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Abstract: A severe limitation of current acoustic metasurfaces remains in their modest tunability to 
meet multi-frequency requirements and alterable functionalities on demand. Here, a reconfigurable 
curved acoustic metasurface for acoustic cloaking and illusion is reported. The structure is composed 
of an array of tunable helical units to break this limitation and realize continuously versatile sound 
manipulations. We theoretically, numerically and experimentally investigate the channel length 
represented by the helical depth, which is used to achieve full 2π phase shift continuously over the 
frequency range from 2 to 7 kHz. As pragmatic examples, we present by full-wave numerical 
simulations the concept of a curved metasurface for the continuously tunable acoustic multifunction, 
including broadband carpet cloaking and ground illusion at a wide working band. Then, we 
experimentally demonstrate these functionalities by showing an excellent effect to restore the 
disturbed reflective field from a cloaked object or to mimic an arbitrary shaped ground. 

Keywords: Acoustic metasurfaces, Curved metasurfaces, Reconfigurability, Carpet cloak, Ground 
illusion. 

I. Introduction 

Among the various functions of metamaterials, invisibility cloak is one of the most promising 
applications to effectively control the propagation of classical waves and hide the signature of 
objects. It is directly related to the original idea of electromagnetic cloaking [1], but has rapidly been 
extended to other physical fields, including acoustics [2, 3], elastic waves [4, 5] and more recently 
waves in geomaterials [6]. Based on the coordinate transformation technique, waves can, at least 
theoretically, be smoothly guided around a hidden cylindrical or spherical area and propagate 
through the cloak without any distortion in the far-field radiation. However, the constitutive 
parameters of the diffractive cloaking metamaterials contain extreme values and usually challenging 
to design [7-11]. Therefore, as a special type of cloaking shell, the so-called carpet cloak [7] or 
ground cloak [8, 9] was proposed to hide objects on a flat reflected surface. Due to its finite 
anisotropy and homogeneity, the carpet cloak has remarkable property of not requiring extreme 
material parameters for its realization. However, the huge size of these clocking shells are usually 
comparable with that of the hidden region or even an order of magnitude larger than the objects. This 
limits its potential applications. 
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To get rid of the structural bulky restriction, it recently was reported that metasurfaces with 
phase discretization [10, 11] and their subwavelength thickness feature can replace the conventional 
metamaterials with transformation method [1-3, 7-9] when it comes to implement efficient carpet 
cloaking devices. These ultra-thin structures have, indeed, been widely used in various wave field 
modulations. To be specific, shortly after the development in optics [10], the constructive idea was 
introduced into acoustics with the purpose of designing diverse subwavelength sound modulatory 
devices [11]. Now, it is also being gradually applied for elastic waves manipulation [12-14]. The 
metasurfaces are composed of gradient units based on the generalized Snell’s law to manipulate the 
transmitted or reflected wavefronts in a predefined and unconventional way. That means it does not 
have to design and modify the anisotropic material parameters like transformation approach does. 

The essence of the metasurface carpet cloak is to design an ultrathin structure, which consists of 
artificial micro-units, by phase discrete treatment, and place it over the concealed objects for 
restoring the wavefront as if it were reflected from a flat surface. The cloaked target would be then 
indistinguishable from the reflective field by external detection signals. In optics, the efficient hiding 
of two-dimensional (2D) and three-dimensional (3D) arbitrarily shaped objects separately in 
terahertz range [15] and visible light range [16] by metasurface carpet cloaks have been reported. By 
changing the electric bias of the graphene constituents without varying the optic metasurface 
geometry, Biswas et al. [17] theoretically demonstrated the versatility of a tunable graphene-based 
metasurface cloak which is capable of actively switching between regimes of operation. For the 
acoustic carpet cloaks, several ultrathin gradient metasurfaces were designed to control the local 
reflected phase and restore the far-field radiation pattern based on Helmholtz resonators [18-20], 
membrane vibrations [21-23], spiral paths [24], diffraction gratings [25], and so on. These studies 
show that the metasurface carpet cloak can hide objects with arbitrary shape and size and make them 
hard to detect acoustically over a wide range of incident angles. 

Nevertheless, the Helmholtz cavity and membrane based on resonance mechanism [18-23] will 
result in a narrow band near a resonant frequency. The spiral path and diffraction grating could be 
classified as space coiling structure [11, 24-27]. Space coiling is a technique where the desired phase 
shifts can be achieved by the accumulation of the phase along the effective sound path in a 
labyrinthine-type structure [26, 27]. However, the conventional space coiling cloaks are typically 
predefined by the metasurface geometry and cannot be changed once the device was manufactured. 
This might be a significant limitation when tuning of the device characteristics is essential in actual 
applications, particularly with the tunable steering of oblique incident detection signals. No 
investigation on tunable or reconfigurable acoustic metasurfaces for carpet cloaking has been 
reported up to now. Therefore, it is highly desirable to achieve tunable metasurfaces in which the 
cloaking characteristics of acoustics can be continually adjusted to broaden and tune the regulation 
frequency. 
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Attempts to this end, little research has been done on the tunable acoustic metasurface [28-35]. 
By adjusting the orientation of the metasurface with tailored internal losses [28] and changing the 
distance between two metasurfaces [29, 30], the acoustic metasurfaces of a bilayer configuration 
were utilized to realize the controllable asymmetric transmission based on Helmholtz resonators. 
Recently, Ma et al. [31] designed a spatial sound modulator based on an active membrane 
metasurface and realized it experimentally. The switching mode of the acoustic metasurface can be 
achieved by switching the DC voltage across an electromagnet attached on individual units. A 
programmable acoustic metasurface has been reported by Tian et al. [32]. Each unit cell of this 
metasurface was composed of a straight channel and five shunted Helmholtz resonators, which can 
be tuned by a fluidic system. For the space coiling metasurface, Zhao et al. [33] designed a 
continuously tunable acoustic metasurface with individual unit components of a helix screwed inside 
a cylindrical thin plate for transmitted axial 3D focusing. The idea was then extended to 2D 
multifunction switching of a tunable metasurface [34]. The realistic solution to achieve broadband 
tunability of a flat acoustic metasurface with reflected multifunction was demonstrated numerically 
and experimentally in this space coiling framework [35]. In the present research, we further enrich 
and develop the literature [35]. We, indeed, propose an equivalent theoretical model for the helical 
unit to predict the phase shift response. We then, conduct experimental measurement in a broadband 
range is to verify our model. The designed tunable units are applied to conceive a curved 
metasurface to restore or mimic the reflected waveforms. 

From the above discussions, the ways to overcome the restriction of fixed and rigid acoustic 
metasurfaces with single or narrow band are to design a lossy structure or multilayer metasurfaces 
[28-30], or an independently adjustable unit [31-35] to change the formed geometry. Here, in the 
present work, a successful concept of a tunable metasurface for carpet cloak is proposed based on a 
type of helical units using matched screw-and-nut physical mechanism. Our concept is general; the 
utilization of helical channels [36-40] can lead effectively to low-loss applications in acoustic 
reflections, while the Helmholtz resonators can be of higher loss due to small sections of their neck 
[28-30, 32]. We specifically design an adjustable matched helical unit for broadband phase shifts. 
The equivalent theoretical model, the numerical simulation and experimentally demonstration are 
performed to get the continuously reflected phase responses. Then it is applied to design the 
broadband tunable metasurface cloak which can provide the proper phase distribution by adjusting 
the helical depths to restore reflected waveforms. We furthermore extend the tunability of the curved 
metasurface to the discussions regarding the wide-angle oblique incidence and acoustic ground 
illusion, which were rarely mentioned in the previous studies but are very useful for practical 
applications. In addition, it is easy to achieve and more suitable to construct a metasurface for 3D 
modulation of acoustic cloaking (see Appendix E). A real-time tunable broadband metasurface cloak 
could be realized by designing a self-feedback system with programmable automatic control. The 
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design concept is shown in Appendix F. 

II. Design principle and structure 

Based on the classical Snell’s law, when an incoming wave with an incident angle θi impinges 
onto a flat surface, the reflected angle θr will be the same as the incident angle (termed as global 
incident and reflected angle θg 

i =θg 
r ). However, if a metasurface is applied to cover the surface, the 

reflected wave may propagate in any desired direction [10, 11].  

 
FIG. 1. A 3D schematic view and working principle of an arc metasurface carpet cloak based on a tunable 

matched helical units. (a) The schematic diagram of the generalized Snell’s law for the wavefront restoration of 

the curved metasurface with infinite length in y-axis direction. It will be used to mimic two types of surfaces, 

including flat and arbitrary shaped ground. (b) Schematic view of a cross section of the metasurface cloak with 

distributed helical units. The metasurface is an arc-shaped plate with radius of R=0.9m and the arc central angle of 

60°. Thirty-one helical units are uniformly arranged on its surface with step of 2°. (c) The cylindrical unit of the 

tunable cloak. The depth of the helical channel h is the tunable parameter of the system by rotating a matched screw 

into a helical channel from bottom to top and allows the acoustical phase response to be continuously controlled. (d) 

The cylindrical geometric details of the helical channel and matched screw. 

To illustrate our design strategy of the cloaking structure, we consider an arbitrary scattering 
surface zm=zm (x) as shown in Figs. 1(a). Treating each point on the curved surface locally as an arc 
plane with a length ds, it has a radius R and a tilt angle φ with respect to the vertical direction. We 
suppose that the counterclockwise is positive. The new local incident angle (θl 

i ) will no longer equal 



5 
 

to the local reflected angle (θl 
r) and be changed along the curved surface, that is, θl 

i =θg 
i −φ. When 

waves impinge on the arbitrary-shaped metasurface, the relation of the incident and reflected waves 
is given in local coordinates (s-y-n) by the generalized Snell’s law of reflection as 

,                         (1) 

where ϕ(s) is the reflected phase delay or compensation provided by the metasurface; and k0=2π/λ is 
the wave number in the medium air. λ = c0/f is the wavelength with f being the frequency and 
c0=343m/s the wave velocity. Eq. (1) implies that the reflected sound direction or wavefront shape 
can be freely steered by presupposing the suitable phase shift ϕ(s) along the curved surface. Due to 
the tilt angle has the geometrical relationship as φ=θg 

i −θl 
i , the local reflected angles of specular 

reflection for carpet cloaking can always be expressed as θl 
r=θg 

r +φ=θg 
i +φ=2θg 

i −θl 
i . In this case, Eq. (1) 

can be written as 

,            (2) 

which, after integration with consideration of ds=-Rdφ, yields the phase shift: ϕ=-2Rk0cosθg 
i cosφ+C. 

Then according to the relation between global and local coordinates, that is, (x, z)=(Rsinφ, Rcosφ), 
the needed phase shift for the carpet cloaking of the curved metasurface is given by 

 ,                          (3) 

where C is an arbitrary constant and is chosen from the known phase of the flat ground. It can be 
found from Eq. (3) that for the specular reflection of a flat surface without height difference zm (x)=0, 
the phase distribution is a constant C as it should be. In addition, the required phase distribution is 
only related to the global incident angle θg 

i and the surface height zm(x) at a given frequency. It is 
noticeable that the derived process of Eq. (3) is an accurate and general expression for carpet 
cloaking, which does not require an approximation like some previous literatures[20, 41, 42]. 
Therefore, once an object is covered with a curved metasurface which satisfies Eq. (3), no explorer 
can distinguish it from a flat surface. This is the basic idea of the design for a metasurface carpet 
cloak. 

In addition, we suppose that an arbitrary ground surface is parameterized by a function of 
zg=zg(x), as shown in the bottom of Fig. 1(b). The reflection of the waves from such a surface is 
governed by the standard Snell’s law of reflection. Similarly to the carpet cloaking, we can design 
the required phase distribution by a metasurface to mimic the reflected pattern of an arbitrary ground 
just simply calculating the surface height difference. Then, the metasurface can exhibit the same 
reflecting performance as the ground surface, which is known as ground illusion [17, 20]. 
Consequently, no explorer can distinguish some objects between the curved metasurface and the 
arbitrary ground. 

0 (sin sin ) ( )l l
r ik d s dsq q f- = -

0 0( ) = [sin(2 2 cos sin) sin( )]g l l g
i i i ikd s ds k q q jf q q- -=- -

0 (( ) 2 co) s g
m ix k xz Cf q= - +
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As illustrated in Fig. 1(b), the curved metasurface is described by an arc-shaped equation of 
(x-a)2+(z-b) 2=R2. The coordinates of the circle center (a, b) is equal to (0, -Rcos31°) which makes 
the vertical coordinate of the ground zero. R=0.9m is the radius of the arc-shaped metasurface which 
is formed by a lattice distribution of the unit cells with angular intervals of 2°. Then, the height 
profile of the ground is mapped out by parameterizing an arbitrary curve. We consider a plane wave 
incident to the metasurface and set the initial phase of the ground plane to be zero. Hence, according 
to the coordinates of the arc-shaped surface, the phase shift required to achieve the carpet cloak and 
ground illusion can be obtained as 

                (4) 

Therefore, having the appropriate phase distribution as dictated by Eq. (4), we can hide an arbitrary 
object by making it look like a flat plane or an arbitrary desired ground using the arc-shaped 
metasurface cloak. 

The individual unit of the helical-structured metasurface we propose consists of a matched 
screw rotated into a helical channel from bottom to top, as shown in Fig. 1(c). Based on the matched 
screw-and-nut mechanism [33-35], when the matched screw is tuned by rotating, the channel length 
characterized by the helical depth (h) will be changed. The scalar air-borne sound will propagate 
freely into the unit along the helical paths and is reflected from the upper surfaces of the matched 
screw. The reflected phase shift can be then varied by changing the helical depth. In this way, the 
present flexible tunable units constitute a metasurface which can compensate or delay the phase shift 
to reshape the reflected wavefront through the change of the helical depth. The latter is the only 
tunable parameter of the system. 

As illustrated in the top of Fig. 1(d), the helical channel is constructed by placing and fixing a 
cylindrical helix into a hollow-cylinder. The cylindrical helix is composed of two rectangular blades 
spiraling around a central slender column. The detailed geometry parameters of the unit can be 
defined as: the total height is H=30mm, the cylinder diameter is D=30mm, the thread lead is 
T=20mm, the column diameter is d1=4mm, the blade thickness is t=1mm and the wall thickness of 
the hollow cylinder is t1=1mm. The diameter of the penetrating hole is d=D-2t1=28mm. In the 
bottom of Fig. 1(d), the rest of the cylinder removing the cylindrical helix constitutes the matched 
screw of which the inner and outer diameters are the same as the diameters of the hole and slender 
column, respectively. We decrease the external diameter and increase the internal diameter on its 
lower part to reduce rotational friction. To facilitate the rotation and connection of a motor for 
mechanical control (see Appendix F), we attach two matched helixes together with a thin sheet and 
set up a ring gear by distributing grooves on its edge. 

0
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III. Analyses of phase shifts for the helical unit 

In order to achieve a tunable design, we must obtain the continuous relation between the phase 
shift (φ) and the helical depth (h) at a broadband frequency (f) domain. To this end, we demonstrate 
the phase shifts response to the frequency and depth for the proposed helical unit. By using the 
transfer matrix method, the equivalent propagation path of the theoretical model is obtained to 
calculate the phase shifts. The numerical simulation and experimental measurement for the phase 
shifts will be performed to verify the analytical results and to compare to each other. 

 

FIG. 2. Theoretical, numerical and experimental phase shift response to the frequency domain and the 

helical depth for the tunable cylindrical unit. (a) The schematic of the (i) analytical structure, (ii) simulated 

model and (iii) measured acoustic impedance tube. (b) The corresponding phase shift of the tunable unit. (c-d) The 

cut lines of (b) at the frequencies of 2.2 kHz and 6.1 kHz showing the variation of the phase degree with the helical 

depth. 
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A. Theoretical model analysis 

Because sound is a scalar wave, the acoustics can propagate freely inside channels. Then, the 
space-coiling spiral channels of the unit can be represented as an equivalent straight channel. The 
boundary end of the channel is a hard wall. The unit-cell is divided into two regions with different 
cross sections, as illustrated in Fig. 2(a-i). Then ignoring the time harmonic factor, we can express 
the acoustic pressures as: 

,                   (5) 

where P(j) 
i  and P(j) 

r  (j=1, 2) denote the incident and reflected waves in the jth region; and Aj and Bj 
are the corresponding amplitudes. The equivalent length of region 2 is Le, which is directly related to 
the equivalent diameter De and the channel diameter d. Since waves at different frequencies have 
different wavelengths, the equivalent diameter in the spiral channel will change with the incident 
frequency, De=ed. The equivalent parameter e=e(f) dependent on the incident frequency can be 
obtained after the numerical fitting between the lengths of the helical path in the unit and the straight 
path in free-space based on the unit helicity [36, 39, 43]. For more details of the equivalent parameter, 
we refer to Appendix A.  

The continuity of pressure and volume velocity should be satisfied on the inter boundary 
between region 1 and region 2 at z=0. The left boundary is a hard wall at z=-Le(h). Here, the total 
pressure is twice of the incident pressure; and the resultant velocity is zero. Therefore, the boundary 
conditions at the two interfaces can be expressed as 

,                     (6) 

with the coefficient matrices being 

         (7) 

where S1 and S2 are the cross-section areas of regions 1 and 2, respectively. According to the 
geometrical relation of helical channel, the following parameters can be obtained: 

( ) ( )exp( ), exp( )j j
i j r jP A ikz P B ikz= = -　
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            (8) 

in which α is the rising angle of the spiral blade; and Ld and ld are the spiral length of single helix at 
the external and internal boundary of the helical channel, respectively. 
We finally obtain the relation of the incident and reflected wave fields for the unit based on the 
transfer matrix method as 

,                               (9) 

where combining Eqs. (6), (7) and (9), the total transfer matrix can be expressed as 

,                        (10) 

The normalized amplitude and phase shift of reflection (A and ϕ) can be calculated by 

.                  (11) 

Based on Matlab programming calculation, it can be found from Eq. (11) that the reflected amplitude 
is always equal to 1. This means total reflection from the helical structure without any energy loss. 
Then, the phase shift responses varying with the incident frequency (f) and helical depth (h) for the 
theoretical model is calculated and illustrated in Fig. 2 (b-i). Note that, under the geometry 
parameters of our design, the phase shifts of the reflected waves cover the full 2π range at the 
frequencies above 2 kHz. For the upper limit of the operating frequency, logically speaking, the 
bandwidth can be extended to the entire subwavelength range due to the continuous tunability of the 
helical unit. However, the relative size of the incident wavelength and the unit diameter are very 
important factors that affect the performance of the wavefront manipulations because of diffraction 
effect (see Appendix C). In addition, the reflected phase shift covers multiple 2π spans with several 
mutation positions at high frequencies, which means a high sensitivity and inconvenient adjustment. 
The numerical tests show that the appropriate upper limit of the operating frequency should be 7 
kHz. 

B. Finite element simulations 

To obtain the numerical relation between the phase shift and the helical depth at a continuous 
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frequency domain, a finite element model for the unit is developed in Fig. 2(a-ii) based on the 
commercial software COMSOL Multiphysics 5.3. The sound medium is air. The free surfaces of the 
solid structures are set to sound hard boundaries. The background pressure field is used to excite the 
incident plane waves. The plane wave radiation boundary condition is imposed on the incident 
boundary to absorb the reflected waves. For the cylindrical incident field, the sound hard condition is 
assumed on the side boundaries. The calculated reflected phase shift is exported at the identical 
arbitrary observation point A which has a distance of 66mm from the unit surface in our simulation 
model. Because the key factor is not the phase value itself but the relative phase between the 
different helical depths, in principle the phase extracting position can be chosen arbitrarily by 
avoiding the influence of the boundary effect [11, 33, 35]. In addition, the phase shifts varying with 
the helical depths at the incident frequencies will start from zero at the chosen observation point. 
This will facilitate the comparison with the above analytical results and the following experimental 
results. The tunable helical depth ranges from 0mm to 30mm by step of 0.5mm. We sweep the 
frequency by a step of 100Hz at every given helical depth. Then, the phase shift responses varying 
with the incident frequency (f) and helical depth (h) for the simulation model are computed and 
shown in Fig. 2 (b-ii). Note that, as acoustic waves propagate through the helical channels of the 
tunable unit, the thermoviscous loss effects could influence the reflected phase and amplitude back 
from the curved metasurface, especially when considering the high frequency of the operation. We 
use the thermoviscous acoustics model to calculate the phase shift and reflected amplitude of the 
acoustic wave from the tunable unit. And we also present the acoustic pressure field distribution of 
the illusion metasurface at a high frequency (6.1 kHz) using the thermoviscous acoustics model. The 
results indicate that the influences of the thermoviscous loss on the tunable acoustic performances 
are very weak and could be ignored, see Appendix D for details. Thus, in this work, we do not 
consider the thermoviscous loss effects in the following simulations. 

C. Experimental measurement 

By using the Brüel & Kjær impedance tube kit (type 4206, small tube), shown in Fig. 2(a-iii), 
the reflected factor Re=Aexp(iφ) can be obtained based on the transfer function method as follows 

,                    (12)  

where P12= P2/P1 is the transfer function between the acoustic pressure measured by the microphones 
(Mic.1 and Mic.2, Brüel & Kjær type 4187), and processed by the Brüel & Kjær PULSE 
Multi-analyzer system. Then, the reflected amplitude and phase can be directly calculated from A= 
|Re| and ϕ=arg(Re). 

As previously mentioned, the phase shift is a relative value. However, the phase difference 
between the different helical depths must meet a certain value independent of the measuring point. 

12 0 1
0 1 2

0 1 12

exp( )
exp[2 ( )]

exp( )
P ik lRe ik l l

ik l P
- -
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Then the tunable unit is placed into the impedance tube with staying the fixed distance l2 during the 
unit adjustment to sweep frequency from 2 to 7 kHz. For every incident frequency, each data at 
different helical depths (hi) is subtracted from the initial phase value (h0=0). This process sets the 
phase shift to be with zero initial value. Then, it can be compared with theoretical model and 
numerical simulation, as shown in Fig. 2(b-iii). It should be mentioned that the Brüel & Kjær 
impedance small tube set-up can measure parameters in the frequency range from 500 Hz to 6.4 kHz, 
and the accurate phase at a higher frequency cannot be obtained by this experiment. Therefore, the 
phase information shows a little chaos as it approaches 7 kHz. Even so, the theoretical model and 
numerical simulation can still be validated by the data below 7 kHz. 

As shown in Fig. 2(b), the theoretical, numerical and experimental results are consistent with 
each other in terms of the number across full 2π ranges and the phase shift trend. For a more intuitive 
quantitative comparison, the cut lines of the phase shift at the frequencies of 2.2 and 6.1 kHz [dashed 
lines in Fig. 2(b)] are plotted in Figs. 2(c) and 2(d). One can observe that the three models yield 
almost the same phase shifts at the same frequency and helical depth. Therefore, these results show 
that the broadband tunable unit manipulating the reflected acoustic waves can be achieved by 
continuously adjusting the helical depth. 

IV. Functions and results 

The developed tunable subwavelength unit has the merit of continuously modulating the 
reflected phase shift covering a full 2π span by gradually changing the helical depth with rotating a 
matched screw. This advantage establishes the foundation for dynamically manipulating acoustic 
waves at a broadband frequency range by using our helical metasurface. Multiple functions can be 
easily realized through the reconfiguration of only one metasurface, whereas the traditional 
metasurfaces with fixed configurations require costly and time/labor-consuming redesigning and 
fabrication [32-35]. Next, we first will exhibit two useful dynamic functions, including carpet cloak 
and ground illusion, by full-wave numerical simulations. Then, the corresponding experimental 
measurements will be carried out to demonstrate the hidden and illusive performances using a 
fabricated metasurface. 

A. Full-wave numerical simulations 

To show the performance of the designed curved cloak [see Figs. 1(b)], full-wave simulations of 
the reflected fields are carried out with COMSOL at the different target frequencies. A background 
pressure field are utilized to excite the monochromatic incident waves which makes it easier to 
derive the reflected field directly. The upper, left and right boundaries of the calculation domain are 
bounded by plane wave radiation conditions which allows the waves to propagate out from the 
domain without reflections. All the other free surfaces of the unit and waveguide structures are set to 
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sound hard boundaries. Then the reflected performances can be calculated according to the 
configurations of the unit helical depth on the metasurface. 

1. Carpet cloak 

Due to the existence of the height difference between the curved cloak and the flat ground 
[zg(x)=0], the propagation of the reflected waves from the arc surface needs to be delayed. We first 
consider a plane wave normally incident to the ground and the metasurface, that is, θg 

i =0. The first 
formula of Eq. (4) can be expressed as ϕ(x)=-4πfzm(x)/c0; then the required deferred phase of each 
unit can be calculated from this formula according to the vertical coordinates of the unit center on its 
upper surface. Once the needed phase degrees are known, we can obtain the corresponding helical 
depth from Fig. 2. For a given incident sound frequency in the subwavelength range, e. g. f=2.2 kHz, 
the first unit on the left is rotated by φ1=30° and positioned at the location of x1=-Rsinφ1=-0.45 m 
and z(x1)=sqrt(R2- x12)- Rsin31°=7.9 mm. Then the needed phase delay can be obtained as 
ϕ1(x1)=-4πfzm(x1)/c0=-36.8°. Therefore, the first helical depth should be h1=8.6 mm according to Fig. 
2(c). Similarly, we can find the associated depth for each unit of the metasurface from Fig. 2 to 
achieve multifunctions at different frequencies. For a sake of clarity and convenience, the required 
depth value is ranked to hi (mm) (i=1,2,...,31) from left to right. The results are given clearly in Table 
I in Appendix B.  
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FIG. 3. Full-wave simulated scattering acoustic pressure fields for carpet cloaking. The reflected fields in the 

xz-plane in three cases: (i) on a flat ground, (ii) on an uncloaked object (arc-shaped bump) and (iii) on the object 

with the cloak exposed to the normally incident plane wave at frequency of 2.2 kHz (a) or 6.1 kHz (b). The white 

dashed boxes indicate the regions within which the measurement will be performed in the next experimental 

section. 

By employing this helical depth, the reflected acoustic pressure fields are simulated and 
illustrated in Fig. 3 for the cases when a monochromatic wave impinges normally on (i) the flat 
ground, (ii) the uncloaked object and (iii) the object covered by the metasurface cloak. The reflected 
fields for these three cases at the target frequency of f = 2.2 kHz are illustrated in Fig. 3(a). As it can 
be seen in Fig. 3(a-i), when a sound wave hits the flat ground, it undoubtedly returns from its original 
path. However, the sound field is significantly distorted due to the presence of the object when no 
cloaking treatment is applied in Fig. 3(a-ii). Such a strong contrast between the central region and its 
surrounding implies that the object can be easily detected by scanning the disturbed field. In 
comparison, covering the object with the designed metasurface restores the original sound field 
successfully, i.e., the wavefronts are parallel to the horizontal surface, which is almost the same as 
the reflection by a flat ground, as shown in Fig. 3(a-iii). Hence, it can make the object completely 
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hidden behind the arc metasurface cloak at the frequency of 2.2 kHz.  
In practical applications for carpet cloaking, a signal used for detection may always be changed 

on different probe. Once waves with another frequency are incident to the object, an entirely new 
set-up of phase delay configuration needs to be provided by the metasurface, whereas the traditional 
structures with fixed configurations will not meet the cloaking requirements using only one 
metasurface. Thanks to the continuously tunable properties of the helical unit, the metasurface 
designed in this paper can be easily engineered by conveniently reconfiguring the needed phase shift. 
That is to say, any frequency can be set to the target one in subwavelength range. As an example, Fig. 
3(b) shows the contrast of the three cases at the frequency of 6.1 kHz. The numerical reflected fields 
on the flat ground in Fig. 3(b-i) and the cloaked object in Fig. 3(b-iii) are consistent with each other 
in terms of the horizontal wavefronts by comparing to the uncloaked object in Fig. 3(b-ii). These 
results reveal that the capability of the metasurface on hiding the object is remarkable over a wide 
target frequency range. Therefore, a broadband acoustic carpet cloaking can be achieved by the 
tunable curved metasurface for normal plane wave incidence. 

 
FIG. 4. The simulated scattering pressure fields for oblique incidence. The reflected fields in the xz-plane in 

three cases: (i) on a flat ground, (ii) on an uncloaked object (arc-shaped bump) and (iii) on the object with the cloak 

exposed to the 30° (upper row), 45° (middle row) and 60° (bottom row) impinging acoustic waves at the target 

frequency of  2.2 kHz (a) or 6.1 kHz (b). The black dashed lines and arrows set in (b-iii) indicate the incident 

plane wavefronts and directions and also apply in (a-iii). For all cases in (a-iii) and (b-iii), the angle of reflection 

from the object with the cloak is designed to be equal to the incident angle like a specular reflection. 

The proposed metasurface displays a broadband tunability for normally incident plane waves. 
However, when a detection signal is sent and received at different locations, that is, multi-base 
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station transmitter and receiver devices, the curved metasurface will be required to provide specular 
reflection at multiple incident angles to conceal objects. By observing its governing equation, i.e. Eq. 
(4), the cloak could provide hiding performance under oblique incidences. When waves impinge 
obliquely from upper left with the global incident angle θg 

i =30° at the frequency of f=2.2 kHz, the 
required phase degrees are thereupon determined by the unit center coordinate following Eq. (4) as 
ϕ(x)=-4πfzm(x)cosθg 

i /c0=-22.22πzm(x) rad. Likewise, by considering the relation between the phase 
shift and the helical depth in Fig. 2(c), the depth for each unit of the metasurface is obtained as 
shown in Table I of Appendix B. By employing this helical depth distribution, the reflected acoustic 
pressure fields of (i) the flat ground, (ii) the uncloaked object and (iii) the object with the cloak are 
presented in upper row of Fig. 4(a). One can clearly observe that the selected helical depths can 
indeed guarantee a satisfactory acoustic reflection at 30° at the frequency of 2.2 kHz. Subsequently, 
the reflected fields for some other suitable depth values of the specular reflection at the angles of 
45°and 60° are plotted in the middle and bottom rows of Fig. 4(a), respectively. Moreover, in order to 
fully demonstrate tunability, comparisons of the fields for different incidence angles (30°, 45° and 
60°) at the frequency of 6.1 kHz are shown in Fig. 4(b). All results indicate that the performance of 
the metasurface cloak is good enough in a wide incident angle range and a broadband frequency 
range. In principle, since the invisibility is achieved via symmetrical local phase adjustments, the 
designed cloak is expected to work well when waves are coming from the other side (upper right). 
Note that the slight discrepancies between the reflected fields in the cases with ground and the 
cloaked object may be due to the discretization of the phase shift when building the metasurface 
cloak. 

2. Ground illusion 

The abovementioned metasurface can be used as a carpet cloak to manipulate the scattered field 
from an object, which is placed over the object to mimic a flat ground. This statement also could be 
interpreted as an illusion for the flat ground reflection. With this in mind, let us suppose an arbitrarily 
shaped convex or concave ground is covered by the designed tunable metasurface for the ground 
illusions. Eq. (4) gives the phase required to be applied along a metasurface z1=zm(x) to mimic the 
reflection pattern of another surface, z2=zg(x). 

A parameterized covered ground surface with multiple bumps and dents is chosen, whose width 
is set to the same size as the metasurface (0.9 m) and its height profile is mapped out in Fig. 1(b). We 
first consider the convex ground which is formed by symmetry of the concave shape with respect to 
the x-axis and impinged by a plane wave normally incident at the frequency of f=2.2 kHz. Then the 
required phase distribution is determined by the surface height difference by following Eq. (4) as 
ϕ(x)=-4πf [zm(x)-zg(x)]/c0 =-25.66π[zm(x)-zg(x)] rad. The depth for each unit of the metasurface is 
obtained according to Fig. 2(c) as shown in Table II (see Appendix B).  
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FIG. 5. Full-wave simulated scattering acoustic pressure fields for ground illusion. The reflected fields of (i) a 

curved arbitrary ground and (ii) the ground illusion with the cloak exposed to the normally incident plane waves at 

the frequencies of 2.2 kHz (a-b) and 6.1 kHz (c-d). The illusion ground is a convex shape in (a) and (c), as well as a 

concave shape in (b) and (d). The black dashed lines indicate the positions where the measurement will be 

performed in the next experimental section. 

By utilizing this depth values, the reflected fields of (i) the bare ground and (ii) the ground 
illusion with the cloak are presented in Fig. 5(a). When some objects on the curved ground are 
covered with the designed metasurface, the scattering pattern becomes similar to that of the bare 
ground, which would make the arc metasurface appear to be an arbitrarily shaped ground to an 
external observer. To give one more general illusion in terms of what a greater space the cloak can 
conceal, the fields plotted for the corresponding concave ground are shown in Fig. 5(b). In addition, 
for comparison the fields at the frequency of 6.1 kHz for ground illusion of the (i) convex shape and 
(ii) concave shape are simulated and shown in Figs. 5(c) and 5(d). All comparable performances 
confirm that there is a good agreement in the far fields between the metasurface structure and the 
arbitrary ground, especially at the low frequencies. 

B. Experimental setups and measurements 

In order to evaluate the validity of the proposed metasurface for cloaking and illusion, we 
perform the acoustic measurements and analyses in this section. Fig. 6(a) shows the schematic 
diagram of the experimental setup. The components of the helical unit are fabricated via a 3D printer 
(PILOT 450, UnionTech) with enough precision (0.1mm) to meet the requirement of the proposed 
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designs [see Figs. 6(b) and 6(c)]. Thirty-one units are used in the experiment. The arc frame 
(1.3m×32mm×20mm, radius R=0.9m) of the metasurface is fabricated through the mechanical 
processing with 31 penetrating holes (diameter of 30mm) in Fig. 6(d). The units are embedded in the 
arc frame to form a metasurface sample as shown in Fig. 6(e). All the used materials are poly lactic 
acid (PLA) plastic. In the experiment, a waveguide system (1.3m×1.3m×32mm) is constructed to 
scan the reflected acoustic fields [see Fig. 6(h)]. The metasurface sample is placed in one boundary 
and is clamped closely by two parallel plexiglass plates (1.5m×2m×6mm). A row of twenty-seven 
loudspeakers [ABS-221-RC, see Fig. 6(g)] are mounted in a box baffle by a space of 5cm and 
surrounded with the porous foam, then placed at the opposite side far enough away from the 
metasurface (1.3m). The absorbing wedge porous foam is installed at the other two boundaries of the 
experimental system to mimic an anechoic environment. 

 
FIG. 6. The details of the experimental setup. (a) Schematic diagram of the measurement. Photographs of the 

fabricated helical channel and matched screw (b), the cylindrical unit sample (c), the manufactured components of 
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the 31 units and the surface arc-shaped frame (d), the assembled metasurface (e), the steel sheet to imitate a flat 

ground (f), the loudspeaker array (g) and the experimental waveguide system (h). 

Regarding the measurement process, we first use a computer with the software PULSE 
LABSHOP to generate a continuous sound wave single with a center frequency of f=2.2 kHz with 
6.4 kHz span, as well as a center frequency of 6.1 kHz with 12.8 kHz span, respectively. Then, the 
acoustic signal is modulated by a power amplifier module (Brüel & Kjær type 2735) and emitted by 
the loudspeakers array. Between the loudspeakers and metasurface, two microphones (Brüel & Kjær 
type 4138) are placed at designated positions to sense the local sound signals. Mic.1 is mounted at a 
fixed position near the loudspeakers to detect as a reference signal. Mic.2 is pasted onto a ruler 
(length 2m) which is attached to the upper plate by a magnet moveable to scan the local pressure 
field. The measured signals from the microphones and the source signal are connected to the Brüel & 
Kjær LAN-XI data-acquisition hardware (model 3160-A-042) to communicate with the computer at 
the same time. By using the software PULSE LABSHOP, the real-time pressure data is obtained by 
gathering the two microphone signals based on the source signal. Then the amplitude and phase of 
the pressure fields are recorded at different spatial positions within the measured region. To reveal 
the invisibility effect of the carpet cloak, we measure a rectangular region (the white boxes as shown 
in Fig. 3) on the right of the waveguide center. For the lower frequency of f=2.2 kHz in Fig. 3(a), the 
measured region (30×30 cm2) are meshed into 900 squares with a spacing of 1 cm. And for the 
higher frequency of f=6.1 kHz in Fig. 3(b), the measured region is reduced to half area (30×15 cm2) 
with a horizontal step 1 cm and vertical step 0.5cm due to the decrease of wavelength. In addition, to 
expose the illusion effect quantitatively, we will survey the reflected pressure amplitude by 
measurement step 1 cm at a far-field observation line with a distance of 0.8 m to the flat ground, as 
the black dashed lines shown in Fig. 5. 

For each measurement, we first remove the matesurface cloak and replace it with porous 
absorbing foam, then scan the measured region to sense the local values of amplitude A0 and phase 
φ0 as the reference background pressure field P0=A0exp(iφ0). Next, the designed metasurface cloak is 
configured; and its amplitude At and phase φt of the total pressure field Pt=Atexp(iφt) can be recorded 
at different spatial positions within the measured region. Then, the reflected pressure field is obtained 
by subtracting two pressure fields with and without the metasurface cloak. 

1. Carpet cloak 

To better exhibit the cloaking effect, the pressure fields are measured in three situations, 
including the flat ground [a thin steel plate, 1.3m×3cm×6mm, see Fig. 6(f)], the uncloaked object (all 
matched screws are completely rotated into the helical channels) and the object with cloak (the 
designed configuration of the metasurface). The real part of the reflected pressure fields in 
measurement regions at the frequencies of 2.2 kHz and 6.1 kHz are shown in Figs. 7(a) and 7(b) for 
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the three cases, respectively. When there is no object on the flat ground [see Figs. 7(a-i) and 7(b-i)], a 
nearly plane wave propagates in free space which also directly indicates that the loudspeakers array 
we handcrafted [see Fig. 6(g)] can produce a plane incident wave well. Once we place the uncloaked 
object, this free plane wave field is strongly scattered, and a clear interference pattern can be seen in 
Figs. 7(a-ii) and 7(b-ii). Then, when the uncloaked object is replaced by the metasurface cloak, the 
free field is nearly recovered and the scattered field toward the undesired both sides is cancelled, as 
shown in Figs. 7(a-iii) and 7(b-iii). Therefore, the curved metasurface cloak can mimic a flat plane 
and reduce the signature of the objects at different frequencies. 

 
FIG. 7. Experimental measurements of the real part of the reflected acoustic field in the white dashed box 

regions shown in Fig. 3. The reflected sound fields of (i) the flat ground, (ii) the uncloaked object, and (iii) the 

object with cloak exposed to the normally impinging waves at the frequencies of 2.2 kHz (a) and 6.1 kHz (b). 

2. Ground illusion 

For a quantitative comparison of the ground illusion, we measure the transverse reflected 
amplitude at a far-field observation line with a distance of 0.8 m to the flat ground. The simulated 
and experimental results corresponding to Fig. 5 are shown in Fig. 8 at frequencies of 2.2 kHz and 
6.1 kHz with the convex and concave ground shapes. All the results from the simulations and 
experiments are in good agreement with each other in terms of the number and location of the 
amplitude peaks, except that the values obtained from the experiments are a little lower than the ones 
from the simulation, especially for the illusion of the concave ground shape. Due to the inherent 
scattering on the convex structures and focusing on the concave one, this inevitably leads to a little 
bit lower reflected energy in the center of the experimental regions when we use a convex cloak to 
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mimic a concave ground shape. Presumably, this slight discrepancy may also be caused by the 
printing error of the unit samples, the machining error of the curved surface frame and the energy 
loss from the air viscosity existing in the experiments. It is seen that the selected metasurface 
configurations can indeed guarantee a satisfactory acoustic ground illusion at a wide range of 
frequencies. 

 
FIG. 8. The transverse reflected amplitude at a far-field observation with a distance of 0.8 m to the flat 

ground by cutting black dashed lines shown in FIG. 5. The reflected pressure amplitude of the arbitrarily curved 

ground exposed to the normally incident plane waves at the frequencies of 2.2 kHz (a-b) and 6.1 kHz (c-d). The 

illusion performances are shown in (a) and (c) with the convex ground, as well as in (b) and (d) with the concave 

ground. 

 Therefore, all results of the experimental measurements show good acoustic cloaking and 
illusion capabilities of the proposed continuously tunable curved metasurface in a broad frequency 
range. 

V. Conclusion 

A broadband tunable curved metasurface for acoustic cloaking and illusion has been proposed 
and validated theoretically, numerically and experimentally. Due to the continuously tunable matched 
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screw-and-nut physical mechanism, the phase shifts cover a full 2π span by varying the helical depth 
of units. The achievable subwavelength frequency range of 5 kHz (from 2 to 7 kHz) is broader than 
those presented so far in the literatures for acoustic carpet cloaking. The proposed curved 
metasurface can successfully hide objects from acoustic waves by restoring the disturbed reflected 
field or mimicking an arbitrary shaped ground with continuous tunability. It can also be able to 
operate for a wide-angle detection with oblique incidence. In addition, the cloak and illusion 
functions at different frequencies can be achieved by just one tunable metasurface structure. 

Once the corresponding phase gradient of the metasurface is designed correctly and properly, 
both the ground shapes and the objects behind it will become invisible. By utilizing the proposed 
design scheme, it should be fairly straightforward to conceal or imitate objects with different sizes 
and shapes, and to construct a metasurface for 3D cloaking of sound. Adopting higher spatial 
resolution of phase discretization may further enhance the performances of the cloak or illusion 
around the region with abruptly changing object or ground profiles. All these remarkable advantages 
bring the acoustic metasurfaces a step closer toward the realization of practical cloaks. 
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Appendix A: Theoretical equivalent parameter 

It is known that the space-coiling structure can tremendously increase the inner channel length 
by introducing spiral passages [27, 33]. The helical channel length can be represented by an 
equivalent diameter at a single frequency by numerical fitting [36, 39]. Since waves at different 
frequencies have different wavelengths, the equivalent diameter in the spiral channel passing by the 
scalar sound waves is directly related to the incident frequency [43]. In order to determine the 
equivalent parameter e=e(f) in a broad band, we define the mean deviation of the phase shift at each 
given frequency as 

,                      (A1) 

where ϕth is the phase shift derived from the theoretical equivalent model with the straight path and 
ϕnu is the corresponding one exported from the numerical model with the spiral channel. After the 
numerical fitting between the straight path and the spiral channel, the equivalent parameter 
associated with the incident frequency can be obtained in the sub-wavelength range.  

 
FIG. 9. The discrete and fitted results of the equivalent parameter associated with the incident frequency. (a) 

The mean deviation of the phase shifts varying with the equivalent parameter at different frequencies, 2, 4, 6 and 

8kHz; (b) the numerical fitting for the equivalent parameter varying with the changing frequencies. 

The mean deviation of the phase shifts varying with the equivalent parameter are illustrated in 
Fig. 9(a) for four particular frequencies. Then, as the solid symbols shown, the minimum values of 
the mean deviation at different frequencies are extracted for the numerical fitting. In order to obtain 
the approximate expressions, the equivalent parameter are fitted by a polynomial of the 2nd degree, 
which is a function of the frequency. The fitting curve is given by  

.                   (A2) 

The discrete and fitted results of the equivalent parameter are plotted in Fig. 9(b). Then, in the 
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tunable unit study, we can easily calculate the equivalent diameter (De) and the equivalent channel 
length (Le) associated with the incident frequency using this approximate expression. 

Appendix B: Tuned helical depth for multiple functions 

For convenience and clarity, the corresponding tuned helical depths for the carpet cloak and the 
ground illusion are listed in Tables I and II. As checked and referenced values, these data may be 
used to tune the functions of the designed helical metasurface. 

Table I. The appropriate helical depth hi (i=1,2,…,15), h16 and hi=h32-i (i=17,18,…, 31) (mm) corresponding to the 

carpet cloak at the frequencies of f (2.2 and 6.1 kHz) with the global incident angle θg 
i (0°, 30°,45° and 60°). 

f, θg 
i  h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 

2.2 kHz, 0° 8.6 14.6 16.6 18.2 20.4 25.6 7.2 12.7 14.7 15.8 16.6 17.1 17.6 17.9 18.1 18.2 

6.1 kHz, 0° 5.3 7.2 15.6 17.4 25.2 27.1 9.2 15.6 16.7 17.8 21.9 25.4 26.3 26.6 26.8 26.9 

2.2 kHz, 30° 7.6 13.9 16.0 17.4 18.8 20.7 24.8 3.6 10.2 12.9 14.3 15.1 15.6 15.9 16.1 16.1 

2.2 kHz, 45° 6.5 13.0 15.2 16.4 17.5 18.5 19.7 21.4 24.0 28.4 3.8 7.6 9.7 10.9 11.5 11.7 

2.2 kHz, 60° 4.7 11.1 13.7 15.0 15.9 16.6 17.2 17.7 18.3 18.8 19.3 19.7 20.1 20.5 20.7 20.8 

6.1 kHz, 30° 5.1 6.8 13.6 16.5 18.5 25.7 27.0 28.3 23.5 26.1 26.8 27.2 27.7 28.3 28.8 29.0 

6.1 kHz, 45° 4.7 6.4 8.2 15.3 16.6 17.8 23.3 26.1 26.8 27.4 28.3 19.8 22.8 24.5 25.1 25.2 

6.1 kHz, 60° 4.0 5.9 6.6 7.8 12.9 15.6 16.3 16.9 17.5 18.5 20.7 23.5 24.8 25.4 25.6 25.7 

Table II. The appropriate helical depth hi (mm) (i=1,2,…, 31) corresponding to the illusion of the convex ground 

(XG) or concave ground (EG) at the frequencies of f (2.2 and 6.1 kHz) with the normally incident acoustic waves. 

f, ground h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 

2.2 kHz, XG 4.7 10.5 12.9 14.1 14.8 15.3 15.7 16.1 16.6 17 17.5 18 18.3 18.4 18.2 

2.2 kHz, EG 11 16.4 19.4 3.1 14.7 17.3 19.9 27.3 10.5 14.1 15.5 16.3 16.9 17.4 18 

6.1 kHz, XG 3.9 5.8 6.4 6.8 7.4 8.5 11.2 14.2 15.5 16.2 16.7 17.1 17.6 17.8 17.4 

6.1 kHz, EG 5.9 15.1 21.9 28.2 6.5 15.5 18.4 26.6 28.6 5.3 6.3 7 8.3 12.7 15.4 

h16 h17 h18 h19 h20 h21 h22 h23 h24 h25 h26 h27 h28 h29 h30 h31 

17.7 17.0 16.2 15.2 14.0 12.5 10.8 9.5 8.6 8.3 8.3 8.3 8.1 7.4 5.7 2.3 

18.7 19.6 20.3 20.8 20.5 19.5 18.2 16.7 14.6 6.0 20.3 16.9 12.8 22.0 17.1 11.9 

16.8 16.1 14.5 8.3 6.8 6.3 5.9 5.6 5.4 5.3 5.3 5.3 5.3 5.0 4.4 2.3 

16.3 16.8 17.3 17.6 17.4 16.7 15.6 7.8 5.8 27.4 19.6 14.5 5.6 26.4 16.2 6.1 

Appendix C: Analysis for the upper limit of the operating frequency  

We implemented several full-wave simulations at high frequencies to discuss the tunable 
metasurface performance. The corresponding acoustic pressure fields for carpet cloaking are shown 
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in Fig. 10. It can be seen that the pressure distribution at the wavefront will become distorted and 
uneven with the increase of the frequency in Figs. 10(a-f). As the most important parameter to 
evaluate the cloaking property, the reflected wavefront phase is extracted from the pressure fields at a 
far-field observation with a distance of 0.8 m from the ground. The results show that the phase 
fluctuates up and down within ~5% and ~6.6% at frequencies of 6.5kHz and 7kHz, respectively, 
which means that the plane wavefront can be almost guaranteed, as shown in Fig. 10(g). As the 
incident frequency increases above 7.5kHz (with the phase fluctuation range of ~12.8%), the 
wavefront becomes more and more confusion because of the strong diffraction effect. Therefore, the 
appropriate operational frequency range should be below 7 kHz. 

 
FIG. 10. Full-wave simulated scattering acoustic pressure fields for carpet cloaking at higher frequencies. The reflected fields in 

the xz-plane for the curved metasurface cloak exposed to the normally incident plane wave at the frequencies of 6.5 kHz (a), 7.0 kHz 

(b), 7.5 kHz (c), 8.0 kHz (d), 9.0 kHz (e) and 10 kHz (f). The transverse reflected wavefront phase at a far-field observation with a 

distance of 0.8 m from the ground by cutting black dashed lines shown in (a-f). 

Appendix D: Influences of thermoviscous loss effects on the wave modulation of 
the helical unit and curved metasurface 

Thermoviscous acoustic module is employed in the helical channel region of the tunable unit 
with both the viscous friction and thermal diffusion being considered. The dynamic viscosity of the 
air in the helical channel η=1.81×10-4Pa·s, which is a high-loss case. The heat capacity at constant 
pressure Cp=1005.4J/(kg·K), and the thermal conductivity κ=0.0258W/(m·K). Since the channel size 
is in the centimeter order, the bulk viscosity can be neglected in the calculations [28, 43]. Non-slip 
and isothermal conditions are imposed on the solid boundaries. The pressure acoustic module is used 
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for the incident and reflected areas. The acoustic-thermoviscous coupling boundary is taken into 
account. To guarantee calculation precision, the boundary layer properties of the mesh are set on the 
inner surfaces of the helical channels. 

 

FIG. 11. Thermoviscous loss effects. The phase shift and reflected amplitude of the tunable unit with and without 

loss at the frequencies of 2.2 kHz (a) and 6.1 kHz (b). The solid and dashed lines represent the results for the loss-free 

and thermoviscous cases, respectively. (c) Acoustic pressure field distributions of the ground illusion at the frequency 

of 6.1 kHz for (i) loss-free case and (ii) thermoviscous case. (d) The reflected pressure amplitudes along the dashed 

lines in (c) with the observation transverse-line locating at z=0.8 m. 

Figs. 11(a) and (b) show the phase shift and the corresponding amplitude as functions of the unit 
depth of the tunable unit at different frequencies. It is observed that the thermoviscous loss slightly 
influence the reflected phase and amplitude responses. For the thermoviscous case, the phase shift 
shows a very small advance with increasing the channel length (helical depth h) because of the 
viscous friction and thermal dispassion, but still can cover a full 2π region; and the thermoviscous 
effects result in the slight decreases of the reflected amplitude. Even in the phase jump region, the 
reflection amplitude is above 91% with the maximal loss of the reflectivity. In addition, the 
differences for the phase and amplitude between two cases are relatively obvious at the high 
frequencies. In order to further illustrate the effect of thermoviscous loss on the full-wave reflection 
field, Fig. 11(c) shows the acoustic pressure field distributions of the ground illusion at the higher 
frequency of 6.1kHz. And the reflected amplitudes along the observation transverse-line z=0.8m are 
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extracted for comparison between the loss-free and thermoviscous cases. Likewise, slight decreases 
of the pressure amplitudes can be observed for the thermoviscous case, as shown in Fig. 11(d). 
Generally speaking, we do not find remarkable differences between the loss-free and thermoviscous 
cases. Therefore, the influences of the thermoviscous effects can be ignored in our model. 

Appendix E: The design and simulation for a 3D carpet cloak 

The proposed tunable metasurface can be designed for hiding an object with an arbitrary shape 
because of the efficient continuous phase modulation. Inspired by this 2D design, we further design a 
3D cloak of a hemispherical shape, which has been concernedly by relatively few studies [9, 25, 43]. 

 
FIG. 12. Full-wave simulated scattering acoustic pressure fields for the 3D carpet cloak. (a) Schematic view of 

a 3D metasurface cloak and its cross section with distributed unit lattice. (b-c) The reflected fields in the xz and yz 

planes in three cases: (i) on a flat ground, (ii) on an uncloaked object (spherical-shaped bump), and (iii) on the 

object with the cloak exposed to the normally incident plane waves at frequencies of 2.2 kHz (b) and 6.1 kHz (c). 
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 The 3D metasurface is constructed by distributing the helical units at the pole and five 
latitudinal circles at intervals of 6° in a hemispherical shell, as shown in Fig. 12(a). There are 6n 
units on the nth (n=1~5) latitudinal circles. The contour equation of the hemispherical cloak is 
z(x)=sqrt(R2-x2)-Rcos33°, x=Rsinφ and ∆φ=6°, where the radius of the sphere is R = 28.5cm. Then 
the required phase delay of each circle unit can be calculated by Eq.(4). The corresponding helical 
depths of the units on the latitudinal circles are obtained as hi=8.1, 14.1, 15.9, 16.8, 17.4 and 17.6 
mm at frequency of f=2.2 kHz, and hi=5.2, 6.9, 12.9, 15.9, 16.5 and 16.7 mm at f=6.1 kHz, which are 
procured based on Figs. 2(c) and 2(d). By applying these data, Fig. 12 shows the reflected pressure 
fields at 2.2 and 6.1 kHz for the cases of the flat ground, the uncloaked hemispherical object, and the 
object with the hemispherical cloak. The hemispherical object induces the strong acoustic scattering, 
resulting in a distinguished difference between the field patterns of Fig. 12(i) and (ii). With the aid of 
the phase delay provided by the metasurface, the scattering from the cloak is efficiently suppressed 
and thus the acoustic field is restored, as shown in Fig. 12(iii). The consistent field distributions with 
spatial plane wavefront in Figs. 12(i) and (iii) at different frequencies in Figs. 12(b) and (c) confirm 
the tunable cloaking effect for the 3D hemispherical object. 

Appendix F: The conceptual design of self-feedback automatic control for a 
programmable acoustic metasurface by using the real-time tunable helical unit 

Real-time steering of acoustic waves in a broadband range is one of the key functions required 
for acoustic cloak and illusion. The different phase compensation is required at different incoming 
angles and incident wave frequencies. In order to gradually steer acoustic waves in medical 
diagnostics and nondestructive evaluation [45, 46], previously, such modulation was mainly realized 
by expensive phased array systems (PAS) that require complex time/phase delay of each transducer. 
Although metasurfaces based on the phase array have been demonstrated for manipulating waves, 
they still have serious limitations in dynamic control of the acoustic propagation, which is a crucial 
feature required for real-world applications. 
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FIG. 13. A schematic representation of self-feedback real-time tunable mechanisms for the programmable 

acoustic metasurface. The illustration at the bottom right shows the structure connective components of the 

tunable broadband mechanical control system. 

Here, we propose a conceptual design of a programmable self-feedback automatic control 
acoustic metasurface by using our tunable helical unit, as shown in Fig. 13. When the microphone 
probe array detects an incoming signal, the signal analysis module can obtain the incident direction 
θi and target frequency f, then the signal processing module yields the required phase shifts ϕ. We can 
set an interpolation calculator based on all the data in Fig. 2 and Eq. (4) to get the needed helical 
depth hi. The helical depth of each unit can be easily controlled by adjusting the rotation angle (α) of 
the matched screws to yield h=Tα/360° using a robust rotating motor. The mechanical control system 
is the key to achieve the automatic regulation. Its partial details are shown in the illustration at the 
bottom right. The proposed tunable units (white cylinders), 3D printed connectors (red gears) and 
small stepping motors are assembled into an arbitrarily shaped frame (red perforated plate) to 
fabricate a continuously and dynamically tunable cloak. Then the developed tunable system can 
achieve the carpet cloak or ground illusion, and be reset again to program for controlling another 
incident signal. This merit of the conceptual design lays the foundation for automatically 
manipulating acoustic waves using our helical metasurface.
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