is shown in the top of the figure) 10 

without slots. To clarify the difference between the current work and our previous one 11 

[33], the sketches of the previous elastic metasurface with slots and the present one 12 

without slots in a front view (xy-plane) are shown in Figs. 1(d) and 1(e), respectively. 13 

The most obvious difference is that CI will exist at the junction of the adjacent subunits 14 

for the metasurface without slots (marked in Fig. 1(e)). The interference manifests itself 15 

as the coupling through out-of-plane vibration of the plate for the two adjacent subunits. 16 

In addition, the previous subunits are improved by the iron pillared-resonator subunits. 17 

Considering the CI, the present elastic metasurface is composed of the improved three-18 

dimensional (3D) subunits, periodically arrayed on the host plate, as shown in Fig. 1(b). 19 

The subunit design is one of the core design components. For simplicity, we firstly 20 

design the corresponding two-dimensional (2D) subunits, which is the cross-section 21 

view, as shown in Fig. 1(c). Then, it will be expanded to the 3D one. 22 
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 1 

Fig. 1. (a) Sketch of the PEMC capable of deflecting an incident flexural wave, with the enlarged 2 

view in the top. (b) illustrates the three-dimensional (3D) subunit corresponding to the dotted box 3 

in (a). (c) The corresponding two-dimensional (2D) subunit, which is the cross-section view of the 4 

3D one. (d) and (e) illustrate the adjacent subunits without CI and with CI in a front view (xy-plane), 5 

respectively. 6 
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2.1. Mechanism of phase shift in the multi-resonator subunit 1 

The 2D subunit is based on the pillared resonators periodically arrayed and bonded 2 

on the surface of a thin aluminum alloy plate, as shown in Fig. 1(c). Here, two types of 3 

pillared resonators are analyzed, which are made of aluminum alloy (with the elastic 4 

modulus of , Poisson's ratio of , and the density of 5 

) and iron (with the elastic modulus of , Poisson's 6 

ratio of , and the density of ). The elementary unit cells 7 

are illustrated in Figs. 2(a) and 2(b), where the black and grey areas represent the iron 8 

and aluminum alloy, respectively. Both of the plate and pillar thicknesses are d=1 mm. 9 

D denotes the constant lattice with 2 mm, and h is the pillar height. The periodicity is 10 

along the x-axis. Figs. 2(a) and 2(b) show the lowest dispersion bands (corresponding 11 

to flexural waves in the plates) for different heights of the pillared resonators. They are 12 

obtained by using the eigen frequency analysis of COMSOL MULTIPHYSICS 5.4 13 

software. 14 

It can be observed from Figs. 2(a) and 2(b) that the wavenumbers k corresponding 15 

to the color lines (representing the plate with pillared resonators) are bigger than that 16 

corresponding to the black lines (representing the plate without resonators) at the same 17 

frequency. Furthermore, the wavenumber in the plate increases with the pillar height. 18 

According to , the wavenumber is inversely proportional to the 19 

corresponding wave velocity. Therefore, the wave velocity of the flexural wave 20 

propagating in the plate with the periodic structures decreases when the height of 21 

pillared resonator increase. After propagating the same distance, the flexural wave 22 

alu = 70 GPaE alu 0.33n =

3
alu 2700 kg/mr = iro = 200 GPaE

iro 0.29n = 3
iro 7870 kg/mr =

2v f kp=
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with lower velocity will have a larger phase shift. Except for the above same 1 

characteristics, the difference between Figs. 2(a) and 2(b) is that the wavenumber of 2 

the flexural wave in the plate with periodic iron pillared resonators is larger than that 3 

in the plate with periodic aluminum alloy pillared resonators at the same frequency. It 4 

indicates that periodic iron resonators are easier to make the flexural waves in the plate 5 

slow down, i.e., phase shift. Therefore, the iron pillared resonator is adopted to 6 

improve the subunits in our previous paper [33]. 7 

 8 

Fig. 2. (a) and (b) show the lowest dispersion bands for different heights of the aluminum alloy and 9 

iron pillared resonators, respectively. (c) and (d) illustrate the longitudinal and bending vibration 10 

modes of the iron pillared resonator with varying of the pillar height, respectively. 11 

The targeted frequency in our design is 1 kHz, which is one of the typical low 12 

frequencies. In order to further reveal the interaction between the pillared resonators 13 

and flexural waves in the plate, the corresponding vibration modes of the iron resonator 14 
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are analyzed. Figs. 2(c) and 2(d) show the z direction displacements in the pillared 1 

resonators associated with longitudinal vibration modes (longitudinal waves) and the x 2 

direction displacements in the pillared resonators associated with bending vibration 3 

modes (flexural waves), respectively. It can be found that when the pillar height is short 4 

(less than 6d), the longitudinal vibration of the pillared resonator (the longitudinal wave) 5 

is dominant, while when the pillar height is high (more than 14d), the bending vibration 6 

(the flexural wave) is dominant. From this propagation form in the resonators, it makes 7 

one easy to understand the dispersion bands in Figs. 2(a) and 2(b). When the 8 

propagating flexural waves in the plate encounter a resonator, parts of them are 9 

converted into longitudinal waves or flexural waves in the resonator, which will 10 

propagate in the resonator and then to the plate. This transmission process leads to slow 11 

flexural waves down to have a big phase shift. In this way, the wave velocity of the 12 

longitudinal wave or the flexural wave in the iron pillared resonator is lower than the 13 

one in the aluminum alloy resonator. In other words, the transmission speed in the iron 14 

resonator is slower than the one in the aluminum alloy resonator. The transmission 15 

process with the slower speed will lead to a larger phase shit. Then, we can easily 16 

understand that the improved subunits based on periodic iron resonators are easier to 17 

make the flexural waves phase shit. 18 

2.2. Analytical transmission and phase spectra of the 2D subunit 19 

In the current study, the number of pillared resonators is set as 25. It makes multi-20 

resonators structure approximate the above mentioned infinite periodic subunits to 21 

compose the subunits, as shown in Fig. 3(a), which will cause the phase shifts of 22 
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transmitted flexural waves in a plate. The working mechanism of the phase shifts of 1 

transmitted flexural waves across the subunits has been revealed by the above lowest 2 

dispersion band and vibration mode analysis. The subunits with different pillar heights 3 

make it possible to meet the desired phase profile for designing a gradient metasurface. 4 

In addition, the evenly distributed amplitude of transmitted waves across the subunits 5 

is also crucial in designing a metasurface without any undesired distortion for 6 

transmitted pattern [24, 33]. Therefore, both amplitudes and phase shifts of transmitted 7 

waves across the subunits need to be accurately solve. 8 

 9 

Fig. 3. (a) Sketch of the 2D subunit with 25 pillared resonators. The host plate is divided into several 10 

regions, which are marked as the 1st, 2nd, …, 26th regions in (b). (c) illustrates the (j-1)th region, jth 11 

region, and jth pillared resonator. (d) shows the analytical and simulated results of the phase shift 12 

and amplitude for the transmitted waves by varying the pillar height. 13 
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To solve amplitudes and phase shifts of the transmitted waves, we establish the 1 

analytical model and divide the host plate into several regions, which are marked as the 2 

1st, 2nd, …, 26th regions, respectively, in Fig. 3(b). First, wave transmission in the (j-1)th 3 

region, jth region, and jth pillared resonator are studied, as shown in Fig. 3(c). From the 4 

above analysis of Figs. 2(c) and 2(d), we know that both flexural waves (bending 5 

vibrations) and longitudinal waves (longitudinal vibrations) will couple and exist in the 6 

pillared resonator. Therefore, for accuracy, they must be considered in the pillared 7 

resonator and host plate at the same time. It should be pointed out that flexural and 8 

longitudinal waves are equivalent to A0 and S0 lamb waves, respectively, in the low 9 

designed frequency of 1 kHz [34]. The governing equations for flexural waves and 10 

longitudinal waves in the host plate can be expressed in the following forms, 11 

respectively: 12 

 , (1) 13 

where , , and  are the Young’s modulus, density, and section moment of 14 

inertia of the plate, respectively. , in which  and  are the 15 

thickness of the plate and Poisson’s ratio of the material, respectively. The general 16 

solutions of the displacements for the flexural wave equations in the (j-1)th and jth regions 17 

are: 18 
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 , (2) 1 

where the superscripts (j-1) and (j) indicate the (j-1)th and jth regions, respectively. The 2 

flexural wavenumber is , in which  is the circular 3 

frequency. , , , , , , , and  are complex 4 

coefficients.  and  correspond to the positive-going propagating 5 

flexural waves, whereas  and  correspond to the negative-going 6 

propagating flexural waves.  and  correspond to the positive-7 

going evanescent flexural waves, whereas  and  correspond to the 8 

negative-going evanescent flexural waves. The general solutions of the displacements 9 

for longitudinal wave equations in the (j-1)th and jth regions are: 10 

 , (3) 11 

where the longitudinal wavenumber is , , , , 12 

and  are complex coefficients.  and  correspond to the 13 

positive-going propagating longitudinal waves, whereas  and  14 

correspond to the negative-going propagating longitudinal waves. 15 

The governing equations for the flexural wave and longitudinal wave in the 16 

pillared resonator j can be expressed in the following forms, respectively: 17 
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 , (4) 1 

where , , and  are the Young’s modulus, density, and section moment of 2 

inertia of the pillared resonator, respectively. , in which  and  3 

are the thickness of the resonator and Poisson’s ratio of the material, respectively. The 4 

general solutions of the displacements for flexural wave and longitudinal wave 5 

equations in the jth pillared resonator are 6 

 , (5) 7 

where the superscript  indicates the jth pillared resonator. The flexural and 8 

longitudinal wavenumbers are  and , 9 

respectively. , , , ,  and  are complex coefficients. 10 

and  correspond to the up-going and down-going propagating 11 

flexural waves, respectively, whereas  and  correspond to the up-12 

going and down-going evanescent flexural waves, respectively.  and 13 

 correspond to the up-going and down-going propagating longitudinal waves, 14 

respectively. 15 

The physical quantities , , , , ,  and the complex 16 

coefficients , , , , ,  for every region in the plate can be 17 

organized as a state vector and a coefficients vector, respectively: 18 
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 . (6) 1 

where , , , and  are slope, axial force, shear force and bending moment, 2 

respectively. For simplicity, the origins of coordinates x and z are set at the interface 3 

among the (j-1)th region, jth region, and jth pillared resonator. Substituting Eqs. (2) and 4 

(3) into Eq. (A13), we obtain 5 

 , , (7) 6 

where  is the transformation matrix between the state vector and the coefficient 7 

vector. It is shown in Appendix A. Substituting Eqs. (2), (3), (5), and (A13) into the 8 

boundary conditions among the (j-1)th region, jth region, and jth pillared resonator (Eqs. 9 

(A1)-(A12)), we obtain 10 

, (8) 11 

where  and  are the  and  matrices, respectively. They are 12 

given in Appendix A. From Eq.(8), we obtain 13 

. (9) 14 

From Eq. (9), we get 15 

 , , (10) 16 

where  and  indicate the coefficient vectors in the left interface of the jth 17 

region and the right interface of the (j-1)th region, respectively. N5 is obtained by 18 
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pillared resonator. 1 

For the jth region with a length , the relationship between the state vector and 2 

coefficients vector can be expressed as 3 

 , , (11) 4 

where  is the transfer matrix for waves propagating from the left to the right 5 

interface of the jth region and it is shown in Appendix A. From Eqs. (7), (10) and (11), 6 

for waves propagating from the right interface of the (j-1)th region to the right interface 7 

of the jth region, the transfer matrix can be expressed as 8 

 , . (12) 9 

From Eq. (12), for waves propagating from the right interface of the 1st region to the 10 

right interface of the 25th region, the transfer matrix can be expressed as 11 

 . (13) 12 

Furthermore, for waves propagating from the right interface of the 1st region to the left 13 

interface of the 26th region, we get 14 

 . (14) 15 

From this equation, we can solve the amplitude and phase shift for the flexural wave 16 

propagating through these 25 pillared resonators. Eq. (14) can be rewrittend as 17 

 . (15) 18 

where , , ,  and  are the 19 

amplitude ratios of the reflected propagating flexural wave in the 1st regions, 20 

respectively, ,  and  are the transmitted propagating flexural wave, 21 

transmitted evanescent flexural wave and transmitted longitudinal wave in the 26th 22 
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regions, respectively. From Eq. (15), , , , , , and  can be solved. The 1 

phase shift of the transmitted wave is obtained by subtracting the phase in the right of 2 

the subunit from the phase in the left. More coresponding details can be found in 3 

Appendix A. 4 

Fig. 3(d) shows the analytical amplitude (red line) and phase shift (blue line) of 5 

transmitted waves predicted by Eqs. (15) and 6 

Erreur ! Source du renvoi introuvable.. It can be seen that the phase shift with the 7 

high transmission (average over 0.8) by varying the pillar height can span over a full 8 

phase range of 2π. To evaluate the accuracy of the analytical solution, the simulated 9 

results obtained by COMSOL MULTIPHYSICS 5.4 software (Plane Strain Module) 10 

are shown with small circles and triangles in Fig. 3(d). The simulated results are in very 11 

good agreement with the analytical ones. This confirms the accuracy of the analytical 12 

method. It should be pointed out that the total thickness of the subunit L=49 mm is 13 

about half of the incident wavelength λ =98.9 mm [47], that is, these 25 pillared 14 

resonators constitute the sub-wavelength subunit. 15 

2.3. The design of 3D subunits with the CII 16 

The above-designed subunit is embodied in its 2D model, as shown in Fig. 3(a). 17 

The corresponding 3D one is shown in Fig. 4(a). The periodic boundary conditions need 18 

to be applied on the two long boundaries in the 3D strip-like subunit model. In order to 19 

display intuitively the 3D subunit applied by the periodic boundaries, another form is 20 

shown in Fig. 4(b). In our previous paper [33], slots are made at the subunit region 21 

(marked with the red dotted box in Fig. 4(a)) to avoid the CI. In the present work, we 22 
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retain the spacing in the 3D subunits instead of the slot. In this way, the CI between 1 

identical subunits (CII) will exist by the spacing, marked with red arrows in Fig. 4(b). 2 

 3 

Fig. 4. (a) the 3D subunit. (b) Another form of the subunit applied by the periodic 4 

boundaries (c) and (d) the dependence of the influence coefficients  and  on w1 and η. 5 

(e) illustrates the out-of-plane (z component) displacement distributions in transmitted fields for the 6 

twelve specific 3D subunits with the pillar height values marked in the left black square. The phase 7 

fL tL
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shits for every subunit, which are obtained by subtracting the phase in the right of the subunit from 1 

the phase in the left, are marked in the right. 2 

The spacing size is determined by the parameters of the subunit width w1 and the 3 

filling ratio η, which is the ratio of the spacing width to the subunit width in one subunit. 4 

We need to analyze the influence of the CII, which is related to the subunit width w1 5 

and the filling ratio η, on the consistency of the single 3D subunit and the corresponding 6 

2D subunit. The consistency of the single 3D subunit and the corresponding 2D subunit 7 

can be reflected in the differences between their phase shift and transmission amplitude 8 

for the different height h. Therefore, in the fixed design frequency, the phase shift ϕ1 9 

and transmission amplitude |t1| for the 3D subunits can be expressed as ϕ1=Gϕ1(w1, η, h) 10 

and |t1|= G|t1|(w1, η, h), respectively, while that for the 2D subunits can be expressed as 11 

ϕ0=Gϕ0(h) and |t0|= G|t0|( h), respectively. In order to quantitatively evaluate the 12 

influence of the CII, related to the subunit width w1 and the ratio η, on the consistency 13 

of the 3D and 2D subunits, we define the influence coefficient as: 14 

 , (16) 15 

where n=13, which is the ratio of the maximum pillar height (considered in Fig. 3d) to 16 

the thickness of the plate. The dependence of the influence coefficients  and  17 

on w1 and η are shown numerically in Figs. 4(c) and 4(d). It can be clearly seen that 18 

these two influence coefficients (determine the influence of CII) are small when the 19 

values of w1 and η (determine the spacing size) are small. According to Figs. 4(c) and 20 
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4(d), w1 and η are set as 0.2λ and 1/7, respectively (marked with the red stars). It can 1 

keep the consistency of the 3D and 2D subunits. 2 

After the values of w1 and η are set, in order to intuitively demonstrate the 3 

consistency, twelve specific 2D subunits are selected to achieve twelve steps of an 4 

equally phase shift to cover a full range of 2π according to Fig. 3(d). The corresponding 5 

out-of-plane (z component) displacement distributions in the transmitted field for the 6 

3D subunits are plotted, as shown in Fig. 4(e). The black squares represent different 7 

subunits, and they are marked with the corresponding values of pillar heights. It can be 8 

observed from Fig. 4 (e) that twelve steps of an equal phase shift can still approximately 9 

cover a full range of 2π, and the transmitted fields are the uniformly high transmission. 10 

The values of phase shifts for every subunit, which are obtained by subtracting the 11 

phase in the right of the subunit from the phase in the left, are marked in the right of 12 

Fig. 4(e). Compared with Fig. 3(d), the average error of the phase shifts is very small 13 

(about 0.1 rad). It, indeed, indicates that the CII has little effect on the consistency of 14 

the designed 3D and corresponding 2D subunits. 15 

3. The constructive and destructive interferences between the adjacent different 16 

subunits 17 

The above twelve 3D subunits in the order shown in Fig. 4(e) are integrated into a 18 

supercell as shown in Fig. 5(c). Two identical supercells, providing a stair-step (linearly 19 

gradient) discrete phase profile, compose the elastic metasurfaces in Figs. 5(a) and 5(b). 20 

For these two metasurfaces, the only difference between them is that one has no CI 21 

(with a slot) at the junction of the supercells and the other has CI (without a slot), as 22 
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shown in the upper right corners of Figs. 5(a) and 5(b). The simulations of deflected 1 

flexural wave fields by the two metasurfaces are shown in Figs. 5(a) and 5(b). It can be 2 

clearly seen in Fig. 5(a) that the incident wave is deflected without any undesired 3 

distortion in the transmitted field. However, in Fig. 5(b), the transmitted field near the 4 

junction of two supercells is destroyed. The upper part of the transmitted field is hardly 5 

deflected. By comparing these two simulation results, we know that the destruction of 6 

the transmitted field is mainly due to the CI at the junction of the two supercells. 7 
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 1 

Fig. 5. (a) and (b) illustrate the two metasurfaces consist of two supercells. Enlarged views of the 2 

junctions of adjacent supercells, with slot and without slot, are shown in the back dotted frames in 3 

upper right corners of (a) and (b). (c) illustrates OWMS for the twelve black squares (the 3D subunits) 4 

shown in Fig. 4(e). (d) and (e) illustrate OWMS for the black squares (the supercells) shown in (a) 5 

and (b). (f) The models are composed of two subunits with different heights. The one has slots and 6 

the other has no slots. (g) shows the deviation between the phase shifts for the two models in (f). 7 

The subunit consists of the square pillars and the plate under them, shown in Fig. 8 
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4(a), which are named as subunit pillars and subunit plate, respectively, for easy 1 

description. In order to reveal the intrinsic physics, the out-of-plane wave fields (z 2 

components of the displacements) on the mid-planes of subunit plates (OWMS), 3 

corresponding to the twelve black squares (the 3D subunits) in Fig. 4(e), are extracted, 4 

as shown in Fig. 5(c). It can be observed for one supercell that the difference of the 5 

extracted OWMSs between adjacent subunits from the #1 subunit to the #12 subunit is 6 

small. After the two supercells are arranged to design the metasurface, Fig. 5(c) shows 7 

the #1 subunit in the lower supercell and the #12 subunit in the upper supercell become 8 

adjacent two subunits, marked with black dotted box in Fig. 5(c). It can be seen that the 9 

difference of OWMSs between the two subunits is large, especially in terms of wave 10 

intensity and wavelength size. For example, the wave intensity for the #1 subunit is 11 

about 2.5 times of that for the #12 subunit, which may be caused by the different energy 12 

diversions of pillared resonators with different heights. Furthermore, Fig. 5(c) shows 13 

approximate one and a half wavelength for the #12 subunit and a half wavelength for 14 

the #1 subunit. This means one third of the particles in the adjacent subunit plates move 15 

in opposite directions. The very different OWMSs for the two subunits will be 16 

superimposed to form a new mixed wave field through the vibrations of plate at the 17 

junction, i.e., CI. In other words, the CI from the junction of the two adjacent subunits, 18 

which have very different OWMSs, greatly destroys their designed wave fields. 19 

Furthermore, the OWMSs corresponding to the black squares (the supercells) in 20 

Figs. 5(a) and 5(b), are extracted, respectively, as shown in Figs. 5(d) and 5(e). Since 21 

the incident wave is a Gauss beam, the wave intensity decreases gradually from the 22 
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middle to the outsides. In Fig. 5(d), the CI exists between all two adjacent subunits 1 

within the supercell, but not between the two outer ones in different supercells (the #1 2 

subunit in the lower supercell and the #12 subunit in the upper supercell). Compared 3 

with OWMSs in Fig. 5(c), that in Fig. 5(d) are almost the same. It confirms that the CI 4 

within a supercell causes constructive interference due to smaller different OWMSs 5 

between the adjacent subunits. This will result in fine wave field manipulation. In Fig. 6 

5(e), the CI exists in all adjacent subunits including the junction between the #1 subunit 7 

in the lower supercell and the #12 subunit in the upper supercell. Compared with 8 

OWMSs in Fig. 5(c), that in Fig. 5(e) has changed a lot, specially at the junction (back 9 

dotted frame). It confirms that the CI at the junction of two supercells causes destructive 10 

interference due to larger different OWMSs between the adjacent subunits. This will 11 

result in bad wave field manipulation. 12 

To further quantitatively analyze the influence of the CI on the designed subunits, 13 

we select all adjacent two subunits, i.e.,  subunit and  subunit, from the two 14 

supercell in Fig. 5(c). The values of i and  are set to make the two subunits as 15 

the adjacent ones. The two adjacent subunits make up the two types of analytical models, 16 

the one has the slots and the other has no slots, as shown in the upper and lower subplots 17 

of Fig. 5(f), respectively. For the two types of analytical models, we calculate the 18 

transmitted fields and obtain the phase shift in the far field, respectively. For the first 19 

type of model with slots, the obtained phase shifts are accurate values without the 20 

influence of the CI on the OWMSs. For the second type of model without slots, there 21 

will be some deviation in the obtained phase shifts due to the influence of CI on the 22 

#i # j
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OWMSs. The difference values between the phase shifts for the two types of models 1 

are shown in Fig. 5(g). It can quantitatively analyze the influence of CI on OWMSs, 2 

which will determine the manipulation effect of the transmitted field. In order to make 3 

a comprehensive comparison, we also add the phase shift differences for the models 4 

composed of two identical subunits ( ) to Fig. 5(g), which are related to the 3D 5 

subunits applied by the periodic boundaries. 6 

It can be clearly observed that the phase shift difference for the model composed 7 

of the #1 subunit and the #12 subunit reaches a large value of 2 rad, while the remaining 8 

differences are all less than 0.4 rad. The big difference value of 2 rad indicates that the 9 

transmitted wave field has been completely destroyed by the CI, the small difference 10 

value less than 0.4 rad indicates that the CI results in constructive interference. We can 11 

know from the above analysis of Fig. 5(c) that only the OWMSs between the subunit 1 12 

and the subunit 12 in all adjacent subunits have big difference while the OWMSs for 13 

all other adjacent subunits have a small difference. It indicates that the CI between two 14 

adjacent subunits with very different OWMSs will lead to destructive interference while 15 

the CI between two subunits with small different OWMSs will lead to constructive 16 

interference. Therefore, we can take the advantage of the constructive interference to 17 

avoid having slots in the subunits. 18 

4. Manipulating flexural waves by the PEMC 19 

To design the PEMC, we need to take the advantage of the constructive 20 

interference and avoid the destructive one. For the deflecting metasurface, continuous 21 

phase shift within one supercell and an abrupt phase shift of 2π between two adjacent 22 

i j=
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supercells will make wave front linear change in the transmitted filed due to the wave 1 

periodicity [12]. The OWMSs for the two adjacent subunits at the junction between the 2 

two adjacent supercells exhibit a larger difference and that for other two adjacent ones 3 

have a small difference. It will lead to the constructive interference exist all two 4 

adjacent subunits, except for that at the junction between the adjacent supercells. 5 

Therefore, in the present study, taking the advantage of the constructive interference 6 

and avoiding the destructive one, we can just use one supercell without any slots to 7 

build the deflecting PEMC. It should be pointed out that this has one limitation, i.e., it 8 

is only suitable for incident Gauss beam whose width does not exceed the width of one 9 

supercell. However, we can simply eliminate this limitation by introducing only one 10 

slot at the junction of adjacent two supercells, which still greatly reduces the damage to 11 

the plate. However, for the focusing PEMC, there is no such limitation. The reason is 12 

that the phase shift for all two adjacent subunits is continuous without the abrupt phase 13 

shift. It enables our new conceptual design to be of great value for the focusing 14 

metasurface. 15 

4.1. Sample fabrication and experimental setup 16 

To accurately fabricate the iron pillared resonator, the Wire Electrical Discharge 17 

Machining (WEDM) with a manufacturing precision of 0.01 mm is adopted. The 18 

manufactured iron pillared resonators are bonded to the middle of the aluminum alloy 19 

plate (1000 mm × 2000 mm × 1 mm) by a special adhesive. The enlarged view of the 20 

deflecting PEMC sample is shown in the top of Fig. 1(a). An array of four piezoelectric 21 

patches PZT-5A (20 mm × 20 mm × 0.3 mm) is bonded on the surface of the plate 22 
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acting as actuators. The spacing of adjacent piezoelectric patches is set as the width of 1 

the piezoelectric patch according to the phased array theory [2]. By rotating the 2 

direction of the bonded piezoelectric patch array, we can get different incident angles. 3 

The exciting frequency is 1 kHz and the value of f·d (the product of the frequency and 4 

the plate thickness) is far less than 0.4 MHz mm [48]. Normal traction excitation of the 5 

piezoelectric patches can be used to generate a flexural wave (single Lamb mode A0) 6 

with the high signal-to-noise ratio. 7 

With the controlling of the waveform editor (based on the Labview software), the 8 

signal generator (Agilent 33220A) generates a 5-cycle tone burst signal9 

, where  is the central frequency. 10 

The power amplifier (HVPA05) drives the piezoelectric patches in a manner that the 11 

amplified voltage for the two middle piezoelectric patches is two times of that for the 12 

ones on both sides. The bonded four piezoelectric patches can approximately excite the 13 

transient flexural wave Gaussian beam. A layer of blue-tack is glued on the boundary 14 

edges to minimize reflections from the outer boundary of the test piece [22, 23]. The 15 

wave fields in the incident and transmitted areas are measured by the PSV-400 scanning 16 

laser Doppler vibrometer. In the scanning areas, more than six points in one flexural 17 

wavelength need to be scanned to ensure fine resolution. 18 

4.2 PEMC for deflecting flexural waves 19 

The PEMC without slots is formed by one supercell, as shown in Fig. 1(a). 20 

According to the GSL, the theoretical refraction angle  of the incident wave can be 21 

calculated by 22 

( ) ( )0 1 cos 2 5 sin 2t c cw A f t f tp p= -é ùë û 1 kHzcf =
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 , (17) 1 

where  is the incident angle.  is the spatial phase shift 2 

gradient. Firstly, a vertically incident flexural wave is considered, i.e., . In the 3 

supercell, the phase shift of subunits is set to increase along the opposite direction of 4 

the y-axis. The theoretical refraction angle of the transmitted wave is calculated to be 5 

24.3o according to Eq. (17). For obliquely incident flexural wave, when the incident 6 

angle meets with the relationship of , and the phase shift of 7 

subunits is set to increase along the y-axis, negative refraction will occur. As a typical 8 

example, the incident angle is set as , the corresponding theoretical refraction 9 

angle is calculated to be -8.8o. 10 

The corresponding numerical simulations are carried out. The simulation results 11 

are shown in Figs. 6(a) and 6(c). It can be clearly observed that the vertically and 12 

obliquely incident waves have been deflected by the designed PEMC and the negative 13 

refraction appears in the transmitted field in Fig. 6(c). In order to get the refraction 14 

angle from the numerical simulations, polar directivity graphs of the transmitted waves 15 

measured at two wavelengths away from the center of the PEMCs are shown in Figs. 16 

6(b) and 6(d). It can be observed that the refraction angles are 25.1o and -9.6o, 17 

respectively, which have a good agreement with the theoretical ones, recalling that the 18 

corresponding angles are 24.3°and -8.8°. 19 
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 1 

Fig. 6. The numerical simulation results for the vertically (a) and obliquely (c) incident waves across 2 

the PEMC. Polar directivity graphs of the transmitted waves measured at two wavelengths away 3 

from the center of the PEMCs are shown in (b) and (d), numerically and experimentally. The 4 

experimental full wave fields including the incident field and the transmitted field at different time 5 

points are shown in (e) and (f). 6 

In order to show the deflection intuitively, the experimental full wave fields in the 7 

incident and transmitted zones at different time points are shown in Figs. 6(e) and 6(f) 8 

by the “time” measurement mode. The time points of measurements for the incident 9 

and transmitted wave fields are marked below the wave fields. For example, in Fig. 10 

6(e), the incident field and the transmitted field are measured at 603.36 ms and 605 ms, 11 
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respectively. From the two test results, it can be clearly observed that the designed 1 

PEMC can abnormally deflect the vertically and obliquely incident flexural waves. In 2 

order to obtain the experimental refraction angles, firstly, the maximum peak values of 3 

5-cycle tone burst signal for every measured point at two wavelengths away from the 4 

center of the PEMCs are searched in the whole test process. Then, based on maximum 5 

peak values, the polar directivity graphs of the transmitted waves across the specimen 6 

are added to Figs. 6(b) and 6(d). The experimentally observed angles from the polar 7 

directivity graphs are 31.2°and -12.1°, respectively, recalling that the corresponding 8 

simulation angles are 25.1°and -9.6°. These experimental results for deflecting PEMC 9 

are in good agreement with both the theoretical and numerical simulation results. Some 10 

small deviations mainly come from the manufacturing error of the specimen and the 11 

measurement noise. 12 

4.3. PEMC for focusing flexural waves 13 

The focusing PEMC without slots is illustrated in the upper right corner of Fig. 14 

7(a). It can be readily constructed by selecting subunits that match the requested 15 

hyperbolic phase profile , where  is the designed focal 16 

distance. Without loss of generality, the focal distance is set as . The continuous 17 

phase profile makes the pillar height in the PEMC changes gradually. According to 18 

Fig. 3(d), the corresponding values of the pillar heights for all subunits with the 19 

precision of 0.1mm are presented by Table B1 in Appendix B. The metasurface with 20 

gradually changing of the subunits will lead to the OWMSs change gradually. There 21 

2 22 ˆ ˆ( ) ( )y F y Fpf
l
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is not a very different OWMS between adjacent subunits. Therefore, for all adjacent 1 

subunits, there are constructive interferences. 2 

 3 

Fig. 7. (a) shows the transmitted field of incident flexural waves propagating through the PEMC 4 

capable of focusing. The intersection (of white dashed lines) points out the predicted position of 5 

the focal point. The model of the PEMC is illustrated in the upper right corner. (b) and (c) show 6 

the intensity distribution of normalized amplitude along the longitudinal dashed line and transverse 7 

dashed line in (a) from the simulation and experiment, respectively. (d) and (e) show the 8 

displacement fields of the simulation and experiment, respectively. 9 

The transmitted intensity and displacement fields with the focal distance of  10 

is simulated and shown in Figs. 7(a) and 7(d), respectively. One can clearly observe a 11 

focal spot after the incident waves go passing through the PEMC. The theoretically 12 

3l
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predicted position of the designed focusing point is located at the intersection of the 1 

longitudinal and transverse dashed lines, as shown in Fig. 7(a). The full field of 2 

experimental measurement is shown in Fig. 7(e), which is normalized by the incident 3 

wave field. The transmitted energy is proportional to the square of the displacement 4 

amplitude [49]. The normalized energy intensity can be expressed as , which is the 5 

ratio of the square of the displacement amplitude in the transmitted filed to that in the 6 

incident field. For a more quantitative comparison, the normalized energy intensity 7 

distribution along the longitudinal dashed line from the simulations and experiments 8 

is also plotted in Fig. 7(b). It can be seen that the energy intensity of the peak is about 9 

3. The normalized energy intensity distribution at the focal spot along the transverse 10 

dashed line from the simulations and experiments is also plotted in Fig. 7(c). As one 11 

can observe, the peaks from the simulations and experiments approximately occur at 12 

the targeted focal distance of x ≈ 3λ. The experimental result for focusing PEMC is in 13 

good agreement with both the theoretical and numerical simulation results, although 14 

some small deviations exist due to the manufacturing error of the specimen and the 15 

measurement noise. 16 

5. Conclusions 17 

For the improved subunits (~0.495λ), the lowest dispersion band and vibration 18 

mode analysis reveal the mechanism of phase shift, that is, arrayed pillared resonators 19 

decrease the wavenumber of the flexural wave in the subunit due to slowing down. The 20 

corresponding analytical model is established and both of the amplitude and the phase 21 

shift of transmitted waves across the subunits are analytically solved. In addition, we 22 

2t
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have revealed that the CI between the two subunits with larger different OWMSs lead 1 

to destructive interference, while the CI between the two subunits with smaller different 2 

OWMSs lead to the constructive interference. Further, combined with the constructive 3 

interference, pillared elastic metasurfaces have been analytically and numerically 4 

investigated to manipulate incident flexural waves in a plate. We find that the 5 

subwavelength focusing PEMC (~0.495λ) enables our new conceptual design to be of 6 

great value because has only the constructive interference due to the continuous phase 7 

shift for every two adjacent subunits. Finally, we experimentally have demonstrated the 8 

deflecting and focusing functionalities of the designed PEMC. This proposed 9 

conceptual design can ensure the integrity of the original plate without introducing any 10 

damage to its strength and stiffness. We expect the present work will open a new avenue 11 

for a variety of applications in the field of elastic metamaterials/ metasurfaces with the 12 

constructive interference. 13 

Acknowledgment 14 

This project is supported by the National Natural Science Foundation of China 15 

(Grant No.11972296), the 111 Project (No. BP0719007), the Institute CARNOT 16 

(ICEEL), La Région Grand Est, the Fundamental Research Funds for the Central 17 

Universities (No. 310201901A005). The first author is grateful to the support of 18 

Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical 19 

University (Grant No. CX201936) and China Scholarship Council (CSC No. 20 

201806290176).  21 



33 
 

Appendix A: Boundary conditions and the transfer matrixes 1 

In Fig. 3(c), the positive directions of axial force , shear force V and bending 2 

moment M are marked at the interfaces among the (j-1)th region, jth region, and jth pillared 3 

resonator [50, 51]. The force and moment must be balanced at the connection position. 4 

According to Fig.3(c), the following boundary conditions must be satisfied. 5 

Force balance in x direction: 6 

  (A1) 7 

Force balance in z direction: 8 

  (A2) 9 

Moment balance: 10 

  (A3) 11 

At the connection position, the displacement and rotation angle are continuous, so the 12 

following boundary conditions must be satisfied. 13 

Displacement continuity in x direction: 14 

  (A4) 15 

  (A5) 16 

Displacement continuity in z direction:  17 

  (A6) 18 

  (A7) 19 

Slope continuity: 20 

  (A8) 21 

  (A9) 22 

F
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At the top of the jth pillar resonator ( ), there is no constraint, hence the force and 1 

moment are 0. 2 

  (A10) 3 

  (A11) 4 

  (A12) 5 

The relationships between the slope  and the displacement w, between axial 6 

force F and the displacement u, between shear force V and the displacement w, between 7 

bending moment M and the displacement w are: 8 

 , (A13) 9 

respectively, where the superscript  indicates space differentiation with respect to 10 

the corresponding coordinate. 11 

The transformation matrix between the state vector and the coefficient vector  12 

is: 13 

, (A14) 14 

where . 15 

The transfer matrix  has the following components: 16 
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, , , , 1 

, , , , , 2 

, , , , , , , 3 

, , , , , , , , , 4 

, , , , , , 5 

, , , , 6 

, , , , 7 

, , others items equal zero. 8 

The transfer matrix  can be expressed as: 9 

. (A15) 10 

For the jth region with a length , waves propagate from the left to the right. From 11 

Eqs. (2), (3) and (A13), the relationship between the physical quantities , , 12 

, , , in the right interface of the jth region and the complex 13 

coefficients , , , , ,  in the left interface of the jth region 14 

can be expressed as follows: 15 

3
24 1 1 1bT E I k= - 2

2 2 2 2211 - /lk E IT hi= 2
2 22 2 2 21 /lk E IT hi= 2

31 1 1 1bT E I k= -

2
32 1 1 1bT E I k= - 2

33 1 1 1bT E I k= 2
34 1 1 1bT E I k= 2

37 2 2 2bT E I k= - 2
38 2 2 2bT E I k= -

2
39 2 2 2bT E I k= 2

310 2 2 2bT E I k= 45 1T = - 46 1T = - 57 1T = 58 1T = 59 1T =

510 1T = 61 1T = 62 1T = 63 1T = 64 1T = 711 1T = 712 1T = 81 1- bT ik= 82 1bT ik=

83 1bT k= - 84 1bT k= 97 2bT ik= - 98 2bT ik= 99 2bT k= - 910 2bT k=

2-3
107 2 2 2- bik h

bT iE I k e= 23
108 2 2 2

bik h
bT iE I k e= 2-3

109 2 2 2
bk h

bT E I k e= 22
128 2 2 2

bik h
bT E I k e= -

2-2
129 2 2 2= bk h

bT E I k e 23
1010 2 2 2

bk h
bT E I k e= - 22

1210 2 2 2
bk h

bT E I k e= 22
2 2 21112 / li h
l

kk E ehT Ii=

2-2
129 2 2 2= bk h

bT E I k e 22
2 2 2

-
1111 /- lik h

lT i ek E I h=

3N

3 3 3 3
1 1 1 1
2 2 2 2
1

1

1

1

1 1

3

1 1 1 1

1 1 1 1

1 10 0 0 0
0 0
0 0

0 0 0 0 1 1
0 0 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 0

0 0
0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

b b b b

b b b b

b b b b

b b b b

l li
iEIk iEIk EIk EIk
EIk EIk EIk EIk

N

ik ik k k
i

k EH ik EH

k ik k k

-é ù
ê ú- -ê ú
ê ú- -
ê ú- -ê ú
ê ú- -
ê ú
ê ú= ê ú
ê ú
- -ê ú

ê ú- -ê ú
ê ú
ê ú
ê ú
ê úë û

s

( )j
Rw

( )j
Ru

( )j
Rj

( )j
RF

( )j
RV

( )j
RM

( )j
LA

( )j
LB

( )j
LC

( )j
LD

( )j
LP

( )j
LQ



36 
 

. (A16) 1 

Here, , Eq. (A16) can be rewritten in matrix form as follows: 2 

 , , (A17) 3 

where  is the transfer matrix for waves propagating from the left to the right 4 

interface of the jth region and it is 5 

, (A18) 6 

where  and . For accurately solving the phase shift, 7 

the modifying thickness of the pillared resonator  must be added to the 8 

length of the jth region, which can compensate the ignored thickness of the pillared 9 

resonator in boundary conditions between the (j-1)th and jth regions.  10 

The wave fields for the 1st and 26th regions can be described as follows: 11 
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 , (A19) 1 

where  is the incident flexural wave with an amplitude of 1, ,  and  are 2 

the amplitude ratios of the reflected propagating flexural wave, reflected evanescent 3 

flexural wave and reflected longitudinal wave in the 1st regions, respectively. ,  4 

and  are the transmitted propagating flexural wave, transmitted evanescent flexural 5 

wave and transmitted longitudinal wave in the 26th regions, respectively. The coefficient 6 

vectors  and  are written as  and , respectively, in terms of 7 

, . 8 

The phase of  can be calculated by using the following formula: 9 

 . (A20) 10 

  11 

Appendix B: The sensitivity and limitation of the focusing PEMC 12 

Table B1. The pillar height hi (mm) (i=1, 2, …, 12) corresponding to focusing PEMCs with different 13 

precisions 14 

hi h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 
Pr=0.1 13.3 13.2 13.0 12.7 12.2 11.6 10.8 9.6 8.0 6.3 4.4 2.3 

Pr=0.5 13.5 13.0 13.0 12.5 12.0 11.5 11.0 9.5 8.0 6.5 4.5 2.5 

Pr=1.0 13.0 13.0 13.0 13.0 12.0 12.0 11.0 10.0 8.0 6.0 4.0 2.0 

 15 

For the focusing PEMC in Fig. 7(a), the values of the pillar heights in the subunits have 16 

a precision of 0.1 mm, as shown in the first row of Table B1. Further, the sensitivity of 17 
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the focusing PEMC is investigated by the designed errors of the pillar heights. To this 1 

end, we will carry out numerical studies on the focusing performance [the focal distance 2 

of  with f = 1 kHz] to show the sensitivity to designed errors. The values of the 3 

pillar heights for two lower precisions (Pr = 0.5 and 1.0 mm) are presented in Table B1 4 

by rounding each value of Pr = 0.1 mm up to the nearest value. By employing these 5 

pillar heights separately, the PEMCs are designed and the transmitted fields are 6 

simulated. The normalized transverse and longitudinal intensities at the focal spot along 7 

two orthogonal directions [white dashed lines in Fig. 7(a)] are shown in Fig. B1. It can 8 

be seen that the designed pillar heights with precisions of Pr = 0.5 and 1.0 mm have a 9 

satisfactory focusing effect like that of Pr = 0.1 mm. This indicates that the focusing 10 

PEMC has good robustness. It should be pointed out that when the total width of the 11 

metasurface is constant, the focal distance can be arbitrarily designed in the range of 12 

more than half wavelength. The smaller the designed focal distance is, the smaller the 13 

error between simulated focal distance and theoretical one is, and vice versa [52, 53]. 14 

 15 

Fig. B1. The focusing results at the frequency of 1 kHz with a focal distance of  with different 16 

precision. (a) and (b) the corresponding intensity at the focal spot along the transverse and 17 

longitudinal directions. 18 

3l

3l
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Appendix C: The PEMC for splitting flexural waves 1 

The PEMC capable of splitting flexural waves can also be designed. This design 2 

can split the incident flexural wave beam into two same beams at the same time, which 3 

can ensure the integrity of the original plate without introducing any damage. The 4 

model of the PEMC is based on the above designed subunits. It consists of the two 5 

symmetrical supercells and is illustrated in the upper left corner of Fig. C1(a). In the 6 

model, there is only constructive interference without destructive one. The spatial phase 7 

shift gradient of the two supercells are  and . 8 

The theoretical refraction angles of ±31.0o are superimposed on the full wave fields 9 

in Fig. C1(a). The theoretical refraction angles have an excellent agreement with the 10 

numerical ones ±27.5o from the polar directivity graphs of the transmitted waves in Fig. 11 

C1(b). It confirms that the PEMC has effective splitting functionality for flexural waves. 12 

 13 

Fig. C1. (a) shows spitting the incident flexural wave by the PEMC. The model of the PEMC, which 14 

consists of the two symmetrical supercells, is illustrated in the upper left corner. (b) illustrates the 15 

polar directivity graph of the transmitted wave measured at two wavelengths away from the center 16 

of the PEMC.  17 

1=2 (12 )d dy wf p 1= -2 (12 )d dy wf p
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