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The discovery of the disorder effect in traditional metamaterials has opened the possibilities in the search for the disordered metasurfaces. Photonic, dielectric and elastic metamaterials exhibiting the added value of the disorder effect on wave propagation physics, have been reported. Despite this extensive attention and progress in disordered metamaterials, the elastic metasurfaces however, involving disorder have not yet been reported. Here, we introduce the concept of disordered elastic metasurface composed of identical pillared resonators with a random arrangement in the subwavelength range. Based on theoretical formalism and direct acoustic measurement, we observe anomalous deflection and focusing effects of flexural waves in a plate, and elucidate in details the related physics. This research extends the disorder effect to metasurfaces and may lead to innovative acoustoelastic devices.

I. INTRODUCTION

Since the emergence of metamaterials, the study of the disorder has become an important research direction [START_REF] Baboux | Bosonic Condensation and Disorder-Induced Localization in a Flat Band[END_REF][START_REF] Conley | Light Transport and Localization in Two-Dimensional Correlated Disorder[END_REF][START_REF] Nau | Correlation Effects in Disordered Metallic Photonic Crystal Slabs[END_REF]. A deep understanding of disorder effect can help to improve metamaterials properties [START_REF] Hughes | Extrinsic Optical Scattering Loss in Photonic CrystalWaveguides: Role of Fabrication Disorder and Photon Group Velocity[END_REF][START_REF] Celli | Bandgap widening by disorder in rainbow metamaterials[END_REF] and enrich their physics [START_REF] Asatryan | Suppression of Anderson Localization in Disordered Meta-materials[END_REF][START_REF] Bellani | Experimental Evidence of Delocalized States in Random Dimer Superlattices[END_REF][START_REF] Liu | Disorder-Induced Topological State Transition in Photonic Metamaterials[END_REF][START_REF] Rahimzadegan | Disorder-Induced Phase Transitions in the Transmission of Dielectric Metasurfaces[END_REF]. For instance, the disorder can widen bandgap in elastic metamaterials [START_REF] Celli | Bandgap widening by disorder in rainbow metamaterials[END_REF] and induce topological state transition in photonic metamaterials [START_REF] Liu | Disorder-Induced Topological State Transition in Photonic Metamaterials[END_REF] or phase transitions in dielectric metamaterials [START_REF] Rahimzadegan | Disorder-Induced Phase Transitions in the Transmission of Dielectric Metasurfaces[END_REF]. In contrast, independent of the spatial organization of the material, the invariant band gaps of metamaterials can also be observed by taking advantage of strong localization effects [START_REF] Rupin | Experimental Demonstration of Ordered and Disordered Multiresonant Metamaterials for Lamb Waves[END_REF]. As a consequence, a detailed analysis of wave properties in disordered metamaterial is of interest, not only for physics, but also for pragmatic applications. Recently, as one kind of ultrathin metamaterials [START_REF] Catrysse | Routing of Deep -Subwavelength Optical Beams and Images without Reflection and Diffraction Using Infinitely Anisotropic Metamaterials[END_REF][START_REF] Zhu | Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial[END_REF][START_REF] Kweun | Transmodal Fabry-Perot Resonance: Theory and Realization with Elastic Metamaterials[END_REF], optic metasurfaces [START_REF] Yu | Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction[END_REF][START_REF] Bok | Metasurface for Water-to-Air Sound Transmission[END_REF] and acoustic metasurfaces [START_REF] Assouar | Acoustic metasurfaces[END_REF][START_REF] Li | Tunable asymmetric transmission via Lossy acoustic metasurfaces[END_REF][START_REF] Zhu | Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase[END_REF][START_REF] Fan | Tunable Broadband Reflective Acoustic Metasurface[END_REF] have been proposed to realize extraordinary wave manipulation. For elastic waves, due to complex wave coupling, the elastic metasurface design [START_REF] Zhu | Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces[END_REF][START_REF] Liu | Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces[END_REF] is of paramount significance to the current research efforts in a large variety of applications ranging from ultrasonic detection to vibration control. Very recently, disorder had been introduced to the optic metasurface [START_REF] Jang | Wavefront shaping with disorder-engineered metasurfaces[END_REF], which exhibits additional unique features for wavefront shaping such as a tailorable angular scattering profile. However, the acoustic/elastic metasurfaces involving disorder have not yet been reported.

In this research, we introduce the concept of disordered elastic metasurface (DEM) composed of identical pillared resonators with a random arrangement in the subwavelength range. We analytically and numerically reveal the decoupled region of the pillared resonators. The phase shifts and transmission amplitudes of the subunits are only linearly related to the number of resonators and independent of the spatial arrangement of resonators. The disorder releases the degree of freedom of pillar position in the subunit, which can greatly enhance the flexibility for the reconfigurable subunit. Both numerical simulations and experiments are carried out to demonstrate the extraordinary functionalities of DEM, including anomalous deflection and focusing.

The physics of the disorder in the proposed metasurface can be regarded as a universal method for transmissive metasurfaces and metastructure designs. The DEM may also have a direct pragmatic variety of applications in the field of controllable wave manipulation and related acoustoelastic devices and wave engineering.

II. MODEL AND DESIGN

Fig. 1(a) shows the schematic of DEM with predesigned geometries comprising an array of subunits, which is capable of manipulating flexural wave in a plate. The three-dimensional (3D) subunit is constructed based on pillared resonators in Fig. 1(b).

The corresponding two-dimensional (2D) model of the subunit is depicted in Fig. 1(c).

All the attached resonators have the same geometrical parameter: thickness d2 and height h are 3 mm and 30 mm, respectively. The resonators are attached on the plate with a disordered arrangement, i.e., the spacing sj between the jth resonator and (j+1)th resonator is arbitrary. Considering both flexural and longitudinal waves propagate in the hosting plate and resonators, the coefficient vectors of the wave fields at the point P of the incident region and the point Q of the transmitted region (marked in Fig. 1(c where n is the number of the pillared resonator, N1 is the transfer matrix for incident wave propagating from the left to the right of the pillared resonator. N (1) 2 , N (2) 2 and are the transfer matrixes for the flexural and longitudinal waves propagating in the plate regions with pillar spacing s 1 , s 2 and sn-1, respectively. and are the transfer matrixes for waves propagating in Region first and Region last, respectively. For the subunit with different number of resonators, we randomly adjust the pillar spacing sj between the jth resonator and (j+1)th resonator, which meets the relation of n‧d2< to make the total multiresonator thickness not exceed one wavelength λ, i.e., sub-wavelength. In this way, for the different number of attached resonators, 50 disordered subunits are randomly built without loss of generality. To calculate the phase shift and transmission amplitude analytically, we assume that the pillared resonators and plate are made of aluminum alloy. The excitation frequency is selected as 1 kHz and the corresponding flexural wave wavelength for the plate with a thickness of 3 mm is 57.1 times the pillar thickness (d2=3 mm). The transmission amplitude |tb| at the point Q is calculated analytically from Eq. (A6), and the corresponding phase shift is extracted from the complex transmission coefficient tb (see the details in Appendix A).

In Figs. 1(d) and 1(e), the analytical results of the phase shift and transmission amplitude of the flexural waves across the disordered subunits are plotted as blue circles.
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Several interesting phenomena can be observed as follows. First, randomly disrupting the arrangement of resonators almost does not affect the phase shift and transmission amplitude. In other words, the phase shift and transmission amplitude are only related to the number of resonators in the subunits, but independent of the arrangement. It indicates that the designed metasurface has stronger robustness than conventional designs. Second, the phase shifts by varying the number of resonators can span over a full phase range of 2π with high transmission amplitude (bigger than 0.9). This ensures the high-efficiency of the metasurface for fine field manipulations [START_REF] Xu | Deflecting incident flexural waves by nonresonant single-phase meta-slab with subunits of graded thicknesses[END_REF][START_REF] Zhang | Metasurface constituted by thin composite beams to steer flexural waves in thin plates[END_REF]. Third, the phase shift increases linearly with the number of resonators. This allows us to simply predict the phase shift of these subunits with the different number of resonators.

Furthermore, the ordered arrangements of resonators are also investigated for comparison, with all the pillars spacing keep uniformly 5 mm without loss of generality.

The transmission coefficient tb can be calculated analytically from the modified transfer equation (see the details in Appendix A), where is the transfer matrix for the wave propagating in the plate region of the identical pillars spacing. The phase shift and the transmission amplitude by varying the number of resonators are solved analytically and numerically (plotted as black solid lines and red circles ) in Figs. 1(d) and 1(e). The simulated results are in good agreement with the analytical ones, which confirms the accuracy of the analytical method. Meanwhile, the results for the ordered resonators are very close to the disordered ones, showing the introduction of the disorder will not affect the phase shift and transmission amplitude.
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III. THE PHYSICS OF DECOUPLED DISORDERED SUBUNITS

In order to explain these phenomena, we have investigated the model for two adjacent resonators in the subunit, as marked with the red dotted box in Fig. 1(c).

Specifically, we have analyzed the influence of the excitation frequency f, the typical structural parameter h (pillar height), and the pillars spacing s1 on the phase ϕ1 and transmission amplitude |t1| of the point Q in Fig. 1(c). The remaining parameters are the same as those discussed above. The phase ϕ1 and transmission amplitude |t1| can be expressed as ϕ1=Gϕ1(f,h,s1) and |t1|= G|t1|(f,h,s1), respectively. From the above analysis of the disorder unit, it can be seen that under certain conditions, the phase and transmission amplitude are independent of the pillars spacing. In order to give a quantitative evaluation of the dependence of phase and transmission amplitude on the pillars spacing, we define the coupling strengths as:

(A6) (A6)
We further obtain the coupling coefficients and by integrating the coupling strengths for all different pillars spacing (0.003λ, λ) and To further reveal the underlying physics, the reflection coefficient of a single resonator by varying the excitation frequency f and the resonator height h is analytically obtained (see the details in Appendix A), as shown in Fig. 2(c). We label the low reflection boundary line and observe that the decoupled boundary lines for the phase and transmission amplitude are consistent with the low reflection boundary line. This
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indicates that the decoupling of the phase and transmission amplitude with respect to the pillars spacing depends on the low reflection intensity of the incident wave pass through the resonator. Therefore, the low reflection coupling between resonators induced from their low reflection intensity will lead to decoupling, releasing the degree of freedom of pillar position in the subunit. It should be pointed out that Fabry-Perot resonance, where the phases equal to an integer multiple of π, also has a low reflection intensity. However, it does not lead to the above decoupling. The proposed physics can broaden the understanding of metamaterials and be applied to other transmissive metasurfaces for optics, acoustics, and elastics.

For intuitively displaying the above analysis conclusions, predictive decoupled 

IV. DEM MANIPULATING THE FLEXURAL WAVE

The above designed 2D disordered subunits can be extended directly to the corresponding three-dimensional (3D) ones with slots (see in Appendix B), while the 

A. Simulations and experiments of the anomalous deflections

The DEM with the functions of anomalous deflection is designed. The 

B. Simulation and experiment of the focusing

By employing the disordered subunits, our metasurface design can also be exploited to achieve flexural waves focusing, as shown in Fig. 4 The governing equation of flexural waves in Region j is a fourth-order partial derivative equation. The wave number has four solutions, i.e., two real wave numbers and two complex wave numbers. The real and complex wave numbers represent propagating flexural and evanescent flexural waves, respectively. Therefore, the general solution of displacement for the governing equation is:

(A2)
where the superscript (j) indicates Region j. , , and are complex coefficients. and correspond to the positive-going and negativegoing propagating flexural waves, respectively. and correspond to
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V and the displacement w, between bending moment M and the displacement w, between axial force F and the displacement u are: (A5) , respectively. Among the right interface of Region j-1, the left interface of Region j, and the lower interface of the resonator j, the following boundary conditions must be satisfied:

1. Displacement continuity in x and z directions: 
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For Region first with length , the vector at the right interface and the vector in the left interface of Region first can be expressed as:

(A14)
The examined point for the transmission phase and amplitude is fixed at the point Q, as shown in Fig. 1(c). For Region last with the length , the vector at the right end of Region last and the vector in the left end of Region last can be expressed as:

(A15)
where, is the modified length of Region last.

According to Eqs. (A12)-(A15), for waves propagating from the left interface of

Region first to the right interface of Region last, the transfer relationship can be expressed as:

(A16)
From this relation, we can solve the transmission amplitude for the flexural wave transmitting through these n resonators. To do this, we make an incident positive-going flexural wave of at the left interface of Region first, so the wave fields at the left interface of Region first and the right interface of Region last can be expressed as follows:
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where , , , , , and are the amplitude ratios of the reflected propagating flexural wave, transmitted propagating flexural wave, reflected evanescent flexural 
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wave, transmitted evanescent flexural wave, reflected longitudinal wave, and transmitted longitudinal wave to the incident positive-going propagating flexural wave, respectively. Therefore, the vectors and can be written as:

(A18)
The transfer equation for the single resonator can be expressed as:

(A19)

The transfer equation for the ordered multiresonator

For the ordered subunits, all the pillar spacings keep uniformly sj = 5 mm. The corresponding transfer matrix for wave propagating from the left interface to the right interface of the uniform Region j is written as For waves propagating from the left interface of Region first to the right interface of Region last in the ordered subunit, the transfer equation can be expressed as:

(A20)

Analytical solution for transmission phase shift and amplitude

According to Eqs. (A16), (A19) and (A20), , , , , , and can be solved with the aid of MATLAB code. is the amplitude ratio between the transmitted propagating flexural wave and the incident propagating flexural wave. The phase can be obtained from the complex amplitude ratio . The phase shift is obtained by subtracting the phase at the point Q for the plate with the resonators from that for the plate without resonators. It can be calculated by the following formula:
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This formula will make the value of the phase shift from 0 to .

APPENDIX B: DESIGN FROM THE 2D SUBUNIT TO THE 3D ONE

The above designed subunit is embodied in its 2D model. To manipulate flexural waves, the subunit should be designed as the corresponding 3D one in Fig. 5(a), which can be formed by simply stretching the 2D model in Fig. 1(c). The stretched width is denoted as . Because the metasurface is formed by periodically integrating different 3D subunits, the 3D subunit should be analyzed by applying the periodic boundary conditions on the two long boundaries in the 3D strip-like model in Fig. 5(a). Therefore, the formed 3D subunit is equivalent to the corresponding 2D one in Fig. 1(c). However, slots should be cut from the 3D subunit to separate adjacent different 3D subunits in the integrated metasurface, as shown in Fig. 5(b). The aim is to avoid the Fano interference [START_REF] Jin | Tunable Fano resonances of Lamb modes in a pillared metasurface[END_REF] between the adjacent different 3D subunits to independently design the subunits. The filling ratio of the slots in one subunit is denoted as , which is defined as dividing the slot width by the stretched width w1 in a subunit. In our designs, the widths of the processed pillared resonator w0 and the slot are 20.4 mm and 1 mm, respectively, i.e., w1=21.4 and =0.047. The slots are very small relative to the stretched width of the subunit. The little slot will lead to a very small flexural wave scattering, which will not affect the transmission amplitude and phase shift [START_REF] Cao | Deflecting flexural wave with high transmission by using pillared elastic metasurface[END_REF]. Therefore, the 3D subunit structure with the slot still can be equivalent to the corresponding 2D one.

APPENDIX C: GEOMETRY OF FABRICATED DEM AND TEST SET-UP

To accurately fabricate the metasurface, the Computer Numerical Control (CNC) milling machine with a manufacturing precision of 0.01 mm was adopted. The DEMs in the experimental measurements are composed of the identical processed resonator.

For the processed plate, slots should be cut to separate adjacent different 3D subunits in a metasurface, as shown in Figs. 678. The adjacent slots make up many strip-like models. Different numbers of the processed resonators are attached to the strip-like model to make up the different subunits, which consist of the metasurface. The numbers in yellow fonts represent the different number of attached resonators in the strip-like model, as shown in Figs. 678. These resonators can be conveniently disassembled and reattached, because the glue layer is very thin, in addition, there is no need for the ordered arrangement of these resonators. This process enables to design the disordered metasurface to achieve tunable multifunction by using one type of pillared resonator and the same hosting plate. For example, the fabricated metasurface in Fig. 6 An array of PZT-5A patches (20 mm × 20 mm × 0.3 mm) were bonded on the surface of the plate as actuators. The spacing of adjacent piezoelectric patches is the same as the piezoelectric patch width according to the phased array theory [START_REF] Zhu | Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial[END_REF]. The widths of the DEMs only need to be larger than the width of the excited flexural beams.

For simplicity, in the deflection experiments shown Fig. 6 and Fig. 7, we adopted 6 piezoelectric patches (the total width is 220 mm) to excite flexural waves and 16 subunits to build the DEMs (the total width is 342.4 m). In the focusing experiments shown Fig. 8, we adopted 12 piezoelectric patches (the total width is 460 mm) to excite flexural waves and 24 subunits to build the DEM (the total width is 513.6 mm). With the controlling of the waveform editor (based on Labview Software), a 5-cycle tone burst was generated by the signal generator (Agilent 33220A) and then amplified by a power amplifier (HVPA05). The wave fields in the incident and transmitted areas were measured by the measurement mode "time" of the PSV-400 scanning laser Doppler l vibrometer [START_REF] Jin | Tunable Fano resonances of Lamb modes in a pillared metasurface[END_REF].

APPENDIX D: THE DESIGN OF THE RECONFIGURABLE SUBUNIT

The schematic diagram of the reconfigurable subunit is shown in Fig. 9. It can be seen from Fig. 9 that the reconfigurable subunit has some improvements compared with the disordered subunit in Fig. 1 The working principle is very simple. Magnetic fields in different directions are formed under the three energized electromagnets. For example, magnetic fields are N, N and S poles for lower surfaces of # 1, # 2 and # 3 electromagnets, respectively. We can move the pillar through the plastic guide rod to select the repulsion or attraction applied by the magnetic field. Under the # 1 and # 2 electromagnet, the pillar is repulsed and attached to the host plate. Under the # 3 electromagnet, the pillar is separated from the host plate due to the magnetic attraction. Therefore, the number of pillars attached on the host plate can be reconstructed by moving the pillars to different magnetic fields.

In this way, the disorder has great advantages over the order. The reason is the disorder releases the degree of freedom of pillar position, which greatly enhance reconfigurability.

FIG. 10. The differential element of the pillar resonator.

We also have conducted the feasibility analysis for the designed structure. First, in the experiment, we can apply a small amount of oil on the lower surface of the pillar to fill the gap between the pillar and the host plate. This super subwavelength oil layer not only ensures a good connection between the pillar and the host plate, but also ensures that it does not affect the waves propagation at the joint interface. Then, the impedance of plastic and the thin iron layer is greatly mismatched, which will ensure that the lightweight plastic guide rod will not affect the wave propagation in the pillar. Finally, applying a repulsive force to the pillar is equivalent to giving the pillar an axial prestress T. The differential element of the pillar is taken for analysis, as shown in Fig. 10.

The equation of motion in the x direction, following Newton's second law ( ),

F ma S = It should be point that for the x-direction boundary condition at the junction of the pillar and the host plate, the non-glued pillar in the above reconfigurable subunit may weaken it compared with the glued pillar. We can reduce the height of the pillared resonator or decrease the rigidity of the pillared resonator, so that the vibration of the pillared resonator can couple into the host plate with the dominant effect coming from the compressional modes of the resonator [START_REF] Rupin | Experimental Demonstration of Ordered and Disordered Multiresonant Metamaterials for Lamb Waves[END_REF][START_REF] Colquitt | Seismic metasurfaces: Subwavelength resonators and Rayleigh wave interaction[END_REF], in other word, the y-direction 

FIG. 1 .

 1 FIG. 1. Disordered elastic metasurface (DEM). (a) Schematic diagram of DEM. (b) Three-

  conducting normalization with respect to their maxima. The effects of changing f and h on the coupling coefficients and are shown analytically in Figs. 2(a) and 2(b), respectively. It clearly shows the existence of completely decoupled regions characterized by and , respectively, which means that the phase shift and the transmission amplitude are independent of the pillars spacing. The marked

  FIG. 2. The physics of decoupled disordered resonators. (a), (b) Effect of the changes of f and h on

  Figs. 2(d) and 2(e). One can observe that the phase and transmission amplitude at the

  phase shift and transmission amplitude almost remain unchanged. The elastic metasurfaces are designed by the 3D disordered subunits. The different number of the pillared resonators are attached on the hosting plate with slots (see in Appendix C) to achieve different function, including anomalous deflection and focusing. Importantly, these resonators can be conveniently disassembled and reattached, since the disordered and ordered resonators have the same effect on wave manipulation. It is convenient to continuously change the phase shift for every subunit by changing their number of resonators. It should be pointed out that the reconfigurable subunit can be designed (the detailed design can be found in Appendix D) based on the disordered subunit. The disorder can greatly enhance the flexibility for the reconfigurable subunit, because it releases the degree of freedom of pillar position in the subunit.

  FIG. 3. Deflecting flexural wave with DEM. (a), (b) The wave fields for vertically and obliquely

  (e). The DEM can be readily constructed by selecting units that match the requested hyperbolic phase profile , where F=1.5λ is the desired focal distance (detailed geometric parameters of the DEM are provided in the Appendixes C). The transmitted intensity and displacement fields with focus at 1.5λ are simulated and shown in Figs. 4(a) and 4(c), respectively. One clearly observes a focal spot after the incident waves pass through the DEM. The full field experimental measurement is shown in Fig. 4(d). The detailed propagation phenomenon is presented in Movie S3 of the Supplemental Material [25]. For a more quantitative comparison, the normalized intensity fields of the transmitted wave at the focal spot along the y-direction from the simulations and experiments are shown in Fig. 4(b). The sharp peak values are observed, which are about more than 3 times the intensity of the incident wave. The experimental measurement is in good agreement with the simulated result and demonstrates a fine

FIG. 4 .

 4 FIG. 4. Focusing flexural wave with DEM. (a), (c) The simulated results of the transmitted intensity

  positive-going and negative-going evanescent flexural waves, respectively. The flexural wavenumber is , in which is the circular frequency. The general solution of the displacement for the second-order partial derivative governing equation of longitudinal waves in the Region j is:(A3)where the longitudinal wavenumber is , and correspond to the positive-going and negative-going propagating longitudinal waves, respectively.The governing equations for the flexural wave and the longitudinal wave in the pillared resonator is similar to that in the host plate. The general solutions of the displacements for the flexural wave and longitudinal wave equations in the pillared resonator j are (A4), respectively. The superscript indicates the pillared resonator j. 's modulus, density, and area moment of inertia of the pillared resonator, respectively. , in which and are the thickness of the resonator and Poisson's ratio of the material, respectively.

3 . 5 .

 35 Force balance in x and z directions: Forces and moment are 0 at the free boundary of the resonator j:
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FIG. 5 .

 5 FIG. 5. (a) Model diagram of the 3D subunit without slots. (b) Model diagram of the 3D subunit

FIG. 8 .

 8 Fig. 7 and Fig. 8 can achieve negative deflection (the experimental result shows in Figs.

FIG. 9 .

 9 FIG. 9. Schematic diagram of the reconfigurable subunit

  w is the displacement of the particle of the pillar in the x direction. Substituting the relationships and into Eq. (D1), we obtain (D2) From Eq. (D2), the flexural wavenumber can be obtained (D3) where, 2EI= 353.5. When T/(2EI) < 0.06 << 1, we can get . It indicates that the pre-pressure [T/(2EI) < 0.06] does not affect the propagation of flexural waves in the pillar. Through the same analysis, we find the pre-stress [T/(2EI) < 0.06] hardly affect the propagation of the longitudinal wave in the pillar and the propagations of the flexural wave and the longitudinal wave in the plate. Therefore, the pre-stress [T/(2EI) < 0.06] does not affect the propagations of flexural waves and longitudinal wave, at the same time, it can make the pillar stably attached to the host plate.

FIG. 11

 11 FIG. 11. (a) and (b) show wave fields for vertical and oblique incident flexural wave Gaussian

FIG. 12 .

 12 FIG. 12. (a) and (c) numerically show the transmitted intensity and displacement fields with focus

  

  

  

  

(A10)

The transfer equation for the disordered multiresonator

The complex coefficients , , , , , for Region (j)

in the plate can be organized as a vector The relationship between the vector at the right interface of Region j and the vector at the left interface of Region j can be expressed as follows:

(A13) where is the transfer matrix for waves propagating between the two ends of Region j.

The exciting point is assumed as the point P on the plate surface as shown in Fig.

( ) ( ) ( )

boundary condition will be dominant at the junction of the resonator and the host plate.

In this way, it can eliminate the impact of weakened x-direction boundary conditions.

APPENDIX E: METHOD FOR NUMERICAL SIMULATIONS

All the pillared resonators and plate are made of aluminum alloy, with the elastic