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Abstract 

The discovery of the disorder effect in traditional metamaterials has opened the 

possibilities in the search for the disordered metasurfaces. Photonic, dielectric and 

elastic metamaterials exhibiting the added value of the disorder effect on wave 

propagation physics, have been reported. Despite this extensive attention and progress 

in disordered metamaterials, the elastic metasurfaces however, involving disorder have 

not yet been reported. Here, we introduce the concept of disordered elastic metasurface 

composed of identical pillared resonators with a random arrangement in the 

subwavelength range. Based on theoretical formalism and direct acoustic measurement, 

we observe anomalous deflection and focusing effects of flexural waves in a plate, and 

elucidate in details the related physics. This research extends the disorder effect to 

metasurfaces and may lead to innovative acoustoelastic devices. 
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I. INTRODUCTION 

Since the emergence of metamaterials, the study of the disorder has become an 

important research direction [1-3]. A deep understanding of disorder effect can help to 

improve metamaterials properties [4,5] and enrich their physics [6-9]. For instance, the 

disorder can widen bandgap in elastic metamaterials [5] and induce topological state 

transition in photonic metamaterials [8] or phase transitions in dielectric metamaterials 

[9]. In contrast, independent of the spatial organization of the material, the invariant 

band gaps of metamaterials can also be observed by taking advantage of strong 

localization effects [10]. As a consequence, a detailed analysis of wave properties in 

disordered metamaterial is of interest, not only for physics, but also for pragmatic 

applications. Recently, as one kind of ultrathin metamaterials [11-13], optic 

metasurfaces [14,15] and acoustic metasurfaces [16-19] have been proposed to realize 

extraordinary wave manipulation. For elastic waves, due to complex wave coupling, 

the elastic metasurface design [20,21] is of paramount significance to the current 

research efforts in a large variety of applications ranging from ultrasonic detection to 

vibration control. Very recently, disorder had been introduced to the optic metasurface 

[22], which exhibits additional unique features for wavefront shaping such as a 

tailorable angular scattering profile. However, the acoustic/elastic metasurfaces 

involving disorder have not yet been reported. 

In this research, we introduce the concept of disordered elastic metasurface (DEM) 

composed of identical pillared resonators with a random arrangement in the 

subwavelength range. We analytically and numerically reveal the decoupled region of 



3 
 

the pillared resonators. The phase shifts and transmission amplitudes of the subunits are 

only linearly related to the number of resonators and independent of the spatial 

arrangement of resonators. The disorder releases the degree of freedom of pillar 

position in the subunit, which can greatly enhance the flexibility for the reconfigurable 

subunit. Both numerical simulations and experiments are carried out to demonstrate the 

extraordinary functionalities of DEM, including anomalous deflection and focusing. 

The physics of the disorder in the proposed metasurface can be regarded as a universal 

method for transmissive metasurfaces and metastructure designs. The DEM may also 

have a direct pragmatic variety of applications in the field of controllable wave 

manipulation and related acoustoelastic devices and wave engineering. 

II. MODEL AND DESIGN 

Fig. 1(a) shows the schematic of DEM with predesigned geometries comprising 

an array of subunits, which is capable of manipulating flexural wave in a plate. The 

three-dimensional (3D) subunit is constructed based on pillared resonators in Fig. 1(b). 

The corresponding two-dimensional (2D) model of the subunit is depicted in Fig. 1(c). 

All the attached resonators have the same geometrical parameter: thickness d2 and 

height h are 3 mm and 30 mm, respectively. The resonators are attached on the plate 

with a disordered arrangement, i.e., the spacing sj between the jth resonator and (j+1)th 

resonator is arbitrary. Considering both flexural and longitudinal waves propagate in 

the hosting plate and resonators, the coefficient vectors of the wave fields at the point 

P of the incident region and the point Q of the transmitted region (marked in Fig. 1(c)) 
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are denoted as  and  (see the details 

in Appendix A), respectively. r 
b, t 

b, r* 
b , t* 

b , r 
l , and t 

l  are the amplitude ratios of the 

reflected propagating flexural wave, transmitted propagating flexural wave, reflected 

evanescent flexural wave, transmitted evanescent flexural wave, reflected propagating 

longitudinal wave, and transmitted propagating longitudinal wave to the incident 

propagating flexural wave, respectively. 

 

FIG. 1. Disordered elastic metasurface (DEM). (a) Schematic diagram of DEM. (b) Three-

dimensional (3D) view of a subunit. (c) Cross-section view of a subunit. (d), (e) The phase shift and 

transmission amplitude solved analytically and numerically for disordered and ordered resonators 

as function of the number of resonators in the subwavelength subunit. 
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The transfer equation for disordered multiresonator shown in Fig. 1(c) (the 

detailed derivation can be found in Appendix A) is 

  (A6) 

where n is the number of the pillared resonator, N1 is the transfer matrix for incident 

wave propagating from the left to the right of the pillared resonator. N(1) 
2 , N(2) 

2   and 

 are the transfer matrixes for the flexural and longitudinal waves propagating in 

the plate regions with pillar spacing s 
1, s 

2  and sn-1, respectively.  and  

are the transfer matrixes for waves propagating in Region first and Region last, 

respectively. For the subunit with different number of resonators, we randomly adjust 

the pillar spacing sj between the jth resonator and (j+1)th resonator, which meets the 

relation of n‧d2<  to make the total multiresonator thickness not exceed one 

wavelength λ, i.e., sub-wavelength. In this way, for the different number of attached 

resonators, 50 disordered subunits are randomly built without loss of generality. To 

calculate the phase shift and transmission amplitude analytically, we assume that the 

pillared resonators and plate are made of aluminum alloy. The excitation frequency is 

selected as 1 kHz and the corresponding flexural wave wavelength for the plate with a 

thickness of 3 mm is 57.1 times the pillar thickness (d2=3 mm). The transmission 

amplitude |tb| at the point Q is calculated analytically from Eq. (A6), and the 

corresponding phase shift is extracted from the complex transmission coefficient tb (see 

the details in Appendix A). 

In Figs. 1(d) and 1(e), the analytical results of the phase shift and transmission 

amplitude of the flexural waves across the disordered subunits are plotted as blue circles. 

(last ) ( 1) (2) (1) (first)
out 2 1 2 1 2 1 2 1 2 in

nN N N N N N N N N-=k k!

!

( -1)
2
nN

!
(first)
2N

(last )
2N

-1

1

n

j
j
s l

=

<å



6 
 

Several interesting phenomena can be observed as follows. First, randomly disrupting 

the arrangement of resonators almost does not affect the phase shift and transmission 

amplitude. In other words, the phase shift and transmission amplitude are only related 

to the number of resonators in the subunits, but independent of the arrangement. It 

indicates that the designed metasurface has stronger robustness than conventional 

designs. Second, the phase shifts by varying the number of resonators can span over a 

full phase range of 2π with high transmission amplitude (bigger than 0.9). This ensures 

the high-efficiency of the metasurface for fine field manipulations [23,24]. Third, the 

phase shift increases linearly with the number of resonators. This allows us to simply 

predict the phase shift of these subunits with the different number of resonators. 

Furthermore, the ordered arrangements of resonators are also investigated for 

comparison, with all the pillars spacing keep uniformly 5 mm without loss of generality. 

The transmission coefficient tb can be calculated analytically from the modified transfer 

equation  (see the details in Appendix A), where 

 is the transfer matrix for the wave propagating in the plate region of the identical 

pillars spacing. The phase shift and the transmission amplitude by varying the number 

of resonators are solved analytically and numerically (plotted as black solid lines and 

red circles ) in Figs.1(d) and 1(e). The simulated results are in good agreement with the 

analytical ones, which confirms the accuracy of the analytical method. Meanwhile, the 

results for the ordered resonators are very close to the disordered ones, showing the 

introduction of the disorder will not affect the phase shift and transmission amplitude. 

( ) -1(last ) (first)
out 2 1 2 1 2 in

n
N N N N N*=k k
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III. THE PHYSICS OF DECOUPLED DISORDERED SUBUNITS 

In order to explain these phenomena, we have investigated the model for two 

adjacent resonators in the subunit, as marked with the red dotted box in Fig. 1(c). 

Specifically, we have analyzed the influence of the excitation frequency f, the typical 

structural parameter h (pillar height), and the pillars spacing s1 on the phase ϕ1 and 

transmission amplitude |t1| of the point Q in Fig. 1(c). The remaining parameters are the 

same as those discussed above. The phase ϕ1 and transmission amplitude |t1| can be 

expressed as ϕ1=Gϕ1(f,h,s1) and |t1|= G|t1|(f,h,s1), respectively. From the above analysis 

of the disorder unit, it can be seen that under certain conditions, the phase and 

transmission amplitude are independent of the pillars spacing. In order to give a 

quantitative evaluation of the dependence of phase and transmission amplitude on the 

pillars spacing, we define the coupling strengths as: 

  (A6) 

  (A6) 

We further obtain the coupling coefficients  and  by 

integrating the coupling strengths for all different pillars spacing (0.003λ, λ) and 

conducting normalization with respect to their maxima. The effects of changing f and h 

on the coupling coefficients  and  are shown analytically in Figs. 2(a) and 

2(b), respectively. It clearly shows the existence of completely decoupled regions 

characterized by  and , respectively, which means that the phase 

shift and the transmission amplitude are independent of the pillars spacing. The marked 
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decoupled boundary lines of the phase and transmission amplitude are almost at the 

same location. 

 

FIG. 2. The physics of decoupled disordered resonators. (a), (b) Effect of the changes of f and h on 

the analytical coupling coefficients  and , respectively. (c) Analytical reflection 

coefficient for a single resonator by varying the excitation frequency f and resonator height h. For 

the points A, B, C, and D in (a) and (b), the phase and transmission amplitude in the far field (the 

point Q) by varying the pillars spacing are analytically and numerically shown in (d) and (e), 

respectively. 

To further reveal the underlying physics, the reflection coefficient of a single 

resonator by varying the excitation frequency f and the resonator height h is analytically 

obtained (see the details in Appendix A), as shown in Fig. 2(c). We label the low 

reflection boundary line and observe that the decoupled boundary lines for the phase 

and transmission amplitude are consistent with the low reflection boundary line. This 

1 1,sfL 1 1,t s
L
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indicates that the decoupling of the phase and transmission amplitude with respect to 

the pillars spacing depends on the low reflection intensity of the incident wave pass 

through the resonator. Therefore, the low reflection coupling between resonators 

induced from their low reflection intensity will lead to decoupling, releasing the degree 

of freedom of pillar position in the subunit. It should be pointed out that Fabry-Perot 

resonance, where the phases equal to an integer multiple of π, also has a low reflection 

intensity. However, it does not lead to the above decoupling. The proposed physics can 

broaden the understanding of metamaterials and be applied to other transmissive 

metasurfaces for optics, acoustics, and elastics. 

For intuitively displaying the above analysis conclusions, predictive decoupled 

points A and B and coupling points C and D are chosen from Figs. 2(a) and 2(b). For 

these four points, the phase and transmission amplitude in the far field as function of 

the pillars spacing are solved analytically and numerically. The results are shown in 

Figs. 2(d) and 2(e). One can observe that the phase and transmission amplitude at the 

points A and B are independent of the pillars spacing, while at the points C and D, they 

are strongly dependent on. These results confirm the validity of our theoretical 

prediction. The point B in the decoupled region corresponds to the above disordered 

subunit analyzed in Figs. 1(d) and 1(e). 

IV. DEM MANIPULATING THE FLEXURAL WAVE 

The above designed 2D disordered subunits can be extended directly to the 

corresponding three-dimensional (3D) ones with slots (see in Appendix B), while the 
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phase shift and transmission amplitude almost remain unchanged. The elastic 

metasurfaces are designed by the 3D disordered subunits. The different number of the 

pillared resonators are attached on the hosting plate with slots (see in Appendix C) to 

achieve different function, including anomalous deflection and focusing. Importantly, 

these resonators can be conveniently disassembled and reattached, since the disordered 

and ordered resonators have the same effect on wave manipulation. It is convenient to 

continuously change the phase shift for every subunit by changing their number of 

resonators. It should be pointed out that the reconfigurable subunit can be designed (the 

detailed design can be found in Appendix D) based on the disordered subunit. The 

disorder can greatly enhance the flexibility for the reconfigurable subunit, because it 

releases the degree of freedom of pillar position in the subunit. 

A. Simulations and experiments of the anomalous deflections 

The DEM with the functions of anomalous deflection is designed. The 

corresponding individual supercells are shown in the right of Figs. 3(a) and 3(b). They 

are composed of eight types of chosen disordered 3D subunits, composed of 0, 2, 6, 11, 

15, 19, 23, 27 identical pillared resonators respectively, in the random arrangement. 

These subunits can make transmitted waves with phase shifts cover a full range of 2π 

and high transmittance according to Figs. 1(d) and 1(e). The discrete phase shift of the 

transmitted wave increases linearly along the y-axis, and the spatial phase shift 

gradients for Figs. 3(a) and 3(b) are dϕ/dy=0.5k and dϕ/dy=k, respectively, where 

k=2π/λ. According to the generalized Snell’s law [14], for the vertically and obliquely 
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(the incident angle of 30o) incident waves, the theoretical refraction angles are 30o and 

-30o, respectively. Full-wave simulations (detailed geometric parameters of the units 

and more associated simulation details are provided in the Appendixes C and E) clearly 

demonstrate the anomalous deflections. The ordered elastic metasurface is also 

constructed for comparison, shown in the Appendixes F. The metasurfaces with the 

subunits possessing the required phase shifts are fabricated and shown in Figs. 3(c) and 

3(d). The full field experimental measurements including the incident and transmitted 

fields at different time points are shown in Figs. 3(e) and 3(f), which are in good 

agreement with both the analytical predictions and simulated results. The detailed 

propagation phenomena are presented in Movie S1 and Movie S2 of the Supplemental 

Material [25]. 
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FIG. 3. Deflecting flexural wave with DEM. (a), (b) The wave fields for vertically and obliquely 

incident Gaussian beams pass through two disordered metasurfaces with phase shift gradients of 

dϕ/dy=0.5k and dϕ/dy=k, respectively. (c), (d) The fabricated metasurfaces. (e), (f) The full field 

experimental measurements including the incident and transmitted fields at different time points. 

The incident and the transmitted fields of (e) are measured at 200.20 ms and 202.34 ms, respectively. 

 

B. Simulation and experiment of the focusing 

By employing the disordered subunits, our metasurface design can also be 

exploited to achieve flexural waves focusing, as shown in Fig. 4(e). The DEM can be 

readily constructed by selecting units that match the requested hyperbolic phase profile 

, where F=1.5λ is the desired focal distance (detailed 

geometric parameters of the DEM are provided in the Appendixes C). The transmitted 

intensity and displacement fields with focus at 1.5λ are simulated and shown in Figs. 

4(a) and 4(c), respectively. One clearly observes a focal spot after the incident waves 

pass through the DEM. The full field experimental measurement is shown in Fig. 4(d). 

The detailed propagation phenomenon is presented in Movie S3 of the Supplemental 

Material [25]. For a more quantitative comparison, the normalized intensity fields of 

the transmitted wave at the focal spot along the y-direction from the simulations and 

experiments are shown in Fig. 4(b). The sharp peak values are observed, which are 

about more than 3 times the intensity of the incident wave. The experimental 

measurement is in good agreement with the simulated result and demonstrates a fine 

2 22( ) ( )y F y Fpf
l

= + -
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focusing capability. 

 

FIG. 4. Focusing flexural wave with DEM. (a), (c) The simulated results of the transmitted intensity 

and displacement fields with focus at 1.5λ for the DEM, respectively. (b) The normalized transmitted 

intensity fields at the focal spot along the y-direction from the simulation and experiment. (e) The 

fabricated structure of the DEM. (d) The full field experimental measurement. 

V. CONCLUSION 

In summary, we have reported a feature of elastic metasurfaces composed of 
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identical pillared resonators. By reducing the reflection coupling between resonators 

below the low reflection boundary line in parameter space, the dependence of 

resonators in the subwavelength subunits on the spatial arrangement can be adjusted 

from existence to absence. In the decoupled region of the disordered resonators, the 

transmitted waves pass through the subunits with approximately full transmission, 

while the phase shift can be continuously adjusted by the number of resonators in the 

disordered spatial arrangements. In addition, we performed full wave experimental 

measurement of DEM structures to demonstrate the multifunction, including 

anomalous deflection and focusing. Our findings are of significance importance in 

understanding the physics of elastic waves interaction with disordered artificial media. 

The present work may open venues for a variety of applications in the field of 

controllable wave manipulation and related acoustoelastic devices. 
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APPENDIX A: ANALYTICAL SOLUTION FOR DISORDERED AND 

ORDERED SUBUNITS 

1. Analytical modeling 

The host plate in the subunit can be divided into several regions, which are marked 

as Regions first, 1, 2 … j … n-1 and last in Fig. 1(c). The governing equations for the 

flexural wave and the longitudinal wave in the plate can be expressed as the following 

forms, respectively： 

  (A1) 

where  is Young’s modulus of the hosting plate,  is the density of the plate and 

 is the moment of area of the plate. , in which  and . are the 

thickness and Poisson’s ratio of the plate, respectively. 

The governing equation of flexural waves in Region j is a fourth-order partial 

derivative equation. The wave number has four solutions, i.e., two real wave numbers 

and two complex wave numbers. The real and complex wave numbers represent 

propagating flexural and evanescent flexural waves, respectively. Therefore, the 

general solution of displacement for the governing equation is:

  (A2) 

where the superscript (j) indicates Region j. , ,  and  are complex 

coefficients.  and  correspond to the positive-going and negative-

going propagating flexural waves, respectively.  and  correspond to 
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the positive-going and negative-going evanescent flexural waves, respectively. The 

flexural wavenumber is , in which  is the circular 

frequency. The general solution of the displacement for the second-order partial 

derivative governing equation of longitudinal waves in the Region j is: 

  (A3) 

where the longitudinal wavenumber is ,  and 

 correspond to the positive-going and negative-going propagating longitudinal 

waves, respectively. 

The governing equations for the flexural wave and the longitudinal wave in the 

pillared resonator is similar to that in the host plate. The general solutions of the 

displacements for the flexural wave and longitudinal wave equations in the pillared 

resonator j are 

  (A4) 

, respectively. The superscript  indicates the pillared resonator j. The flexural and 

longitudinal wavenumbers are  and , 

respectively. , , and  are the Young’s modulus, density, and area moment of 

inertia of the pillared resonator, respectively. , in which  and  

are the thickness of the resonator and Poisson’s ratio of the material, respectively. 

The relationships between slope  and the displacement w, between shear force 
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V and the displacement w, between bending moment M and the displacement w, 

between axial force F and the displacement u are: 

  (A5) 

, respectively. Among the right interface of Region j-1, the left interface of Region j, 

and the lower interface of the resonator j, the following boundary conditions must be 

satisfied: 

1. Displacement continuity in x and z directions: 

  (A6) 

2. Slope continuity: 

  (A7) 

3. Force balance in x and z directions: 

  (A8) 

4. Moment balance: 

  (A9) 

5. Forces and moment are 0 at the free boundary of the resonator j: 
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  (A10) 

2. The transfer equation for the disordered multiresonator 

The complex coefficients , , , , ,  for Region (j) 

in the plate can be organized as a vector 

  (A11) 

Among the right interface of Region j-1, the left interface of Region j and the lower 

interface of resonator j, substituting Eqs. (A2)-(A4) into the boundary conditions, i.e., 

Eqs. Erreur ! Source du renvoi introuvable.-(A10), we obtain 

  (A12) 

where  and  indicate the coefficient vectors in the right interface of Region 

j-1 and the left interface of Region j, respectively.  is the transfer matrix for waves 

propagating from the left to the right of the pillared resonator j, and it has included the 

contribution of the pillared resonators. 

The relationship between the vector  at the right interface of Region j and the 

vector  at the left interface of Region j can be expressed as follows: 

  (A13) 

where  is the transfer matrix for 

waves propagating between the two ends of Region j.  

The exciting point is assumed as the point P on the plate surface as shown in Fig. 

( ) ( ) ( )P P P3 2
2 2

2 2 2 23 2 2
2

0
-

j j j

z h z h z h

E dw u wE I E I
z z zn

= = =

¶ ¶ ¶
- = = =

¶ ¶ ¶（1 ）

( )jA ( )jB ( )jC ( )jD ( )jP ( )jQ

{ }( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , ,j j j j j Tj jA B C D P Q=k

1
( ) ( 1)j j
L RN -=k k

( 1)j
R
-k ( )j

Lk

1N

( )j
Rk

( )j
Lk

( ) ( ) ( )( )
2 2| =

j

j j j
R L L

j
s sN N==k k k

1

1

1

1

1

1

2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

b

b

b

b

l

l

ik s

ik s

k s

k s

ik s

ik s

e
e

e
N

e
e

e

- ×

×

- ×

×

- ×

×

æ ö
ç ÷
ç ÷
ç ÷

= ç ÷
ç ÷
ç ÷
ç ÷ç ÷
è ø



19 
 

1(c). For Region first with length , the vector  at the right interface and 

the vector  in the left interface of Region first can be expressed as: 

  (A14) 

The examined point for the transmission phase and amplitude is fixed at the point Q, as 

shown in Fig. 1(c). For Region last with the length , the vector  at the right end 

of Region last and the vector  in the left end of Region last can be expressed as: 

  (A15) 

where,  is the modified length of Region last. 

According to Eqs. (A12)-(A15), for waves propagating from the left interface of 

Region first to the right interface of Region last, the transfer relationship can be 

expressed as: 

  (A16) 

From this relation, we can solve the transmission amplitude for the flexural wave 

transmitting through these n resonators. To do this, we make an incident positive-going 

flexural wave of  at the left interface of Region first, so the wave fields at the left 

interface of Region first and the right interface of Region last can be expressed as 

follows: 

  (A17) 

where , , , , , and  are the amplitude ratios of the reflected propagating 

flexural wave, transmitted propagating flexural wave, reflected evanescent flexural 
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wave, transmitted evanescent flexural wave, reflected longitudinal wave, and 

transmitted longitudinal wave to the incident positive-going propagating flexural wave, 

respectively. Therefore, the vectors  and  can be written as: 

  (A18) 

The transfer equation for the single resonator can be expressed as: 

  (A19) 

3. The transfer equation for the ordered multiresonator 

For the ordered subunits, all the pillar spacings keep uniformly sj = 5 mm. The 

corresponding transfer matrix for wave propagating from the left interface to the right 

interface of the uniform Region j is written as . For waves propagating 

from the left interface of Region first to the right interface of Region last in the ordered 

subunit, the transfer equation can be expressed as: 

  (A20) 

4. Analytical solution for transmission phase shift and amplitude 

According to Eqs. (A16), (A19) and (A20), , , , , , and  can be 

solved with the aid of MATLAB code.  is the amplitude ratio between the 

transmitted propagating flexural wave and the incident propagating flexural wave. The 

phase can be obtained from the complex amplitude ratio . The phase shift is obtained 

by subtracting the phase at the point Q for the plate with the resonators from that for 

the plate without resonators. It can be calculated by the following formula: 
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  (A21) 

This formula will make the value of the phase shift from 0 to . 

APPENDIX B: DESIGN FROM THE 2D SUBUNIT TO THE 3D ONE 

The above designed subunit is embodied in its 2D model. To manipulate flexural 

waves, the subunit should be designed as the corresponding 3D one in Fig. 5(a), which 

can be formed by simply stretching the 2D model in Fig. 1(c). The stretched width is 

denoted as . Because the metasurface is formed by periodically integrating different 

3D subunits, the 3D subunit should be analyzed by applying the periodic boundary 

conditions on the two long boundaries in the 3D strip-like model in Fig. 5(a). Therefore, 

the formed 3D subunit is equivalent to the corresponding 2D one in Fig. 1(c). However, 

slots should be cut from the 3D subunit to separate adjacent different 3D subunits in the 

integrated metasurface, as shown in Fig. 5(b). The aim is to avoid the Fano interference 

[26] between the adjacent different 3D subunits to independently design the subunits. 

 

FIG. 5. (a) Model diagram of the 3D subunit without slots. (b) Model diagram of the 3D subunit 

with slots. 
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The filling ratio of the slots in one subunit is denoted as , which is defined as 

dividing the slot width by the stretched width w1 in a subunit. In our designs, the widths 

of the processed pillared resonator w0 and the slot are 20.4 mm and 1 mm, respectively, 

i.e., w1=21.4 and =0.047. The slots are very small relative to the stretched width of 

the subunit. The little slot will lead to a very small flexural wave scattering, which will 

not affect the transmission amplitude and phase shift [27]. Therefore, the 3D subunit 

structure with the slot still can be equivalent to the corresponding 2D one. 

 

APPENDIX C: GEOMETRY OF FABRICATED DEM AND TEST SET-UP 

To accurately fabricate the metasurface, the Computer Numerical Control (CNC) 

milling machine with a manufacturing precision of 0.01 mm was adopted. The DEMs 

in the experimental measurements are composed of the identical processed resonator. 

For the processed plate, slots should be cut to separate adjacent different 3D subunits 

in a metasurface, as shown in Figs. 6-8. The adjacent slots make up many strip-like 

models. Different numbers of the processed resonators are attached to the strip-like 

model to make up the different subunits, which consist of the metasurface. The numbers 

in yellow fonts represent the different number of attached resonators in the strip-like 

model, as shown in Figs. 6-8. These resonators can be conveniently disassembled and 

reattached, because the glue layer is very thin, in addition, there is no need for the 

ordered arrangement of these resonators. This process enables to design the disordered 

metasurface to achieve tunable multifunction by using one type of pillared resonator 

and the same hosting plate. For example, the fabricated metasurface in Fig. 6 can 

h

h
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achieve anomalous deflection (the experimental result shows in Figs. 3(e)), the ones in 

Fig. 7 and Fig. 8 can achieve negative deflection (the experimental result shows in Figs. 

3(f)) and focusing (the experimental result shows in Fig. 4(d)), respectively. 

 
FIG. 6. Model diagram of the fabricated DEM with phase shift gradient is . 

 

FIG. 7. Model diagram of the fabricated DEM with phase shift gradient is . 

0.5d dy kf =

d dy kf =
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FIG. 8. Model diagram of the DEM with the desired focal distance F =1.5 . 

An array of PZT-5A patches (20 mm × 20 mm × 0.3 mm) were bonded on the 

surface of the plate as actuators. The spacing of adjacent piezoelectric patches is the 

same as the piezoelectric patch width according to the phased array theory [12]. The 

widths of the DEMs only need to be larger than the width of the excited flexural beams. 

For simplicity, in the deflection experiments shown Fig. 6 and Fig. 7, we adopted 6 

piezoelectric patches (the total width is 220 mm) to excite flexural waves and 16 

subunits to build the DEMs (the total width is 342.4 m). In the focusing experiments 

shown Fig. 8, we adopted 12 piezoelectric patches (the total width is 460 mm) to excite 

flexural waves and 24 subunits to build the DEM (the total width is 513.6 mm). With 

the controlling of the waveform editor (based on Labview Software), a 5-cycle tone 

burst was generated by the signal generator (Agilent 33220A) and then amplified by a 

power amplifier (HVPA05). The wave fields in the incident and transmitted areas were 

measured by the measurement mode “time” of the PSV-400 scanning laser Doppler 

l
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vibrometer [26]. 

APPENDIX D: THE DESIGN OF THE RECONFIGURABLE SUBUNIT 

The schematic diagram of the reconfigurable subunit is shown in Fig. 9. It can be 

seen from Fig. 9 that the reconfigurable subunit has some improvements compared with 

the disordered subunit in Fig. 1(b). A thin layer of iron (about 0.1 mm) is plated on the 

upper surface of the pillar by using a PVD system and magnetized as the N pole by 

annealing at 300oC for 2.0 h in a magnetic field of 1 T [28]. Three electromagnets are 

placed above the pillars. The electromagnets have magnetic poles that can convert N 

and S to each other on the upper and lower surfaces. A plastic guide rod is attached to 

the upper surface of the pillar, which can flexibly move the position of the pillar. 

 

FIG. 9. Schematic diagram of the reconfigurable subunit 

The working principle is very simple. Magnetic fields in different directions are 

formed under the three energized electromagnets. For example, magnetic fields are N, 

N and S poles for lower surfaces of #1, #2 and #3 electromagnets, respectively. We can 

move the pillar through the plastic guide rod to select the repulsion or attraction applied 

by the magnetic field. Under the #1 and #2 electromagnet, the pillar is repulsed and 
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attached to the host plate. Under the #3 electromagnet, the pillar is separated from the 

host plate due to the magnetic attraction. Therefore, the number of pillars attached on 

the host plate can be reconstructed by moving the pillars to different magnetic fields. 

In this way, the disorder has great advantages over the order. The reason is the disorder 

releases the degree of freedom of pillar position, which greatly enhance 

reconfigurability. 

 

FIG. 10. The differential element of the pillar resonator. 

We also have conducted the feasibility analysis for the designed structure. First, in 

the experiment, we can apply a small amount of oil on the lower surface of the pillar to 

fill the gap between the pillar and the host plate. This super subwavelength oil layer not 

only ensures a good connection between the pillar and the host plate, but also ensures 

that it does not affect the waves propagation at the joint interface. Then, the impedance 

of plastic and the thin iron layer is greatly mismatched, which will ensure that the 

lightweight plastic guide rod will not affect the wave propagation in the pillar. Finally, 

applying a repulsive force to the pillar is equivalent to giving the pillar an axial pre-

stress T. The differential element of the pillar is taken for analysis, as shown in Fig. 10. 

The equation of motion in the x direction, following Newton’s second law ( ), F maS =
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is as follows: 

  (D1) 

where w is the displacement of the particle of the pillar in the x direction. Substituting 

the relationships  and  into Eq. (D1), we obtain 

  (D2) 

From Eq. (D2), the flexural wavenumber can be obtained 

  (D3) 

where, 2EI= 353.5. When T/(2EI) < 0.06 << 1, we can get . It indicates that 

the pre-pressure [T/(2EI) < 0.06] does not affect the propagation of flexural waves in 

the pillar. Through the same analysis, we find the pre-stress [T/(2EI) < 0.06] hardly 

affect the propagation of the longitudinal wave in the pillar and the propagations of the 

flexural wave and the longitudinal wave in the plate. Therefore, the pre-stress [T/(2EI) 

< 0.06] does not affect the propagations of flexural waves and longitudinal wave, at the 

same time, it can make the pillar stably attached to the host plate. 

It should be point that for the x-direction boundary condition at the junction of the 

pillar and the host plate, the non-glued pillar in the above reconfigurable subunit may 

weaken it compared with the glued pillar. We can reduce the height of the pillared 

resonator or decrease the rigidity of the pillared resonator, so that the vibration of the 

pillared resonator can couple into the host plate with the dominant effect coming from 

the compressional modes of the resonator [10,29], in other word, the y-direction 
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boundary condition will be dominant at the junction of the resonator and the host plate. 

In this way, it can eliminate the impact of weakened x-direction boundary conditions. 

APPENDIX E: METHOD FOR NUMERICAL SIMULATIONS 

All the pillared resonators and plate are made of aluminum alloy, with the elastic 

modulus , Poisson's ratio , and the density 

. The phase shift and transmission amplitude for the 2D subunits are 

obtained using COMSOL Multiphysics 5.4 software (Plane Strain Module). Perfect 

matched layers (PMLs) are used on both ends of every strip-like model to avoid any 

reflection from the boundaries. An exciting force is applied normally on the surface of 

the left part of the plate (at the point P in Fig. 1(c)). The phase shift and transmission 

amplitude of the excited flexural wave in the far field of the right part of the plate (at 

the point Q) are examined by varying the number of resonators j in the subunit. All the 

full-wave simulations for the metasurface are obtained using COMSOL Multiphysics 

5.4 software (Solid Mechanics Module). For all simulations on the wave patterns of 

metasurfaces, PMLs are used on all outer boundaries. 

 

APPENDIX F: SIMULATIONS AND MEASUREMENTS FOR THE ORDERED 

METASURFACES 

The ordered elastic metasurface with the uniform pillars spacing of 5 mm is also 

constructed to achieve anomalous deflection and negative deflection. The full field 

experimental measurement is shown in Figs. 11(c) and 11(d). 

alu = 70 GPaE alu 0.33n =

3
alu 2700 kg/mr =
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FIG. 11. (a) and (b) show wave fields for vertical and oblique incident flexural wave Gaussian 

beams pass through two ordered metasurfaces with phase shift gradients of and 

, respectively. (c) and (d) show the full field experimental measurements. 

The ordered elastic metasurface with the uniform pillars spacing of 5 mm is 

constructed to achieve flexural wave focusing. The full field experimental measurement 

is shown in Fig. 12(d). 

0.5d dy kf =

d dy kf =
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FIG. 12. (a) and (c) numerically show the transmitted intensity and displacement fields with focus 

at  for the ordered elastic metasurface, respectively. (b) provides the normalized simulated 

and experimental transmitted intensity at the focal spot along the y-direction (x= ). The 

experimental measurement is shown in (d). 

  

1.5l

1.5l



31 
 

REFERENCES 

 
[1] F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A. Lemaître, L. L. Gratiet, I. Sagnes, S. 

Schmidt, H. E. Türeci, A. Amo, J. Bloch, Bosonic Condensation and Disorder-Induced Localization in a 

Flat Band, Phys. Rev. Lett. 116, 066402 (2016). 

[2] G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, D. S. Wiersma, Light Transport and Localization 

in Two-Dimensional Correlated Disorder, Phys. Rev. Lett. 112, 143901 (2014). 

[3] D. Nau, A. Schonhardt, C. Bauer, A. Christ, T. Zentgraf, J. Kuhl, M. W. Klein, H. Giessen, 

Correlation Effects in Disordered Metallic Photonic Crystal Slabs, Phys. Rev. Lett. 98, 133902 (2007). 

[4] S. Hughes, L. Ramunno, J. F. Young, J. E. Sipe, Extrinsic Optical Scattering Loss in Photonic 

CrystalWaveguides: Role of Fabrication Disorder and Photon Group Velocity, Phys. Rev. Lett. 94, 

033903 (2005). 

[5] P. Celli, B. Yousefzadeh, C. Daraio, S. Gonella, Bandgap widening by disorder in rainbow 

metamaterials, Appl. Phys. Lett. 114, 091903 (2019). 

[6] A. A. Asatryan, L. C. Botten, M. A. Byrne, V. D. Freilikher, S. A. Gredeskul, I. V. Shadrivov, R. C. 

McPhedran, Y.S.Kivchar, Suppression of Anderson Localization in Disordered Meta-materials, Phys. 

Rev. Lett. 99, 193902 (2007). 

[7] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. B. Parravicini, F. Domínguez-Adame, R. 

Gómez-Alcalá, Experimental Evidence of Delocalized States in Random Dimer Superlattices, Phys. Rev. 

Lett. 82, 2159 (1999). 

[8] C. Liu, W. Gao, B. Yang, S. Zhang, Disorder-Induced Topological State Transition in Photonic 

Metamaterials, Phys. Rev. Lett. 119, 183901 (2017). 

[9] A. Rahimzadegan, D. Arslan, R. N. S. Suryadharma, S. Fasold, M. Falkner, T. Pertsch, I. Staude, C. 

Rockstuhl, Disorder-Induced Phase Transitions in the Transmission of Dielectric Metasurfaces, Phys. 

Rev. Lett. 122, 015702 (2019). 

[10] M. Rupin, F. Lemoult, G. Lerosey, P. Roux, Experimental Demonstration of Ordered and 

Disordered Multiresonant Metamaterials for Lamb Waves, Phys. Rev. Lett. 112, 234301 (2014). 

[11] P. B. Catrysse, S. Fan, Routing of Deep-Subwavelength Optical Beams and Images without 

Reflection and Diffraction Using Infinitely Anisotropic Metamaterials, Adv. Mater. 25, 194 (2013). 



32 
 

[12] R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, G. L. Huang, Negative refraction of elastic waves at the 

deep-subwavelength scale in a single-phase metamaterial, Nat. Commun. 5, 5510 (2014). 

[13] J. M. Kweun, H. J. Lee, J. H. Oh, H. M. Seung, Y. Y. Kim, Transmodal Fabry-Perot Resonance: 

Theory and Realization with Elastic Metamaterials, Phys. Rev. Lett. 118, 205901 (2017). 

[14] N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, Light Propagation 

with Phase Discontinuities: Generalized Laws of Reflection and Refraction, Science 334, 333 (2011). 

[15] E. Bok, J. J. Park, H. Choi, C. K. Han, O. B. Wright, S. H. Lee, Metasurface for Water-to-Air Sound 

Transmission, Phys. Rev. Lett. 120, 044302 (2018). 

[16] B. Assouar, B. Liang, Y. Wu, Y. Li, J. Cheng, Y. Jing, Acoustic metasurfaces, Nat. Rev. Mater. 3, 

460 (2018). 

[17] Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S. A. Cummer, Y. Jing, Tunable asymmetric transmission 

via Lossy acoustic metasurfaces, Phys. Rev. Lett. 119, 035501 (2017). 

[18] Y. Zhu, J. Hu, X. Fan, J. Yang, B. Liang, X. Zhu, J. Cheng, Fine manipulation of sound via lossy 

metamaterials with independent and arbitrary reflection amplitude and phase, Nat. Commun. 9, 1632 

(2018). 

[19] S. W. Fan, S. D. Zhao, A. L. Chen, Y. F. Wang, B. Assouar, Y. S. Wang, Tunable Broadband 

Reflective Acoustic Metasurface, Phys. Rev. Applied 11, 044038 (2019). 

[20] H. Zhu, F. Semperlotti, Anomalous Refraction of Acoustic Guided Waves in Solids with 

Geometrically Tapered Metasurfaces, Phys. Rev. Lett. 117, 034302 (2016). 

[21] Y. Q. Liu, Z. X. Liang, F. Liu, O. Diba, A. Lamb, J. S. Li, Source Illusion Devices for Flexural 

Lamb Waves Using Elastic Metasurfaces, Phys. Rev. Lett. 119, 034301 (2017). 

[22] M. Jang, Y. Horie, S. M. Kamali, A. Shibukawa, A. Arbabi, J. Brake, H. Ruan, Y. Liu, A. Faraon, 

C. Yang, Wavefront shaping with disorder-engineered metasurfaces, Nat. Photonics 12, 84 (2018). 

[23] Y. L. Xu, L. Y. Cao, Z. C. Yang, Deflecting incident flexural waves by nonresonant single-phase 

meta-slab with subunits of graded thicknesses, J. Sound. Vib. 454, 51 (2019). 

[24] J. Zhang, X. Su, Y. L. Liu, Y. X. Zhao, X. Jing, N. Hu, Metasurface constituted by thin composite 

beams to steer flexural waves in thin plates, Int. J. Solids Struct. 162, 14 (2018). 

[25] See Supplemental Material at [   ] for the detailed propagation phenomena for the anomalous 

deflections and focusing.  



33 
 

[26] Y. B. Jin, E. El Boudouti, Y. Pennec, B. Djafari-Rouhani, Tunable Fano resonances of Lamb modes 

in a pillared metasurface, J. Phys. D. Appl. Phys. 50, 425304 (2017). 

[27] L. Y. Cao, Z. C. Yang, Y. L. Xu, B. M. Assouar, Deflecting flexural wave with high transmission by 

using pillared elastic metasurface, Smart Mater. Struct. 27, 075051 (2018). 

[28] Z. M. Zeng, P. Upadhyaya, P. K. Amiri, K. H. Cheung, J. A. Katine, J. Langer, K. L. Wang, H. W. 

Jiang, Enhancement of microwave emission in magnetic tunnel junction oscillators through in-plane field 

orientation, Appl. Phys. Lett. 99, 032503 (2011). 

[29] D. J. Colquitt, A. Colombi, R. V. Craster, P. Roux, S. R. L. Guenneau, Seismic metasurfaces: Sub-

wavelength resonators and Rayleigh wave interaction, J. Mech. Phys. Solids. 99(2017). 


