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Abstract 10 

In this research, we systematically study the flexural waves diffraction. Based on the 11 

diffraction mechanism, we propose the concept of subwavelength lossy gradient elastic 12 

metasurface for flexural waves absorption. We theoretically reveal that the high-13 

efficiency absorption behavior stems from maximum multireflection-enhanced 14 

absorption of 0th order diffraction, and experimentally show that robust flexural wave 15 

quasi-omnidirectional absorption in the frequency range extending approximately from 16 

340 Hz to 1000 Hz (larger than 1.5 octaves). In addition, we propose a general approach 17 

which involves new physics of adjusting the arrangement sequence of subunits to 18 

suppress the 1st diffraction mode, to further reduce the sub-wavelength thickness of the 19 

metasurface while maintaining its high-efficiency absorption. Our designs could 20 

provide new routes to broadband vibration suppression and cancellation in low-21 

frequency by lossy elastic metamaterials and metasurfaces. 22 

 23 
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1. Introduction 1 

Vibration suppression of plate-like structures is of great significance in many 2 

engineering applications, for example, preventing vibration hazards and reducing noise. 3 

Since early 1950s, this research topic has been widely concerned. The conventional 4 

suppression methods can be mainly divided into passive and active suppression 5 

approaches. The passive suppression method (Kerwin, 1959; Sun et al., 1995; 6 

Warburton, 1982), which is represented by attaching a large number of damping 7 

absorbers on the plate-like structures, is difficult to fulfil the requirements of 8 

lightweight and broadband features. The active suppression method (Agnes, 1994; 9 

Dubay et al., 2014; Moheimani, 2003; Niederberger and Morari, 2006), which is 10 

represented by applying control force through the actuator to the host structure based 11 

on feedback response, has complex structure and low stability. As a new generated 12 

method of vibration suppression, employing an acoustic black hole (ABH) (Krylov and 13 

Winward, 2007; Ma and Cheng, 2019; McCormick and Shepherd, 2019; Pelat et al., 14 

2020; Tang et al., 2016; Warburton, 1982), which can absorb the propagating waves 15 

(dominated by flexural waves) by little attached damping, promotes development of 16 

lightweight suppression technique. However, the ABH has weak damping effect at low 17 

frequencies and is not useful for a plethora of technological applications where the low 18 

frequencies are the main source to be damped. As another new generation of vibration 19 

suppression method, laying artificial periodic structures (Badreddine Assouar et al., 20 

2012; Fang et al., 2017; Oudich et al., 2010) on the plate-like structures can produce 21 

bandgap to prohibit wave propagation in low-frequency. Artificial periodic structures 22 
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just isolate the vibration energy and do not dissipate the energy fundamentally. In 1 

addition, only subunit size is sub-wavelength, and the overall size of the periodic 2 

structure is still much larger than the wavelength. Recently, some vibration suppression 3 

techniques based on different methods, for example an open lossy resonators in one-4 

dimensional elastic beams (Leng et al., 2019) and total reflection of propagating waves 5 

(Zhu et al., 2018a), have also been proposed. However, narrowband is their common 6 

characteristic. To date, it is still a great challenge to realize sub-wavelength broadband 7 

vibration suppression in low-frequency. Therefore, it is necessary to explore new 8 

mechanisms and approaches to break through it. 9 

As one ultra-thin kind of metamaterials (Dong et al., 2020; Kweun et al., 2017; 10 

Sugino et al., 2018; Zhang et al., 2020; Zhu et al., 2014a, b), acoustic metasurfaces with 11 

sub-wavelength (Assouar et al., 2018; Fan et al., 2019; Li et al., 2017; Qi et al., 2017; 12 

Zhu et al., 2018b) opened up new possibilities to realize extraordinary wave 13 

manipulation based on the generalized Snell's law (GSL) (Yu et al., 2011). However, 14 

with the development of research, it was found that the GSL will no longer be valid for 15 

some new phenomena involved high order diffractions, such as incident waves beyond 16 

the so-called critical angle (Liu et al., 2017a; Zhou et al., 2017) and unexpected leakage 17 

waves (Cao et al., 2018b; Xie et al., 2014). For the high order diffractions, the directions 18 

of diffraction channels need to be predicted by the general formulas, i.e., the diffraction 19 

theorem (Larouche and Smith, 2012). Normally, several diffraction channels 20 

simultaneously exist for a particular incidence, and the magnitudes of diffractions in 21 

different channels will be different. Apparently, the complicated diffraction will not be 22 
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fully revealed by only the directions of the diffraction channels. The magnitude of each 1 

order diffraction should also be explored. For revealing the comprehensive underlying 2 

diffraction mechanism, the mode-coupling method (Liu and Jiang, 2018; Mei and Wu, 3 

2014; Zhilin Hou, 2019) had been used to accurately solve the amplitude of each order 4 

diffraction. Recently, based on these methods, the acoustic diffraction mechanism had 5 

been studied systematically and some new physics related to acoustic diffraction had 6 

been revealed. As typical representatives, acoustic asymmetric transmission (Li et al., 7 

2017) and acoustic absorption (Shen and Cummer, 2018; Yi Fang, 2018; Zhou et al., 8 

2017) can be obtained by high order diffraction. Anomalous transmission and reflection 9 

through high order diffraction can be completely reversed by changing the integer parity 10 

of the phase gradient metagratings (Fu et al., 2019). 11 

Recently, although big progresses have also been subsequently achieved in the 12 

field of elastic metasurfaces (Liu et al., 2017b; Xu et al., 2019b; Cao et al., 2020a; Cao 13 

et al., 2018a; Chen et al., 2018; Lee et al., 2018; Li et al., 2018; Liu et al., 2017b; Park 14 

et al., 2020; Qiu et al., 2019; Su et al., 2018; Tian and Yu, 2019; Xia et al., 2019; Xu et 15 

al., 2019a; Yuan et al., 2020; Zhang et al., 2018; Zhu and Semperlotti, 2016), almost all 16 

existing researches on elastic metasurfaces are simply related to the manipulation of the 17 

wavefield based on the GSL, which is only related to 1st order diffraction. The 18 

manipulation of other orders of elastic wave diffractions based on elastic metasurface 19 

has not been systematically studied due to the essential difference between the elastic 20 

waves and the acoustic waves; for example, more degrees of freedom and more 21 

complexity of the control equation. We expect to develop an effective theoretical tool, 22 
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which is similar to the mode-coupling method in acoustics(Mei and Wu, 2014; Zhilin 1 

Hou, 2019), and explore the rich physics of higher-order diffractions in the elastic 2 

metasurface. Fortunately, similar methods (Willis, 2016; Srivastava, 2016), which are 3 

also called mode-coupling methods for consistency, had been used in elastic waves to 4 

study negative refraction of anti-plane shear waves at a plane interface between a 5 

homogeneous elastic half-space and a layered periodic composite. Recently, these 6 

methods (Lustig et al., 2019; Lustig and Shmuel (2018); Mokhtari et al., 2019; Mokhtari 7 

et al., 2020) had been extended to study the scattering of in-plane elastic waves. 8 

Although they only focus on anti-plane shear waves or in-plane waves, they provide a 9 

good theoretical basis for the studies of other elastic wave patterns in different periodic 10 

structures. 11 

In the present study, we expand the conventional mode-coupling method to 12 

systematically study the diffraction mechanism of flexural waves. Based on the 13 

diffraction mechanism, we introduce the concept of lossy gradient elastic metasurface 14 

(LGEM) to explore the underlying physics of flexural wave absorption. Different from 15 

the inherent energy loss in acoustic waves, the small damping property of the solid 16 

material makes the loss of elastic wave in the structure negligible. Therefore, we 17 

introduce different lossy physical system into the elastic metasurface, which is an 18 

additional constrained damping layer (i.e., a damping layer of butyl rubber and a 19 

constraint layer of aluminum foil) on the subunits. For the lossy subunits, the equivalent 20 

models are established to analytically predict the amplitudes and phases of reflected 21 

waves. Further, we theoretically analyze the absorption performance in details. In 22 
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addition, we propose a general approach to reduce the sub-wavelength thickness of the 1 

metasurface while maintaining its efficient absorption. Finally, both numerical 2 

simulations and experiments are carried out to demonstrate the broadband and high-3 

efficiency flexural waves absorption of the LGEM in low-frequency. 4 

2. Design of the subunits of the LGEM 5 

Fig. 1(a) shows the schematic of LGEM with predesigned geometries in the host 6 

plate with thickness of . It is composed of periodic arrays of supercells with 7 

the width of g, which includes J subunits with different lengths hj ( , J=4 in 8 

Fig. 1(a)). These subunits with the width of p are separated by the slits with the width 9 

of . In Fig. 1(b), the strip-like structure can be divided into the host plate and 10 

the subunits regions, which are marked as Regions (I) and (II), respectively. It can be 11 

seen that the subunit consists of three-layer composite structures. From top to bottom, 12 

they are the strip-like plate, damping layer and constrained layer, with the thicknesses 13 

of d0, d1, and d2, respectively. The material of the damping layer is butyl rubber, which 14 

will introduce the loss to the subunit. The material of the host plate and the constrained 15 

layer, which are considered as the lossless, is aluminum with a very low damping. The 16 

ultrathin constrained layer will make the energy in the plate to mainly dissipate in the 17 

way of shear deformation, which can enhance the loss of the damping layer. 18 

0 =3 mmd

=1, 2  j J!

0 =1 mmp
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 1 

FIG. 1 (a) Schematic diagram of the LGEM. (b) View of a subunit composed of a strip-like plate 2 

attached with damping layer and constrained layer. (c) The effective model of the lossy subunit. 3 

2.1 Effective model of the lossy unit 4 

First, the subunits without the damping and constrained layers are studied, i.e., d1 5 

= d2 = 0. The one-dimensional governing equation for the flexural wave in the plates of 6 

Regions (I) and (II) can be expressed as the following form: 7 

 , (1) 8 

where  is Young’s modulus of the plate,  is the density of the plate and 9 

 is the moment of area, in which  and  are the thickness and 10 

Poisson’s ratio of the plate, respectively. 11 

The one-dimensional governing equation of flexural waves is a fourth-order partial 12 

derivative equation. The wavenumber has four solutions, i.e., two real wavenumbers 13 
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 and two pure imaginary wavenumbers . The real and pure imaginary 1 

wavenumbers represent propagating and evanescent flexural waves, respectively. 2 

Therefore, the general solution of displacement for the governing equation is: 3 

 , (2) 4 

where , , , and  are complex coefficients.  and  5 

correspond to the positive-going and negative-going propagating flexural waves, 6 

respectively.  and  correspond to the positive-going and negative-7 

going evanescent flexural waves, respectively. The real wavenumber  can be 8 

expressed as , in which  is the circular frequency. 9 

Further, the subunits with damping and constrained layers are studied, as shown 10 

in Fig. 1(b). To simplify, the lossy subunit with a three-layer composite structure can 11 

be considered as an effective one, i.e., an isotropic plate, as shown in Fig. 1(c). The 12 

effective bending stiffness of the lossy unit can be expressed as (Ross et al., 1959): 13 

 . (3) 14 

Based on the effective bending stiffness, we can obtain the effective wave number  15 

in the lossy unit, which is corresponding to the wavenumber of the positive-going 16 

propagating mode in Eq. (1). The detailed solutions of the effective bending stiffness 17 

and effective wave number are reported in Appendix A. Due to the loss of the damping 18 

layer, the solved effective wave number has a small imaginary part. It can be expressed 19 

as , where  and  are the real and imaginary parts, 20 
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respectively. Furthermore, the displacement of positive-going propagating flexural 1 

wave in the lossy subunit can be rewritten as , where 2 

 and  represent fluctuation harmonically and decay exponentially in space, 3 

respectively. Therefore,  and  correspond to the amplitude and phase shift of 4 

the reflection wave emanating from the lossy subunit, respectively. 5 

In order to obtain the effective mechanical properties of the lossy subunit, we 6 

measure the storage modulus (the real part of the complex Young modulus)  and 7 

the loss factor ƞ of its damping layer varying with the frequency by the Dynamical 8 

Mechanical Analysis (DMA). The test set-up is shown in Fig. 2(a), and the test sample 9 

of butyl rubber is shown in the illustration in the lower left corner. The operating 10 

frequency range of our DMA is from 0 to 1000 Hz. The following investigations will 11 

be based on the measured parameters in this frequency range, which is sufficient for the 12 

following theoretical analysis of vibration absorption. The measured datum of storage 13 

modulus and loss factor are shown in Fig. 2(b). For convenience, the fitting curves of 14 

the datum are obtained, and the corresponding fitting functions can be expressed as 15 

. (4) 16 

2.2 The influence of constrained and damping layers parameters on the subunit 17 

Without considering the constrained and damping layers, the phase shifts 18 

 of the reflected waves emanating from the jth subunit can be simply 19 
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controlled by the lengths . When these lengths of the subunits fulfil (Cao et al., 1 

2018b) 2 

 , (5) 3 

the phase shift of the reflected wave on the surface of the gradient elastic metasurface 4 

without a loss (GEM) is approximately linear, where  and  are the 5 

wavelength and additional fixed length, respectively. In this way, the reflected wave 6 

can be manipulated by the GEM based on the GSL and diffraction theorem. In these 7 

subunits, the phase shift between the two subunits of the 1st subunit and Jth subunit is 8 

the maximum, i.e., . After introducing the constraint damping layer 9 

to the subunits, the maximum phase shift will be rewritten as . 10 

For independently defining the effect of loss and phase shift on absorption, when the 11 

difference between the phase resolution for lossless and lossy subunits is less than about 12 

 rad, the phase difference caused by the constraint damping layer can 13 

be ignored. Therefore, the difference between the two maximum phase shifts needs to 14 

fulfil 15 

 . (6) 16 

In this way, the phase gradient designed by Eq. (5) can still be approximately linear 17 

for the lossy subunits. 18 
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 1 

FIG. 2 (a) The test set-up of Dynamical Mechanical Analysis (DMA). (b) The fitting curves for the 2 

measured storage modulus and loss factor. (c) and (d) The analytical results of  and , 3 

which give a quantitative evaluation of the dependence of the real and imaginary parts of  on 4 

the thicknesses of the damping layer d1 and the constrained layer d2, respectively. 5 

According to Eqs. (5)-(6), we can get 6 

 . (7) 7 

The central frequency in our design is 600 Hz, corresponding to a wavelength of 8 

. Without loss of generality, the number of subunits and additional fixed 9 

length are chosen as J =12 and , respectively. In order to obtain a 10 

quantitative evaluation of the dependence of the real and imaginary parts of  on 11 

the thicknesses of the damping layer d1 and the constrained layer d2, we define the 12 

correlation coefficient as 13 
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 , (8) 1 

 , (9) 2 

where  and  are the frequencies of 200 Hz and 1000 Hz, respectively. The 3 

analytical results of  and  are shown in Figs. 2(c) and 2(d), respectively. 4 

Recalling Eq. (7), we can get  where the phase difference 5 

caused by the constraint damping layer can be ignored. Therefore, the corresponding 6 

the correlation  can be chosen as 0.9. According to Figs. 2(c) and 2(d), the 7 

thicknesses of the damping layer and the constrained layer is 3 mm and 0.15 mm, 8 

respectively. 9 

2.3 The amplitude and phase shift of the subunits 10 

For the subunits with the certain thicknesses of constrained and damping layers, 11 

 and  varying with frequency are shown in Fig. 3(a), respectively. It can be 12 

seen that the value of  is less than 1.08 in the whole frequency range and  13 

increases with the frequency. This verifies that phase difference caused by the designed 14 

constraint damping layer can be ignored. Further, we accurately solve the amplitude 15 

and phase shift of the reflected waves emanating from the lossless and lossy subunits. 16 

The displacement , slope , shear force , bending moment  and the 17 

complex coefficients , , ,  for Regions (I) and (II) in Fig. 1(b) can be 18 

organized as a state vector  and a coefficients vector 19 

, respectively. The positive directions of the shear force V and bending 20 

moment M are marked at the interfaces between Regions (I) and (II), as shown in the 21 
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illustration of Fig. 3(b). The slope , bending moment M and shear force V can be 1 

expressed in term of the displacement as , , and , 2 

respectively, where the superscript  indicates space differentiation with respect to 3 

the corresponding coordinate. The relationships between the state and coefficient 4 

vectors in Regions (I) and (II) can expressed respectively as 5 

 , (10) 6 

where  and  are the transformation matrix between the state and the coefficient 7 

vectors. They are given in Appendix B. 8 

The boundary conditions at the interface, as shown in the illustration of Fig. 3(b), 9 

can be expressed as 10 

 . (11) 11 

where  is the position coordinate of the jth subunit. We further obtain the transfer 12 

equation between the state vectors of the right end in Region (I) and the left end in 13 

Region (II) by integrating Eq. (11) with dy at the region  14 

 , (12) 15 

where l is the total width of subunit and slit, . According to Eqs. (10) and (12), 16 

we can get 17 
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 . (13) 1 

It should be pointed out that when the transfer matrix of coefficients vectors  is an 2 

identity matrix, the impedances of Regions (I) and (II) at the interface are matched. It 3 

means that the propagating wave will not be reflected from the interface. 4 

On the other hand, it needs to fulfil the requirement of free boundary conditions in 5 

the right boundary of Region (II), i.e., the shear force and the bending moment should 6 

be zero. It gives 7 

 , (14) 8 

where  is the matrix for the free boundary conditions and given in Appendix B. The 9 

wave field for Region (I) can be described as , where 10 

 is the incident flexural wave with an amplitude of 1.  and  are the 11 

amplitude ratios of the reflected propagating flexural wave and reflected evanescent 12 

flexural wave in Region (I), respectively. Thus, we can get the coefficient vectors 13 

. According to Eqs. (13) and (14), we have 14 

 , (15) 15 

where T5 is the transfer matrix for the jth subunit. The amplitude ratio and corresponding 16 

phase of the reflected propagating flexural wave in the far field of Region (I) can be 17 

solved by Eq. (15) (Cao et al., 2020b; Xu et al., 2019a). The phase shifts of the reflected 18 

waves for all subunits are obtained by subtracting their phase from the phase for the 1st 19 

unit. When keff and Deff are equal to k0 and D0, respectively, the transfer matrix T5 of the 20 

lossy subunits will degenerate into that of the lossless subunits. 21 
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 1 

FIG. 3 (a)  and  varying with frequency when the thicknesses of the constrained and 2 

damping layers are 3 mm and 0.15 mm, respectively. (b) The analytical amplitudes and phase shifts 3 

of reflected waves for the lossy and lossless subunits in the central frequency of 600 Hz. The 4 

corresponding simulated results are also added. The analytical model is shown in the illustration. 5 

The phase shifts and amplitudes varying with frequency for the lossy and lossless subunits are 6 

shown in (c), (e) and (d), (f), respectively. 7 

The analytical amplitudes and phase shifts of reflected waves emanating from the 8 

lossy subunits are solved in the central frequency of 600 Hz, as shown in Fig. 3(b) by 9 

red solid line and blue solid line, respectively. To evaluate the accuracy of the analytical 10 

solution, the simulated results are also depicted in Fig. 3(b). It can be seen that the 11 

simulated results are in very good agreement with the corresponding analytical results. 12 

The phase shifts of the lossy subunits are almost the same as that of the lossless subunits, 13 

while the amplitudes of the lossy subunits are reduced by about 80%. To quantify the 14 

performance of the subunits, we further examine the phase shifts and amplitudes 15 
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varying with the frequency for the lossy subunits (see Figs. 3(c) and 3(e)) and lossless 1 

subunits (see Figs. 3(d) and 3(f)). The phase shifts of the lossy subunits are almost the 2 

same as that of the lossless in the whole frequency range, while the amplitude of the 3 

lossy subunit decreases with frequency. This again verifies the phase shift caused by 4 

the loss in the designed subunits can be ignored. Furthermore, we can independently 5 

explore the effect of loss and phase shift on flexural wave absorption. 6 

3. Analysis of flexural wave diffraction 7 

3.1 Mode-coupling method for flexural waves 8 

The above designed subunits are arranged periodically to compose the LGEM, as 9 

shown in Fig. 1(a). The reflection angles of these diffraction modes can be calculated 10 

by the diffraction theorem 11 

 , (16) 12 

where  and  mean y-component wave vectors of the 13 

incident waves and nth order diffraction, respectively.  and  are the reflection 14 

angle of the nth order diffraction and the incident angle.  describes the phase 15 

gradient along the LGEM, and  is the width of the supercell. When n = 1, Eq. (16) 16 

is transformed to , yielding the well-known GSL. According to Eq. (16), 17 

we can get the reflection angle of the nth order diffraction by 18 

 . (17) 19 

Further, we expand the mode-coupling method to calculate the reflection amplitudes of 20 

these flexural wave diffraction modes. In Fig. 1(a), the host plate and the LGEM 21 
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structure are divided into Region (P) and Region (S). For the sake of universality to 1 

study the vertically and obliquely incident flexural waves in the host plate, the 2 

governing equation for the flexural wave in Region (P) should be reconsidered in the 3 

two-dimension form: 4 

 , (18) 5 

where . 6 

The displacement field including all diffraction modes in Region (P) can be 7 

expressed as: 8 

 , (19) 9 

where  is the Kronecker delta, Ai is the amplitude of the incident wave, An and Bn 10 

are the reflection amplitudes of the nth order propagating and nth order evanescent 11 

flexural wave diffraction modes, respectively.  and 12 

 are x-component wave vectors of the propagation and evanescent 13 

flexural wave diffraction modes, respectively. 14 

Recalling Eq. (17), when the phase gradient  fulfils the relation of 15 

, we always can find an incident angle  in the range from -90° to 90° 16 

to make the reflection angle of the th order diffraction exist, where  is the 17 

maximum of all the existing orders. In other words, there will exist the propagating 18 

diffraction modes of from the th order to the th order when the phase gradient 19 

 fulfils the relation of , while other order diffraction modes are evanescent. 20 
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The infinite summation in Eq. (19) includes only infinite propagating diffraction 1 

modes. The number of propagation modes can be determined by 2 

 , (20) 3 

where “roundup” is a function which rounds up to the nearest integer. Therefore, the 4 

total number of those propagating modes is controlled by the phase gradient . The 5 

coefficient vector of the reflection diffraction field in Region (P) can be defined as 6 

, where . 7 

In Region (S), since the width of the subunit is much smaller than the operating 8 

wavelength, only the fundamental mode needs to be considered. The displacement of 9 

flexural waves in the jth subunit can be expressed as 10 

 , (21) 11 

where , , , and  are the amplitude coefficients. The coefficient vector of 12 

the fundamental mode in Region (S) can be defined as , where 13 

. 14 

In the direction perpendicular to the periodic waveguide plates, waveshapes 15 

related to the y-component wave vectors of the reflected diffraction modes have the 16 

orthogonal relation: 17 

 , (22) 18 

where . Continuity (11) and orthogonality (22) are employed and mode-19 

coupling method is expanded to calculate these flexural wave diffraction modes. We 20 

get a linear equation set about  and : 21 
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 , (23) 1 

where  is a column vector of size  whose elements are all Ai,  and 2 

 are square matrices of size . The detailed derivation can be 3 

found in Appendix C. The corresponding amplitudes of diffraction modes can be 4 

calculated by solving Eq. (23). The reflection coefficient of the nth order diffraction 5 

mode can be defined as 6 

 , (24) 7 

which represents the ratio of reflected energy to incident energy for nth order mode in 8 

x-axis direction. When keff and Deff are equal to k0 and D0, respectively, Eqs. (23) and 9 

(24) will degenerate to calculate reflection coefficient of diffraction modes for the 10 

lossless GEM. 11 

3.2 The reflection angle and amplitude of each diffraction wave 12 

First, without loss of generality, we begin with a lossless GEM with the phase 13 

gradient of . According to Eq. (20), three propagation modes can be predicted in 14 

the reflection field. The corresponding reflection angles of these modes are calculated 15 

by Eq. (17), as shown in Fig. 4(a-i). And the reflection coefficients associated with 16 

each order diffraction are obtained by Eqs. (23) and (24), as shown in Fig. 4(a-ii). The 17 

reflection coefficient associated with the 1st or -1th order mode is 1 at a relatively small 18 

incident angle, while the 0th order mode dominates at a big incident angle. After the 19 

loss is considered in the LGEM, the corresponding reflection angles and reflection 20 

coefficients of these diffraction modes are shown in Figs. 4(b-i) and 4(b-ii). It can be 21 
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seen from Fig. 4(b-ii) that the total number of the propagation diffraction modes has 1 

changed to 2 dues to the absence of the -1th order mode. 2 

For intuitively displaying the above analytic results, the incident angles of -45o 3 

and 45o for the GEM and LGEM are chosen to show the full reflection fields. Based on 4 

the solved complex amplitudes of three diffraction modes including propagating and 5 

evanescent ones, the total full reflected wave fields in Region (P) can be solved by 6 

 . (25) 7 

The analytical reflected wave fields for the GEM and LGEM are shown in Figs. 4(a-iii) 8 

and 4(b-iii), respectively. It can be seen that the reflection amplitudes for the GEM are 9 

1 with the incident angles of -45o and 45o, while the reflection amplitudes for the LGEM 10 

are close to 0.8 and 0 with the incident angles of -45o and 45o, respectively. Furthermore, 11 

the corresponding simulation of full wave field are performed. It can be seen from Figs. 12 

4(a-iii) and 4(b-iii) that the simulation results are in good agreement with the analytical 13 

ones. This confirms the accuracy of the proposed analytical method. 14 

It should be pointed out that the sum of the reflection coefficients of all different 15 

order modes for the lossless GEM is always 1 at different incident angles, as shown in 16 

Fig. 4 (a-ii). The analytical and simulated reflection wave fields in Fig. 4 (a-iii) also 17 

show that the reflection amplitudes are 1. In other words, the incident energy of flexural 18 

waves is proved to be equal to the reflected energy. Therefore, there is no mode 19 

conversion in the GEM structure. In addition, since it is known that the loss cannot 20 

induce mode conversion, the mode conversion does not exist in the LGEM. 21 
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 1 

FIG.4 LGEM and GEM with surface phase gradient . (a-i) and (b-i) The corresponding 2 

reflection angles of these diffraction modes for the GEM and LGEM, respectively. The color scale 3 

in (a-i) and (b-i) represent the value of reflection coefficient. (a-ii) and (b-ii) The reflection 4 

coefficient associated with each order diffraction mode for the GEM and LGEM, respectively. (a-5 

iii) and (b-iii) Analytical and simulated full reflection wave fields for the GEM and LGEM, 6 

respectively. 7 

4. Design of the quasi-omnidirectional LGEM and the internal mechanism 8 

4.1 Propagation diffraction modes induced by multiple reflections 9 

In order to reveal the underlying physics of the disappearance of -1th order 10 

diffraction mode after considering damping in Fig. 4(b-ii), we reexamine the diffraction 11 

theorem of Eq. (16). The physical meaning of  in Eq. (16) is an extra 12 

momentum in y direction, where the value of n corresponds to nth order diffraction. 13 

When n = 1, the extra momentum corresponds to 1st order diffraction and the diffraction 14 

0=kg
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theorem of Eq. (16) degenerates into the GSL. The total phase shift of the supercell 1 

consisting of J subunits is 2π, so the phase shifts between adjacent subunits is . 2 

It is known for the GSL that the phase shifts of these subunits are caused by one-time 3 

reflection of the incident wave in the subunit. When , the total phase shift 4 

of the supercell is , which corresponds to the th order diffraction. The phase 5 

shifts between adjacent subunits increase to  times, i.e., , while the 6 

geometric size of subunits remains unchanged. The phase shifts of these subunits 7 

 need to be matched by -times reflection of the incident wave in the 8 

subunit. Therefore, th order diffraction corresponds to -times reflection in the 9 

subunit. 10 

Similarly, when , the total phase shift of the supercell consisting of J 11 

subunits is . Therefore, the phase shifts between adjacent subunits is 12 

. But the phase shift is a negative value, which doesn't fit the actual physics. 13 

Due to the periodicity of waves, the negative phase shift is equivalent to 14 

. It needs to be matched by E-times reflection of the incident wave in 15 

the subunit. Recalling the phase shift between the adjacent subunits is  for the 16 

one-time reflection of the incident wave in the subunit. Therefore, we can get 17 

 . (26) 18 

After simplification, Eq. (26) can be expressed as . Therefore, the time of 19 

multiple reflections in the subunit corresponding to the th order diffraction can be 20 

expressed as 21 
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 . (27) 1 

According to Eq. (27), we can calculate the times of multiply reflection in the 2 

subunit for all propagation diffraction modes in Fig. 4(a-ii). The times of multiply 3 

reflection for the -1th order, 0th order, and 1st order diffraction modes are 11, 12, and 1, 4 

respectively. On the other hand, the lower the corresponding times of multiple 5 

reflections for the existing propagation diffraction modes is, the less the resistance from 6 

the structure is. The diffraction mode with the least times of multiply reflections will 7 

dominate in all existing propagation modes. When the incident angle is the positive, 8 

existing propagation modes are the -1th order and 0th order ones. The times of multiply 9 

reflection for the -1th order one is less than that for the 0th order one. Therefore, the -1th 10 

order diffraction dominates, as shown in Fig. 4(a-ii). Similarly, when the incident angle 11 

is negative, the 1st order diffraction dominates. In Fig. 4(b-ii), when the damping is 12 

taken into account, 11-times multiply reflection for the -1th order diffraction will 13 

enhance damping dissipation of flexural waves. It leads to that the absorption of the -14 

1th order diffraction is greater than that of the 1st order diffraction. This is the reason for 15 

the disappearance of the -1th order diffraction mode after considering damping. 16 

4.2 Verification of multiple reflections 17 

In order to verify the above multiple reflections, the case that the incident wave 18 

with the incident angle of 45o propagates into the LGEM with the phase gradient of 19 

 is adopted. The central frequency is 600 Hz. The model of the LGEM is shown 20 

in Fig. 5(a). The corresponding lengths of the subunits are ,   , , 21 
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respectively, which can be solved by Eq. (5). According to the above analysis, the -1th 1 

order diffraction dominates in the reflection wave filed, which will be absorbed by the 2 

LGEM. The absorption coefficients considering all diffraction modes can be defined as 3 

. We calculate the absorption coefficients varying with the number of 4 

subunits J in the supercell according to Eqs. (23) and (24). The results are shown in 5 

Fig. 5(c). 6 

For comparison, we design another model, as shown in Fig. 5(b), in which all 7 

subunit lengths are set to the same value of . The model is named as the lossy 8 

uniform elastic metasurface (LUEM). The corresponding widths of the subunits and 9 

supercell are the same with the LGEM. When the uniform subunit length of LUEM 10 

fulfils , the damping area of the LUEM is the same as that of the LGEM. 11 

If the incident wave is reflected by one time in the subunit of the LGEM, the absorption 12 

coefficients for the LUEM and the LGEM will be the same. However, in the section 13 

4.1, it shows that the incident wave with the incident angle of 45o will be reflected by 14 

J-1 times in the LGEM due to the dominant -1th order diffraction. 15 

Therefore, we increase the subunit length of the LUEM to . In this way, 16 

we analytically calculate the absorption coefficient of the LUEM for the incident wave 17 

with the incident angle of 45o according to Eqs. (23) and (24). The results are depicted 18 

in Fig. 5(c). It can be seen that the absorption coefficient of the LUEM is exactly the 19 

same as that of the LGEM with different numbers of subunits. This result verifies that 20 

the times of multiple reflections for the -1th order diffraction is J-1 calculated by Eq. 21 
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(27). 1 

 2 

FIG. 5 (a) The supercell of LGEM, which is composed of J subunits. (b) The supercell of LUEM 3 

with the uniform subunit length of . (c) The analytical absorption coefficients of the 4 

LGEM and the LUEM. 5 

4.3 Quasi-omnidirectional flexural wave absorption of the LGEM 6 

According to Eq. (27), we know that the number of multiple reflections for the 0th 7 

order propagation mode in the LGEM is J times, which is the highest in that for all 8 

propagation modes. According to Eq. (20), we can adjust the surface phase gradient of 9 

the LGEM (J=12) as , so that there is only one propagation mode, i.e., the 0th 10 

order one, in the reflection field. In the later research, we all adopt the LGEM with the 11 

phase gradient of . When the loss is not considered, the corresponding 12 

reflection angles and reflection coefficients of these diffraction modes are calculated 13 

analytically, as shown in Figs. 6(a-i) and 6(a-ii), respectively. It can be seen that the 14 

amplitudes of the 0th order modes are always 1 for all incident angles in Fig. 6(a-ii). 15 

When the loss is considered, the reflection coefficients jump from 1 to less than 16 

0.2 for the incident angles from -75o to 75o due to the multiple reflections, as shown in 17 

( )1J h- ×
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Fig. 6(b-ii). The LGEM realizes a high-efficiency and widen-angle absorption. 1 

Therefore, it is a perfect candidate for quasi-omnidirectional flexural wave absorption. 2 

To intuitively display the high-efficiency absorption, the incident wave with the 3 

incident angle of 0o is chosen to propagate into the GEM and LGEM, respectively. For 4 

these two cases, full reflected wave fields are solved analytically and numerically, as 5 

shown in Figs. 6(a-iii) and 6(b-iii). The results of full reflection wave fields are in good 6 

agreement with the reflection coefficients, which shows the reflection wave field almost 7 

disappears. 8 

 9 

FIG. 6 LGEM and GEM with surface phase gradient . (a-i) and (b-i) The corresponding 10 

reflection angles of these diffraction modes for the GEM and LGEM, respectively. The color scale 11 

in (a-i) and (b-i) represent the value of reflection coefficient. (a-ii) and (b-ii) The reflection 12 

coefficients associated with each order propagation mode for the GEM and LGEM, respectively. (a-13 

iii) and (b-iii) Analytical and numerical full reflection fields for the GEM and LGEM, respectively. 14 

Further, for the quasi-omnidirectional LGEM, we intuitively show the multiple 15 
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reflections in the subunits by the analyses of the time domain signal. The computational 1 

model without considering loss is shown in Fig. 7(a). For comparison, the model of the 2 

lossless UEM is also shown in Fig. 7(c). The only difference between the two models 3 

is the subunit length, the one is gradient and the other is uniform. The periodic boundary 4 

conditions are applied to the two long boundaries of the models. 5 

 6 

FIG. 7 (a) The model of the supercell of GEM. (c) The model of the supercell of UEM. The signals 7 

over time received at the point F in (a) and (c) are shown in (b) and (d), respectively. 8 

A 5-cycle tone burst signal  is applied on 9 

the line E, where  is the central frequency. The point F, as shown in Figs. 10 

7(a) and 7(c), is the point of receiving signal. The corresponding received signals are 11 

shown in Figs. 7(b) and 7(d), where the signals ① and ② are the incident signal and 12 

reflection signal, respectively. It can be seen from Fig. 7(b) that the reflection signal for 13 

the GEM is delayed relative to that for the UEM in Fig. 7(d). It confirms that multiple 14 

reflections occur in the GEM. 15 
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5. Performance evaluation of the quasi-omnidirectional LGEM 1 

To quantify the absorption performance of the quasi-omnidirectional LGEM, we 2 

examine the absorption coefficient varying with the frequency and incident angle by 3 

Eqs. (23) and (24). The corresponding results are shown in Fig. 8(a) with the white 4 

contour . The area of the high absorption coefficient, which is defined when the 5 

absorption coefficient exceeds 0.8, is located in the frequency range extending 6 

approximately from 340 Hz to 1000 Hz and for angles between -75° to 75°, except for 7 

the small area in the upper left corner in Fig. 8(a). Next, we will reveal the reasons for 8 

the low-efficiency absorption region in Fig. 8(a), including the region in the upper left 9 

corner, large incident angle region and low-frequency region. 10 

5.1 The low-efficiency absorption induced by 1st order diffraction 11 

In order to find out the reason of weak absorption in the upper left corner in Fig. 12 

8(a), we calculate the reflection coefficients of the 0th order, -1th order, and 1st order 13 

diffraction varying with the frequency and incident angle, without considering the 14 

damping. The results are shown in Figs. 8(d), 8(e), and 8(f), respectively. It can be seen 15 

that the -1th order and 1st order diffractions dominate in the upper right and left corners 16 

in these figures, respectively, while the 0th order diffraction dominates in the rest of the 17 

region. 18 

The reason is that when the frequency is greater than 660 Hz, the surface phase 19 

gradient  will be less than . According to Eq. (20), the number of propagation 20 

modes increase to 3 for the incident angle range from -90° to 90°. In other words, 21 

another order propagation mode will exist in addition to the 0th order diffraction. The 22 

=0.8a

g 02k



29 
 

added propagation modes are the -1th order and 1st order for the positive and negative 1 

incident angle, respectively, according to Eq. (17). On the other hand, we know from 2 

the above analysis that the 0th order and -1th order diffractions will be greatly absorbed 3 

due to multiple reflections while the 1st order diffraction cannot do due to only one 4 

reflection. Therefore, in the upper left corner region of Fig. 8(a), the 1st order diffraction 5 

dominates and its low-efficiency absorption makes the value of absorption coefficient 6 

very small. 7 

5.2 Impedance mismatch at the interface 8 

From Fig. 8(a), we can see that for the large incident angles (>75°), the absorption 9 

coefficient sharply drops. In order to reveal this phenomenon, we set up an analytical 10 

model, as shown in the illustration of Fig. 8(b). The host plate and the waveguide 11 

subunits, which are marked as Regions (1) and (2), respectively. The dotted line  is 12 

the interface between the two regions. The left and right ends of the model are the non-13 

reflection boundaries. The coefficient vectors in Regions (1) and (2) can be expressed 14 

as  and  . At the interface of , 15 

according to the boundary conditions, we can get . Then, by deriving and 16 

simplifying, we get , where  is the scattering matrix for a 17 

reciprocal system, which already contains the information of the evanescent wave. On 18 

the other hand, a general form of the 2 × 2 scattering matrix for a power-conserving and 19 

reciprocal system can be expressed as (Liu et al., 2017b) 20 
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 , (28) 1 

where  has the physical meaning of power conservation. By comparing the two form 2 

of , , we can get the analytical impedance at the interface 3 

 . (29) 4 

It can be seen from the above expression that the impedance at the interface is 5 

independent of the frequency. Based on Eq. (29), the reflection coefficient can be 6 

obtained from  and expressed as 7 

 . (30) 8 

According to Eq. (30), the reflection coefficients induced by impedance mismatch at 9 

the interface  are calculated and shown by the hollow circle line of Fig. 8(b). The 10 

corresponding simulated results are described by the solid circle line and in very good 11 

agreement with the analytical results. For comparison, the reflection coefficients of the 12 

LGEM in Fig. 6(b-ii) are added, as shown in the black solid line of Fig. 8(b). It can be 13 

seen that reflection coefficients for the LGEM are almost the same as that for the 14 

interface . This indicates that for the incident wave with a big incident angle (>75°), 15 

the unabsorbed reflected wave from the LGEM is caused by the impedance mismatch 16 

at the interface between the host plate and the waveguide subunit. This is the reason 17 

that the absorptions coefficient sharply drops for the incident waves with very large 18 

incident angles. 19 
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 1 

FIG. 8 Performance evaluation of the LGEM. (a) The absorption coefficient varying with frequency 2 

and incident angle. For the reflection coefficients induced by impedance mismatch at the interface 3 

, the analytical and simulated results are the hollow circle line and solid circle line in (b), 4 

respectively. For comparison, the reflection coefficients of LGEM in Fig. 6(b-ii) is added to the 5 

black solid line of (b). (c) The change rate of phase shift for the supercell varying with the frequency. 6 

The phase shifts of all subunits for the frequencies of 343 Hz, 600 Hz, and 1000 Hz are shown in 7 

the illustration. (d), (e), and (f) are the reflection coefficients of 0th order, -1th order, and 1st order 8 

diffractions varying with the frequency and incident angle, respectively, without considering the 9 

damping. 10 

5.3 Degenerated phase gradient in the low-frequency 11 

It is worth noting that in Fig. 8(d) the 0th order diffraction dominates in the 12 

frequency range from 200 Hz to 650 Hz, but in Fig. 8(a) the absorption coefficient 13 

sharply drops in the range from 200 Hz to 343 Hz. In order to explain this phenomenon, 14 

the change rate of phase shift for the supercell varying with the frequency can be 15 

1l
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defined as 1 

 , (31) 2 

where  is the phase shift for the supercell in the central frequency of 600 Hz. 3 

The value of  can quantify the degradation of the linear phase gradient. When  4 

is equal to 0, it shows that there is a perfect linear gradient. The more the value of  5 

is, the greater the degradation of the linear gradient is. According to Eqs. (15) and (31), 6 

the value of  varying with the frequency is shown in Fig. 8(c). It can be seen that 7 

the change rate of  has been less than –0.27 when the frequency is less than 343 Hz. 8 

The phase shifts of all subunits for the frequencies of 343 Hz, 600 Hz, and 1000 9 

Hz are shown in the illustrations of Fig. 8(c) as three typical examples. It can be seen 10 

that phase shifts of all subunits decrease in the frequency of 343 Hz, in other words, the 11 

linear phase gradient from the subunits has degenerated. It indicates that in the 12 

frequency range below 343 Hz, the 0th order diffraction induced from the phase gradient 13 

has been greatly generated by the decreased phase shift of the subunits, which will not 14 

cause J-times reflections in the subunits. Therefore, the absorption coefficient sharply 15 

drops in the range below 343 Hz. It should be pointed out that in Fig. 3(c) the loss of 16 

the subunits has also some degeneration in the frequency range from 200 Hz to 343 Hz, 17 

but the reduced loss has little effect on the absorption coefficient. In addition, the 18 

degenerated phase gradient in the high frequency does not affect the 0th order diffraction, 19 

which can result in high-efficiency absorption. The detailed explanation is shown in 20 

Appendix D. 21 
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6. Reducing the thickness of the quasi-omnidirectional LGEM 1 

The above LGEM is designed in the central frequency of 600 Hz and its thickness 2 

(in the propagation direction) is determined by the maximum subunit length of 3 

according to Eq. (5). When the frequency is less than 600 Hz, the 4 

designed thickness will be less than the wavelength. In other words, in the frequency 5 

range from 343 Hz to 600 Hz, high-efficiency absorption can be obtained by the LGEM 6 

with the sub-wavelength thickness, which is 0.76 times the maximum wavelength. In 7 

order to make the LGEM structure more compact in lower frequencies, we propose a 8 

general approach to further reduce its thickness while maintaining its high-efficiency 9 

absorption. 10 

To understand, we first consider the supercell composed of 13 subunits, which is 11 

the 1st case marked as “C1”, shown in Fig. 9(a). The supercell has the same subunit 12 

width p and slit width  as these of the above LGEM. All subunit lengths are 13 

redesigned to keep linear phase gradient by Eq. (5). According to Eq. (27), the time of 14 

multiple reflections for the 0th order diffraction is increased to 13 due to the subunit 15 

number is changed from 12 to 13. The corresponding absorption coefficient is almost 16 

the same as that in Fig. 8(a) due to the slightly increased reflection time. Further, we 17 

adjust the arrangement sequence of subunits in the supercell along y axis shown in Table 18 

1, which is the 2nd case marked as “C2”. The corresponding model is shown in Fig. 9(b). 19 

The phase shift of each adjusted subunit along y axis is shown in Fig. 9(c). It can be 20 

found that the phase shift of the subunits for C2 still keeps linear changing due to the 21 

wave periodicity, but the phase shift of the supercell is doubled. This results in that the 22 
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phase gradient  is doubled, compared to C1. According to Eq. (20), the number of 1 

propagation diffraction modes is reduced to 1 in the whole frequency range from 343 2 

Hz to 1000 Hz. It indicates that only the 0th order diffraction exists and the low-3 

efficiency absorption induced by the 1st order diffraction is suppressed. The 4 

corresponding absorption coefficient is shown in Fig. 9(d). It can be seen that the low-5 

efficiency absorption in the upper left corner shown in Fig. 8(a) disappears. 6 

 7 

FIG. 9 (a) Phase shift of each subunit for five cases along y axis. (b) The supercell of the 1st case is 8 

composed of 13 subunits and has the same subunit, slit widths, and phase gradient as these of the 9 

above LGEM. (c) The supercell of the 2nd case with the adjusted subunits. (e) The supercell of the 10 

g
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4th case with the additional length of . (g) The modified supercell of the 5th case with a short 1 

additional length of . (d), (f), and (h) The absorption coefficient varying with the frequency and 2 

incident angle for the 2nd, 4th, and 5th cases, respectively. 3 

Table 1 The arrangement sequence of the subunits along y axis 4 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
C1 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# / / 
C2 1# 3# 5# 7# 9# 11# 13# 2# 4# 6# 8# 10# 12# / / 
C3 1# 4# 7# 10# 13# 3# 6# 9# 12# 2# 5# 8# 11# / / 
C4 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 14# 15# 
C5 1# 5# 9# 13# 17# 21# 25# 4# 8# 12# 16# 20# 24# 3# 7# 
 16 17 18 19 20 21 22 23 24 25  z  

C1 / / / / / / / / / /  2π/13 2.1k0 
C2 / / / / / / / / / /  4π/13 4.2k0 
C3 / / / / / / / / / /  6π/13 6.3k0 
C4 16# 17# 18# 19# 20# 21# 22# 23# 24# 25#  2π/25 1.05k0 
C5 11# 15# 19# 23# 2# 6# 10# 14# 18# 22#  8π/25 4.2k0 

 5 

Based on the above analysis, by changing the arrangement sequence of the 6 

subunits, the phase gradient can be increased by any positive integral multiple while 7 

keeping linear due to the wave periodicity. For example, the arrangement sequence of 8 

subunits is adjusted as the 3rd case, which is marked as “C3”. The corresponding 9 

arrangement sequence and phase shift of subunits along y axis are shown in Table 1 and 10 

Fig. 9(c), respectively. It can be found that the phase gradient of the C3 is increased by 11 

3 times compared with that of C1, but the phase resolution z, which is  ( ), 12 

is reduced by 3 times. From the corresponding calculating results, we get that 13 

absorption coefficient of the C3 will be weakened in the high frequency of more than 14 

700 Hz. This can be understood because good manipulation effect based phase requires 15 

high phase resolution (Li et al., 2016). The low phase resolution weakens the multi-16 

0h

0h ¢

g

6 13p 2p»
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reflection of the 0th diffraction mode. On the other hand, it should be pointed out that 1 

for the supercells in which the number of subunits is even, the phase distribution will 2 

have some small discontinuities after changing the arrangement sequence of the 3 

subunits in the above way, but the effect can be ignored when the phase resolution is 4 

much greater than . 5 

By the above three cases, we show that adjusting the arrangement sequence of 6 

subunits in the supercell can suppress the 1st order propagation diffraction. Based on 7 

this, we further show how to improve the supercell of the quasi-omnidirectional LGEM 8 

with a small thickness while maintaining its high-efficiency absorption. The thickness 9 

of LGEM with J subunits (J=13 in Fig. 9(a)), which has phase gradient of , is 10 

determined by the maximum subunit length. The subunit length consists of two parts 11 

according to Eq. (5). The first part is the length of , which produces linear 12 

gradient distribution of phase. The second part is the additional fixed length of , 13 

which is mainly to enhance the absorption of multiple reflections. Here, we aim to 14 

reduce the second part of the length. For reducing the first part, the corresponding detail 15 

can be found in Appendix E. 16 

For the improved supercell, the subunit number is increased by  times, while 17 

keeping subunit width, slit width, and additional fixed length unchanged. The subunit 18 

lengths are redesigned to keep a linear gradient phase distribution according to Eq. (5). 19 

For example, the number of subunits  in Fig. 9(a) is increased to , which 20 

is the 4th case marked C4, as shown in Fig. 9(e). The subunit number is increased by 21 

 times, but the phase gradient is reduced as . According to Eq. (17), 22 

2p

02kg >

0 2j Jl
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â
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the 1st order diffraction will dominate for the negative incident angle in the whole range 1 

from 343 Hz to 1000 Hz. This results in the low-efficiency absorption in this frequency 2 

range, the absorption coefficient of C4 is shown in Fig. 9(f). 3 

Further, by adjusting the arrangement sequence of the above subunits, the phase 4 

shift of the supercell can be increased by  times. The phase gradient and phase 5 

resolution of the above modified supercell can be rewritten as  and z*6 

, respectively. First, the modified phase gradient can satisfy the inequality of 7 

 to suppress low-efficiency absorption induced by the 1st order diffraction. 8 

Through the inequality, we can get the relation of . Second, the modified phase 9 

resolution of z* can be less than  to ensure good diffraction performance. We can 10 

get the increased times  as . Therefore, when  fulfil the relation of 11 

 , (32) 12 

the times of multiple reflections for 0th order diffraction mode is increased by  times, 13 

without introducing other propagation diffraction modes. In this way, the absorption 14 

effect of the modified supercell will be increased by  times according to Eq. (27). 15 

On the other hand, the additional fixed length of  is reduced by  times, the 16 

absorption effect from the additional length will be reduced by the same times. 17 

Therefore, when the additional fixed length of  is reduced by  times, at the same 18 

time, the multiple reflections is increased by  times in the above way, the modified 19 

supercell can still keep the same high-efficiency absorption as the unmodified one in 20 

C1. 21 

For example, the arrangement sequence of the subunits in C4 is redesigned, which 22 

b̂

ˆˆ ˆ=b ag g

ˆ ˆ= 2b aJp
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is the 5rd case marked as “C5”. When the subunit number is increased by  times 1 

compared with C1, the phase gradient can be increased by  times according to 2 

Eq. (32). In this way, the additional fixed length of  can be reduced by  3 

times while maintaining the same high-efficiency absorption. The modified supercell 4 

structure with the additional fixed length of  is shown in Fig. 9(g). The 5 

corresponding absorption coefficient is shown in Fig. 9(h). It can be found that in the 6 

frequency range from 343 Hz to 1000 Hz, the modified supercell can obtain the same 7 

high-efficiency absorption. Importantly, compared with the 1st case, the modified 8 

supercell thickness in propagation direction is less than the wavelength in the whole 9 

frequency range from 343 Hz to 1000 Hz and only 0.57 times the maximum wavelength. 10 

This confirms validity of the general approach, which can also be applied to the 11 

absorption of acoustic and electromagnetic wave metasurfaces. With these methods, we 12 

can further compress the thickness of the LGEM by a larger multiple to get a smaller 13 

or even deeper sub-wavelength thickness. 14 

7. Experiments of flexural waves absorption by the LGEM 15 

In order to further validate the vibrations absorption of the LGEM, we adopt the 16 

LGEM designed in the section 4.1 to perform a set of experimental investigations. The 17 

LGEM with phase gradient  is composed of twelve different subunits, as 18 

shown in Fig. 10(a). The fabrication process is shown in Fig. 10(b). First, the Wire 19 

Electrical Discharge Machining with a manufacturing precision of 0.05 mm is adopted 20 

to accurately fabricate the gradient strip-like aluminum plate by cutting a thin aluminum 21 

plate (2000 mm × 1000 mm × 3 mm). The back of the test piece is shown in Fig. 10(b-22 
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0 0= 2h h¢

0=2.1kg



39 
 

i). Then, the damping layer (butyl rubber with a thickness of 3mm) is bonded on the 1 

back of the strip-like aluminum plate, as shown in Fig. 10(b-ii). Finally, the constrained 2 

layer (aluminum foil with a thickness of 0.15 mm) is bonded to the upper surface of the 3 

damping layer as shown in Fig. 10(b-iii). 4 

An array of eight piezoelectric patches (20 mm × 20 mm × 0.3 mm) with a distance 5 

of  from the LGEM is bonded on the surface of the plate as actuators. The LGEM 6 

and the piezoelectric array are obliquely placed. In this way, the upward propagating 7 

flexural wave excited by the piezoelectric patches is reflected by the upper boundary 8 

into the left area attached with blue-tack (Liu et al., 2017b). The reflected flexural wave 9 

will be fully absorbed in a large area of blue-tack. The boundary of blue-tack in the 10 

middle of the plate can be equivalent to the non-reflection boundary, as shown in Fig. 11 

10(a), which provides a reliable condition for the later steady-state experiments. 12 

The built-in generator in the PSV-400 scanning laser Doppler vibrometer generates 13 

a sinusoidal signal and transmit the signal to a power amplifier (HVPA05). The power 14 

amplifier amplifies the signal and drives the eight piezoelectric patches. For the six 15 

piezoelectric patches in the middle, the amplified voltage is two times of that for the 16 

two outer piezoelectric patches. It should be pointed out that for different excitation 17 

frequencies, one need to adjust the distance between piezoelectric patches to generate 18 

a flexural wave Gaussian beam according to the phased array theory (Zhu et al., 2014b; 19 

Cao et al., 2018c). For example, in the central frequency of 600 Hz, the distance 20 

between piezoelectric plates is 2.5 times length of the piezoelectric patch width. Before 21 

the experiment, we also use COMSOL Multiphysics 5.4 software (“Piezoelectric 22 

2.5l
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Device” physic interface) to simulate the excited wave field. The corresponding 1 

simulated excitation wave field is shown in the upper left corner of Fig. 10(a). Before 2 

the absorption coefficient is tested, we scan the displacement field in the whole right 3 

part of plate, which has not blue-tack, through the PSV. The test results show that the 4 

intensity of the wave field in the measurement area is one order of magnitude larger 5 

than that in the other boundary within the test frequency range of 300 Hz to 1000 Hz. 6 

This indirectly proves the validity of the non-reflection boundary l1. 7 

 8 

FIG. 10 (a) The fabricated structure of the LGEM. The simulated excitation wave field is shown in 9 

the upper left corner. (b) The fabrication processes. The views are the back of the test piece in (a). 10 

Six measurement points, marked in Fig. 10(a), are selected in the measurement 11 

area. These measurement points are divided into three groups: points 1 and 2, points 3 12 
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and 4, points 5 and 6. Their locations are marked in Fig. 10(a), which meets the far-1 

field assumption (Denis et al., 2015). Therefore, the measurement wave field in these 2 

points can be well approximated as the sum of incident and reflection propagating 3 

waves. The out-of-plane complex displacements of these wave fields are measured by 4 

the laser scanning head of PSV-400 in the measurement mode of the frequency domain, 5 

which is perpendicularly aimed at the plate surface. An ensemble average with 50 6 

samples are used at every measurement point to ensure the signal quality. 7 

First, for the points 1 and 2, we test the complex displacements, which can be 8 

expressed as  and , 9 

respectively. The transfer function H12 of the total wave field in the two points can be 10 

obtained from the measured complex displacements of w1 and w2. It can be expressed 11 

as , where the reflection coefficient 12 

. Then, we can calculate the reflection coefficient of 13 

 by the transfer function H12, the distance s1, 14 

s2, and the wavenumber k. Further, the experimental absorption coefficient can be 15 

obtained as . 16 

For the other two groups of measurement points, the absorption coefficient can 17 

also be obtained using the same method. Then, the average value of the three groups of 18 

measured absorption coefficients is the reliable reflection coefficient. These 19 

experimental results are shown in Fig. 11, which are in good agreement with both the 20 

theoretical and numerical simulation results. It shows that there is a high-efficiency 21 

absorption in the frequencies range approximately from 340 Hz to 1000 Hz. Some small 22 
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observed deviations come mainly from the manufacturing error of the specimen, the 1 

imperfect excitation signal and internal loss of the host plate. Especially, the large 2 

deviations in the low-frequency mainly come from the imperfect absorption of the blue-3 

tack. 4 

 5 

FIG. 11 The absorption coefficients of the LGEM and the LUEM by experimental, analytical and 6 

simulation methods, respectively. 7 

For comparison, the experiment of flexural wave absorption by the LUEM is also 8 

conducted. The test piece is illustrated in Fig. 11, and its back is bonded with 9 

constrained damping layer (not shown in the figure). It can be seen that the absorption 10 

coefficient is obviously smaller than that of the LGEM. The results are in good 11 

agreement with both theoretical and numerical simulation results. The comparison 12 

confirms that the gradient phase greatly enhances the absorption of flexural waves. In 13 

order to show the absorption effect intuitively, the dynamic full wave field for the 14 

central frequency of 600 Hz is obtained in measurement mode of the time domain, as 15 
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shown in Supplementary Video. It can be seen that the incident wave propagating in the 1 

host plate is not superposed by the reflected wave from the boundary to form a standing 2 

wave. It intuitively shows that the incident wave propagating to the boundary has been 3 

efficiently absorbed by LGEM. 4 

8. Conclusions 5 

We have expanded the conventional mode-coupling method to analytically obtain 6 

the full field reflection of each flexural wave diffraction mode, and revealed that the 7 

flexural wave absorption behavior is due to multireflection-enhanced absorption of 0th 8 

or -1th order diffractions. Further, we have introduced the concept of sub-wavelength 9 

LGEM based on the 0th order diffraction to achieve a broadband and quasi-10 

omnidirectional absorption of flexural waves. We reveal that low-efficiency absorption 11 

performance of the LGEM is mainly from the 1st order diffraction, the impedance 12 

mismatch at the interface, and the degenerated gradient in the low-frequency. In 13 

addition, the general approach of adjusting the arrangement sequence of subunits in the 14 

supercell, which can eliminate low-efficiency absorption induced by the 1st order 15 

diffraction, is proposed to further compress the thickness of the LGEM while 16 

maintaining its high-efficiency absorption. Finally, the experiment confirms the high-17 

efficiency absorption of the LGEM in the frequencies range approximately from 340 18 

Hz to 1000 Hz. This research could open up possibilities in the family of elastic 19 

metamaterials and metasurfaces to realize broadband perfect absorption in low-20 

frequency by sub-wavelength structures. 21 
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Appendix A. Detailed solution of the effective bending stiffness and wavenumber 1 

of the lossy subunit 2 

The bending stiffnesses of the host plate, damping layer and constrained layer are 3 

, , and , respectively, where 4 

E1 is the real part of the complex Young modulus of the damping layer and E2 is Young 5 

modulus of the constraint layer. The tensile stiffnesses of the host plate, damping layer 6 

and constrained layer are , , and 7 

, respectively. The effective bending stiffness of the lossy subunit 8 

can be expressed as 9 

 , (A1) 10 

where  is the effective neutral-surface 11 

position, , , and . The effective 12 

area density of the lossy subunit can be expressed as 13 

 , (A2) 14 

where , , and  are the area density of the host plate, 15 

damping layer and constrained layer, respectively.  and  are the material 16 

density of the damping layer and constrained layer, respectively. The effective 17 

wavenumber can be obtained by 18 
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 . (A3) 1 

According to Eqs. (A1)-(A3), we can calculate the effective wavenumber  and 2 

effective bending stiffness . 3 

Appendix B: The transfer matrixes between the state and coefficient vectors 4 

 , (B1) 5 

 , (B2) 6 

where  and  are the transformation matrix between the state vector and the 7 

coefficient vector for Regions (I) and (II) in the subunit, respectively. The matrix for 8 

the free boundary conditions T4 is 9 

 . (B3) 10 

Appendix C: Mode-coupling method for flexural waves diffraction modes 11 

In x-axis direction shown in Fig. 1(a), the slope , bending moment M, and shear 12 

force V in the two-dimension plate model are rewritten as 13 

 , (C1) 14 

 , (C2) 15 
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 , (C3) 1 

where . 2 

By applying the continuous boundary conditions of x-components of the 3 

displacement at the interface of x=0, and integrating with respect to y direction in the 4 

region , we can get� 5 

 , (C4) 6 

where , 7 

, .  is the column vector whose 8 

elements are all Ai. Similarly, for the continuous boundary conditions of x-components 9 

of the slop at the interface of x=0, we can get 10 

 , (C5) 11 

where , , 12 

. 13 

By applying the continuous boundary conditions of x-components of bending 14 

moment at the interface of x=0, and using the orthogonal relationship of the waveshapes 15 

and integrating with respect to y direction at the region , we can get 16 
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 , (C6) 1 

where , , 2 

, . Similarly, 3 

for the continuous boundary conditions of x-components of shear force at the interface 4 

of x=0, we can get 5 

 ,(C7) 6 

where , , 7 

, . 8 

Since bending moment and shear forces are 0 at the right free boundary of the jth 9 

subunit, we can get 10 

 , (C8) 11 

 , (C9) 12 

where , . 13 

Eqs. (C4)-(C9), in turn, can be rewritten as 14 
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 . (C10) 1 

Finally, we can get 2 

 , (C11) 3 

 4 

where , . 5 

Appendix D: The influence of the degenerated phase gradient in the high 6 

frequency and degenerated loss on the absorption 7 

It can be known from Fig. 3(c) that in the frequency range from 200 Hz to 343 Hz 8 

the loss of the subunits has some degeneration. In order to find out whether the low-9 

efficiency absorption of LGEM ( ) in low-frequency mainly comes from the 10 

degenerated phase gradient or degenerated loss, we will fix the variable values of 11 

storage modulus and loss factors for different frequencies to that in 600 Hz. In this way, 12 

the non-degenerated loss is considered. The corresponding absorption coefficients 13 

varying with the frequency and incident angle are shown in Fig. 12(a). Comparing Fig. 14 

12(a) and Fig. 8(a), one can see that the absorption coefficients are almost the same. In 15 

other words, the absorption effects are the same considering the degenerated loss and 16 

non-degenerated one. This indicates that the low-efficiency absorption at low-17 

frequency mainly comes from the degenerated phase gradient rather than degenerated 18 

loss. 19 
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On the other hand, it can be seen from Fig. 8(c) that the value of  increases 1 

with the frequency in the frequency range from 800 Hz to 1000 Hz. It means the linear 2 

phase gradient has also degenerated in the high frequency. To clarify the effect of the 3 

degenerated phase gradient in high frequency on the absorption, we study the 4 

absorption coefficients in the frequency from 1000 Hz to 2500 Hz with considering 5 

non-degenerated loss. The storage modulus and loss factors for different frequencies 6 

are fixed to that in 600 Hz. The corresponding absorption coefficients is shown in Fig. 7 

12(b). It can be found that there is a high-efficiency absorption in the whole frequency 8 

range, except for the low-efficiency absorption in the lower left corner. The low-9 

efficiency absorption can be explained simply. The reason is that, in the frequency from 10 

1000 Hz to 2500 Hz, three propagation diffraction modes, i.e., the -1th, 0th, and 1st modes, 11 

will exist. In the lower left corner of Fig. 12(b), the 1st order diffraction dominates to 12 

result in the low-efficiency absorption. The high-efficiency absorption in the remaining 13 

region confirms that the degenerate phase gradient in high-frequency does not affect 14 

the 0th order diffraction. It should be pointed out that the degenerate phase gradient in 15 

high-frequency is different from that in low-frequency. In the illustration of Fig. 8(c), 16 

one can see the phase shift of the supercell for the frequency of 1000 Hz becomes bigger. 17 

In other words, the phase shift of adjacent subunits still keeps a larger value in high 18 

frequency, although the linear phase gradient has degenerated. This indicates that multi-19 

reflection induced by the 0th order diffraction in high frequency is not very dependent 20 

on linear phase shift. 21 

d
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 1 

Fig. 12 The absorption coefficient with considering non-degenerated loss in the frequency range (a) 2 

from 200 Hz to 1000 Hz, (b) from 1000 Hz to 2500 Hz. 3 

Appendix E: Reducing the first part of the subunit length 4 

The wavelength of flexural waves can be caculated by 5 

. Therefore, the first part of the subunit length  6 

can also be reduced by changing the thickness of subunits =ϧ  in the direction of 7 

z-axis, where ϧ is the thickness ratio. The performance of the subunit depends on the 8 

matching degree of the impedance at the interface between the host plate and the 9 

waveguide subunit. The better the impedance matching is, the smaller the reflection 10 

coefficient at the interface is. It will result in a better performance. The reflection 11 

coefficients of incident power varying with the thickness ratio and incident angle are 12 

shown in Fig. 13 with the white contour of 0.2. It can be found that changing the 13 

thickness ratio in this range of 0.4<ϧ<1, the reflection coefficients are less than 0.2. This 14 

means it is feasible to reduce the subunits length in this way. The aspects with more 15 

detail will be the scope of future works. 16 
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 1 

Fig. 13 The reflection coefficients of incident wave varying with the thickness ratio and incident 2 

angle at the interface between the host plate and the waveguide subunit. 3 

Appendix F: Material parameters and simulation methods 4 

The host plate and constraint layer are made of aluminum alloy, with the elastic 5 

modulus , Poisson's ratio , and the density 6 

. The complex elastic modulus of the damping layer can be obtained 7 

by Eq. (4). The density and Poisson's ratio of the damping layer are 1350  and 8 

0.49, respectively. All the simulations are obtained using COMSOL Multiphysics 5.4 9 

software (Solid Mechanics Module). The periodic boundary conditions are applied to 10 

the two long boundaries of the strip-like structure in Region (I), as show in Fig. 1(b). 11 

PMLs are used on all outer boundaries to avoid any reflection from the boundaries. The 12 

full reflection wave fields in the Figs. 4 and 6 are obtained by subtracting the incident 13 

wave fields from the total wave fields in the post processing. The incident wave fields 14 

are obtained by the host plate without the LGEM or GEM structure. 15 

  16 

alu = 70 GPaE alu 0.33n =

3
alu 2700 kg/mr =

3kg/m
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