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Abstract

Background

The yellow fever mosquito Aedes aegypti is the major vector of dengue, yellow fever, Zika,

and Chikungunya viruses. Worldwide vector control is largely based on insecticide treat-

ments but, unfortunately, vector control programs are facing operational challenges due to

mosquitoes becoming resistant to commonly used insecticides. In Southeast Asia, resis-

tance of Ae. aegypti to chemical insecticides has been documented in several countries but

no data regarding insecticide resistance has been reported in Laos. To fill this gap, we

assessed the insecticide resistance of 11 Ae. aegypti populations to larvicides and adulti-

cides used in public health operations in the country. We also investigated the underlying

molecular mechanisms associated with resistance, including target site mutations and

detoxification enzymes putatively involved in metabolic resistance.

Methods and results

Bioassays on adults and larvae collected in five provinces revealed various levels of resis-

tance to organophosphates (malathion and temephos), organochlorine (DDT) and pyre-

throids (permethrin and deltamethrin). Synergist bioassays showed a significant increased

susceptibility of mosquitoes to insecticides after exposure to detoxification enzyme inhibi-

tors. Biochemical assays confirmed these results by showing significant elevated activities

of cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST) and car-

boxylesterases (CCE) in adults. Two kdr mutations, V1016G and F1534C, were detected by

qPCR at low and high frequency, respectively, in all populations tested. A significant nega-

tive association between the two kdr mutations was detected. No significant association

between kdr mutations frequency (for both 1534C and 1016G) and survival rate to DDT or
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permethrin (P > 0.05) was detected. Gene Copy Number Variations (CNV) were detected

for particular detoxification enzymes. At the population level, the presence of CNV affecting

the carboxylesterase CCEAE3A and the two cytochrome P450 CYP6BB2 and CYP6P12

were significantly correlated to insecticide resistance.

Conclusions

These results suggest that both kdr mutations and metabolic resistance mechanisms are

present in Laos but their impact on phenotypic resistance may differ in proportion at the pop-

ulation or individual level. Molecular analyses suggest that CNV affecting CCEAE3A previ-

ously associated with temephos resistance is also associated with malathion resistance

while CNV affecting CYP6BB2 and CYP6P12 are associated with pyrethroid and possibly

DDT resistance. The presence of high levels of insecticide resistance in the main arbovirus

vector in Laos is worrying and may have important implications for dengue vector control in

the country.

Author summary

Aedes aegypti is the major vector of dengue in Laos and the control of this vector rely

mainly on insecticide treatments. Compared to the neighboring countries, where resis-

tance has been detected, there was no data on the distribution, the levels, and the mecha-

nisms involved in the resistance in Laos. Laboratory bioassays showed that resistance to

the currently used larvicides (temephos) and adulticides (pyrethroids) was present at dif-

ferent levels and distributed throughout the country. This may have important implica-

tions for dengue vector control in Laos. The mechanisms underlying the resistance were

determined to be both metabolic and target site mutations (kdr) supporting results found

in other countries. Several key detoxification enzyme genes were identified as potential

candidates for metabolic resistance. This study provides a baseline on insecticide resis-

tance in Laos and will help the Public Health authorities in designing more adapted vector

control strategies.

Introduction

Because of changes in the environment, climate, and frequency of transportation during the

last decades, the world has seen a dramatic resurgence of emerging and reemerging arboviral

diseases such as dengue, Zika and chikungunya fever. The Aedes aegypti mosquito is the main

vector of these important diseases and according to the World Health Organization (WHO),

2.5 billion people live in an area at risk of transmission of one or more arboviruses [1]. In Laos,

dengue is reemerging and there have been outbreaks of all four serotypes in the country, both

in rural and urban areas [2–7]. The most recent important dengue outbreak was in 2013 with

44,098 cases and 95 deaths reported [2,7]. Between 2014 and 2017, the number of annually

reported cases varied from 2,000 to 18,000 with 10 fatalities per year [7]. Even if the presence

of CHIKV was suspected before [6,8], the first authenticated cases of active chikungunya virus

infection involving Ae. aegypti was detected during the 2012–2013 outbreak in Southern Laos

[9,10]. The increasing incidence of chikungunya and dengue in Laos, and Southeast Asia

(SEA), is deleterious to the health, livelihood, and economy throughout the country [11].

Insecticide resistance in Aedes aegypti Laos

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007852 December 12, 2019 2 / 22

TWO, work unit number D1428, in support of the

Military Infectious Diseases Research Program and

Institut Pasteur du Laos. I (IWS and JCH) am a

military Service member. This work was prepared

as part of my official duties. Title 17, U.S.C., §105

provides that copyright protection under this title is

not available for any work of the U.S. Government.

Title 17, U.S.C., §101 defines a U.S. Government

work as a work prepared by a military Service

member or employee of the U.S. Government as

part of that person’s official duties. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0007852


Autochthonous transmission of ZIKV has not been detected in Laos but this specific disease is

not particularly targeted by the Lao public health authorities.

Because of the absence of effective vaccines or specific treatment against these diseases, vec-

tor control remains the only strategy for reducing the transmission and preventing outbreaks.

Public health vector control strategies rely on active community participation, health educa-

tion programs, and environmental management that include improvement of water supplies

and storage, solid waste management, and modification of human-made larval habitats world-

wide [1,12]. In Laos, these strategies are at an early stage of development despite the organized

efforts to promote community participation in the dengue control program since the 1990’s

[13,14]. Chemical control methods using insecticides against larvae and adult mosquitoes have

been routinely conducted by public health services for decades. The organochlorine (OC)

DDT has been used in the country for vector control and agriculture from the 1950’s until it

was banned in 1989 [15]. Then, the Centers for Disease Control and Prevention (CDC) in

Laos relied on the use of the larvicide temephos (organophosphate [OP] family, Abate formu-

lation) that was first used during the dengue outbreak of 1987 [14]. This insecticide formula-

tion is used to treat large water containers and is distributed throughout the country as an

active measure to prevent mosquitoes from developing in known breeding sites that cannot be

removed or protected; it is also applied upon in areas where dengue cases are reported. The

OP malathion has been used in the country since the 1990’s for thermal fogging applications

to reduce adult mosquito populations and other adulticides such as deltamethrin and permeth-

rin from the pyrethroid family (PYR) have been used since the early 2000’s. The use of these

insecticides for decades may have induced selective pressures that may reduce the efficacy of

the current vector control operations, resistance alleles have potentially been circulating in

Laos as described in neighboring countries [16,17]. Resistance of Ae. aegypti to the OC dieldrin

and DDT were first detected in SEA in the 1960s [18]. During the same period, first evidence

of malathion and temephos resistance was detected in Thailand, Cambodia and Myanmar

[18]. More recently, strong levels of resistance to OPs and PYRs have been reported in Ae.
aegypti populations in SEA including the neighboring countries of Laos (i.e. Thailand, China,

Vietnam and Cambodia;[16,19–23].

Insecticide resistance in Ae. aegypti is mainly associated with the over-expression of detoxi-

fication enzymes (metabolic-based resistance) and/or mutations in the sequence of the target

protein that induce insensitivity to the insecticide (target-site resistance). The main target site

resistance mechanisms known in Ae. aegypti involve amino acid substitutions in the voltage

gated sodium channel (VGSC) that cause a resistance to DDT/pyrethroid insecticides known

as knockdown resistance (kdr) [24–27]. In Ae. aegypti, 11 kdr mutations at 9 different codon

positions in the VGSC domains I-IV have been reported [17,28]. In SEA, three mutations

(S989P, V1016G and F1534C) have been reported to confer resistance to PYR [22,29–32]. The

V1016G mutation causes insensitivity to permethrin and deltamethrin, while the F1534C

mutation confers resistance only to permethrin [29]. The S989P mutation causes no or very lit-

tle resistance to pyrethroids [29]. However, very high levels of pyrethroid resistance have been

reported with individuals carrying two (S989P+V1016G) or three mutations (S989P+V1016G

+F1534C) [29,33]. Individuals carrying those three mutations have been reported in India,

Myanmar, Saudi Arabia and, Singapore [21,32,34,35].

Metabolic-based resistance involves the bio-transformation and/or sequestration of the

insecticide by detoxifying enzymes [17,25]. Three large enzyme families are frequently associ-

ated with resistance: the cytochrome P450 monooxygenases (P450s), the glutathione S-trans-

ferases (GSTs) and the carboxy/cholinesterases (CCEs) [25,36–39]. In SEA, several studies

support the importance of metabolic mechanisms in the resistance of Ae. aegypti to PYRs and

OPs [23,40,41] with the involvement of the three detoxification enzyme families at different

Insecticide resistance in Aedes aegypti Laos
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levels. As over expression is frequently associated with over transcription, most candidate

genes have been identified by comparing gene expression profiles between susceptible and

resistant populations. The over expression of multiple P450 genes has been associated with

PYR resistance in Singapore populations [32]. In turn, OPs resistance was rather associated

with increased CCE activities in Thailand where the genes CCEAE3A and CCEAE6A were

found over expressed in resistant populations [38].

To date, there is a lack of information available on the resistance status and mechanisms of

Ae. aegypti in Laos and consequently, this is questioning the possible impact of resistance on

vector control operations through the country. The objective of the present study was to assess

the resistance status of Ae. aegypti exposed to different public health pesticides and to identify

the underlying resistance mechanisms in resistant populations.

Materials and methods

Mosquito collections

During the rainy season of 2014, we sampled 11 populations from five different provinces In

each province, we focused on the largest and most urbanized cities that have experienced

increased dengue transmission or outbreaks in the last few years and where vector control was

implemented during these episodes. Aedes larvae and pupae were collected in 11 villages

belonging to five different provinces of Laos. Larvae were mainly collected in households and

in temples. All the collection sites were geo-referenced (Table 1). Fig 1 shows the location of

the collection sites in Laos. All samples were brought back to the laboratory and reared under

controlled conditions (27 ± 2˚C and 80 ± 10% relative humidity) until adults (F0 generation).

After adult identification, mosquitoes were separated by species and Ae. aegypti specimens

were kept for breeding following standardized techniques [42]. F1 larvae and adults were used

for bioassays, with an insecticide susceptible reference (USDA) strain used as control. The

USDA laboratory population is originating fromthe Center for Medical, Agricultural, and Vet-

erinary Entomology, Gainesville, FL, U.S.A and was colonized continuously for 40 years at

Kasetsart University, Bangkok, Thailand [43]. This strain was then colonized at the Institut

Pasteur du Laos (IPL) before the experiments.

Bioassays

Larval bioassay. Larval bioassays were carried out according to WHO guidelines [44]

using technical grades temephos (96.1% active ingredient [a.i.]), deltamethrin (99.7% a.i.), per-

methrin (98.1% a.i.), and DDT (99.4% a.i.) purchased from Sigma-Aldrich (Singapore). Even

though pyrethroids are not used for larval treatment we tested them againt Ae. aegypti to

obtain information of the larval resistance status that may reflect the adult resistance status.

Bioassays were performed on late third- and early fourth-instar larvae of each population. Bio-

assay were performed in recipients containing 99 mL of distilled water and 1 mL of the insecti-

cide tested at the desired concentration. Five replicates per concentration (25 larvae per

replicate) and 5–8 concentrations in the activity range of each insecticide were used to deter-

mine the lethal concentrations (LC50 and LC95) and to compare them against the USDA strain.

Control treatments consisted of 1% ethanol. Larval mortality was recorded after an exposure

of 24 hours. For each bioassay, temperature was maintained at 27 ± 2˚C and 80 ± 10% relative

humidity with a 12-hour light: 12-hour dark photoperiod. Field populations were considered

resistant to a given insecticide when their Resistance Ratios (RR) compared to the USDA strain

showed confidence limits excluding the value 1. We considered resistance to be moderate

when the RR values were between 2 and 5, and strong when the RR values were over 5 [44].

Insecticide resistance in Aedes aegypti Laos
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Adult bioassay. Adult bioassays were run using filter papers treated with diagnostic doses

of deltamethrin (0.05%), permethrin (0.25%), DDT (4%), and malathion (0.8%) following

WHO protocol [44]. Four batches of 25 non-blood-fed females (2–5 days old) were introduced

into holding tubes and maintained for 60 minutes at 27 ± 2˚C and a relative humidity of

80 ± 10%. Insects were then transferred into the exposure tubes and placed vertically for 60

minutes under subdued light. Mortality was recorded 24 hours after exposure and maintained

Table 1. List of the Aedes aegypti populations collected from the north to the south and their GPS coordinates. Population abbreviation names are used throughout

the text.

Province District Village Abbreviations GPS coordinates

Xayaboury Borten Taling XBRTL 17.784729˚N 101.170521˚E

Luang Prabang Luang Prabang Khomkhuang

Thatnoy

Thongchaleun

LPBKKG

LPBTNY

LPBTCL

19.902775˚N

19.531432˚N

19.887366˚N

102.156213˚E

102.075364˚E

102.132352˚E

Vientiane Capital Saythany

Chanthabouly

Sisattanak

Oudomphon

Phailom

Dongpalab

kao-gnot�

VTEODP

VTEPLM

VTEDPL

VTEIPL

18.125733˚N

18.057037˚N

17.988083˚N

17.962684˚N

102.665011˚E

102.774993˚E

102.605268˚E

102.615035˚E

Saravane Lakhonepheng

Vapi

Lakhonepheng

Khonsaiy

SRVLKP

SRVKS

15.485507˚N

15.414079˚N

105.403469˚E

105.541816˚E

Attapeu Samakheexay Xaysa-art ATPXA 14.484109˚N 106.501415˚E

�VTEIPL strain, collected at the Institut Pasteur du Laos

https://doi.org/10.1371/journal.pntd.0007852.t001

Fig 1. Locations of the mosquito collection sites. Source: MALVEC Project 2016, Institut Pasteur du Laos—IRD,

SavGIS software.

https://doi.org/10.1371/journal.pntd.0007852.g001
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in similar conditions of temperature and humidity. Following WHO criteria [44] a population

was considered resistant if the mortality was below 90%, resistance was suspected when mor-

tality ranged from 90% to 98% and a population was considered susceptible when mortality

was over 98%.

Synergist study. Synergist bioassays using the specific enzyme inhibitors piperonyl butox-

ide (PBO), tributyl triphosphorotrithioate (DEF) and, diethyl maleate (DEM) were conducted

to address the potential role of P450s, CCEs and GSTs in insecticide resistance. Larvae from

one population of each province were exposed for 1 hour to the enzyme inhibitors PBO (1 mg/

L), DEF (0.08 mg/L) and, DEM (1 mg/L) and then 24 hours to temephos following the same

protocol described in larval bioassay section to measure the synergist ratios (SR). Adult mos-

quitoes were exposed 1 hour to sub lethal concentration of PBO (4%), DEF (8%) and DEM

(8%) prior to the insecticides (malathion and permethrin) following the same WHO protocol

for adult bioassays [44]. Mortality was recorded 24 hours after insecticide exposure. The syner-

gist study on adults was performed after and independently (different mosquito batches) from

the bioassays done without inhibitors.

Enzymatic activities of the detoxification enzymes. The levels of P450 monooxygenases

(P450s), and the activities of carboxy/cholinesterases (CCEs) and glutathione S-transferases

(GSTs) were assayed from single 3 days-old F1 females (n = 47) following microplate methods

described by Hemingway [45] and Brogdon [46] on a spectrophotometer. Total protein quan-

tification of mosquito homogenates was performed using Bradford reagent with bovine serum

albumin as the standard protein [47] to normalize enzyme activity levels by protein content.

For P450 assays, the optical density (OD) values were measured at 620 nm after 30 min incuba-

tion of individual mosquito homogenate with 200 mL of 2 mM 3, 3’, 5, 5’-tetramethylbenzidine

dihydrochloride (TMBZ) and 25 mL of 3% hydrogen peroxide and the quantity was deter-

mined from cytochrome-c standard curve. Nonspecific α - and b-CCEs activities were assayed

by 10 min incubation of mosquito homogenate in each well with 100 mL of 3 mM napthyl ace-

tate (either α - or β -) at room temperature and the OD values were measured at 540 nm. The

activity was determined from α - or β -naphtol standard curves. Glutathione-S-transferases

activity was measured in the reaction containing 2 mM reduced glutathione and 1 mM

1-chloro-2,4-dinitrobenzene (CDNB). The reaction rates were measured at 340 nm after 20

min, and the activity was expressed in nmoles GSH conjugated/min/mg protein.

Kdr genotyping. We investigated the V1016G and 1534C kdr mutations because they

were described in the literature as good markers of pyrethroid resistance in Aedes mosquitoes

[31,48–50]. Unfortunately, we did not genotype the S989P mutation because at the time of the

implementation of the study this mutation was not yet detected in the region.

Biological material consisted of DNA extracts from 11 populations for which individuals

were extracted and genotyped for the 1016G and 1534C kdr mutations by qPCR. Each popula-

tion contained 100 extracts: 50 for permethrin and 50 for DDT (25 dead and 25 live mosqui-

toes from the bioassays). Total number of extracts to proceed by qPCR was 1076.Total

genomic DNA was extracted according to manufacturer’s instructions (Spin-column extrac-

tion method; NucleoSpin 96 virus, Macherey-Nagel, GmbH & Co. KG, Germany; protocol

available at www.mn-net.com). Detection of the V1016G mutation and the F1534C mutation

were implemented by qPCR based on the high resolution melting (HRM) curve developed by

Saaverda-Rodriguez et al. [51] and Yanola et al. [52], respectively. Resistant and susceptible

homozygotes for both mutations were used for controls. The mix used for the V1016G muta-

tion was composed of ultrapure water, 3μL of EvaGreen Euromedex 5X for fluorescence,

4.5pmol of Gly1016 r/f, 0.7pmol of Val1016r primers (S1 Table) and 3μL containing 5 to 50 ng

of DNA in a total volume of 15μL. The mix for the F1534C mutation contained 3μL of Eva-

Green Euromedex 5X, 2pmol of each forward primer and 4 pmol of the reverse primer in a

Insecticide resistance in Aedes aegypti Laos
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total volume of 15μL. Each reaction was performed in duplicate. Fluorescence data was ana-

lyzed by the Bio-Rad CFX Manager 3.0 software and the Precision Melt Analysis Software.

Copy Number Variations of detoxification genes The presence of CNVs affecting a set of

candidate genes (S2 Table) encoding detoxification enzymes previously associated with insec-

ticide resistance in SEA [32,37,53] was investigated in five populations representative of the

whole country: LPBTCL, VTEODP, VTEDPL, VTEIPL and SRVLKP. Targeted genes con-

sisted in the carboxylesterase, CCE-like (previously CCEae3A, AAEL023844) located in a clus-

ter of multiple CCEs on chromosome 2, and four cytochrome P450s: CYP6BB2 and CYP6P12

located within a CYP6 cluster on chromosome 1 together with the CYP9J-like (AAEL014614)

and CYP9J28 located within a large cluster of CYP9s on chromosome 3.

CNV were estimated for these genes in individual mosquitoes by quantifying their relative

genomic DNA quantity by real-time quantitative PCR as compared to the USDA strain. For

each population, 28 DNA samples previously used for kdr genotyping were analyzed (7 survi-

vors and 7 dead from the DDT and permethrin bioassays). As no genetic association was

expected between kdr mutations and metabolic resistance alleles, individuals were chosen in

order to ensure a good representation of kdr genotypes present in each population. PCR

amplifications were performed in duplicates on an iQ5 cycler (Bio-Rad) using specific primer

pairs for each gene (S1 Table). Amplification reactions consisted of 3 μL gDNA template,

3.6 μL nuclease free water, 0.45 μL of each primer (10mM) and 7.5 μL of SYBR Green Super-

mix 2x (Bio-Rad). A dilution scale made from a pool of all gDNA samples was used for assess-

ing PCR efficiency. The relative DNA quantity of each sample versus the USDA susceptible

strain was calculated using the ΔΔCt method taking into account PCR efficiency [54] and the

genes encoding CYP4D39 (AAEL007808) and a chloride channel (AAEL005950) for normaliz-

ing DNA quantity.

Statistical analysis

For each strain and each insecticide, the dose mortality relationships were fitted by regression

(P>0.05). Results were analyzed using the log-probit method of Finney (1971) using the Log

dose Probit software (LdP) Line (Ehabsoft, Cairo, Egypt) to estimate the slope of regression

lines and determine the 50% and 95% lethal concentration (LC50 and LC95, respectively) with

95% confidence intervals (CIs). For each bioassay, when control mortality was greater than 5%

but less than 20%, then the observed mortalities were corrected using Abbott’s formula [55]:

The resistant ratios (RR50 and RR95) were obtained by calculating the ratio between the

LC50 and LC95 of the wild and USDA strains. Synergist ratios (SR50 and SR95) were obtained

by calculating the ratio between LC50 and LC95 with and without enzyme inhibitor.

Statistical comparisons of detoxification enzyme levels between USDA and the field popula-

tions were assessed with the Wilcoxon—Mann Whitney test in BiostaTGV (Institut Pierre

Louis d’Epidémiologie et de Santé Publique UMR S 1136; https://biostatgv.sentiweb.fr/).

To assess the role of each mutation in permethrin and DDT resistance, we conducted a phe-

notype–genotype analysis by comparing the genotypic distribution of the V1016G and

F1534C mutations between the dead and live mosquitoes. Comparisons were made using Fish-

er’s exact test at 95% CI, in genepop software 4.2 (Laboratoire de Génétique et Environment,

Université de Montpellier, http://genepop.curtin.edu.au/, [56,57]). Considering that the com-

parisons cannot be done with unexposed populations having fixed alleles (i.e. around 1 or 0),

we selected populations having kdr allelic frequency for both mutations ranging from 0.3 to

0.7.

CNV analysis first consisted in testing for each gene the association between relative copy

number values obtained from all individuals and their survival/death status to DDT or
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permethrin among and within populations using a Kruskall-Wallis test. Then individual rela-

tive copy number values were averaged for each population in order to test the association

between CNV and insecticide resistance levels at both life stages (RR50 for larvae and survival

rates for adults) using Pearson’s product moment correlation coefficient test.

Results

Bioassay

Larvae resistance levels. The insecticide resistance level to temephos, deltamethrin, per-

methrin, and DDT are presented in Table 2. All Ae. aegypti populations from Laos showed

resistance to the larvicide temephos (see criteria above) with RR50 and RR95 between 1.55 and

6.5, respectively. Populations from Xayaboury (XBRTL), Vientiane Capital (VTEODP), Atta-

peu (ATPXA), and Saravane (SRVLKP) showed the highest resistance levels with (RR50

between 3 and 4). The population from Attapeu and Saravane showed RR95 > 5. All the popu-

lations showed strong resistance to deltamethrin and permethrin with RR50 between 6.25 and

17.5 except the population from Attapeu which showed a moderate resistance to permethrin

(RR50 = 2). Mosquitoes from Vientiane were the most resistant to deltamethrin and permeth-

rin (RR50 between 8 and 19). High resistance to DDT was measured with RR50 up to 171.7 in

Xayaboury mosquitoes and the most resistant (RR50 between 94 and 124) mosquito popula-

tions were from Vientiane capital.

Adult resistance levels

As expected, the USDA strain showed full susceptibility to the four insecticides tested (100%

mortality, Fig 2). Almost all populations tested were highly resistant to DDT, permethrin and

malathion with mortality rates varying from 0 to 31%, from 7 to 83%, and from 33 to 98%,

Fig 2. Mortality rates and 95% confidence intervals in WHO tube tests of wild adult Aedes aegypti populations from Laos. USDA: susceptible reference

strain.

https://doi.org/10.1371/journal.pntd.0007852.g002
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respectively. All populations were susceptible to deltamethrin (> 98% mortality) except for the

VTEDPL and ATPXA populations, which showed moderate resistance (~90% of mortality).

All the populations tested against malathion were resistant (mortality < 80%) or showed sus-

pected resistance (mortality between 90 and 98%) to this insecticide.

Table 3. Insecticidal activity of temephos against Aedes aegypti larvae (reference strain and field populations)

with and without inhibitors.

Strain Larvicides Slope (±
se)

LC50 (95% CI) (μg/

L)

LC95 (95% CI) (μg/

L)

χ2 p SR50
� SR95

�

USDA temephos 4.6 (0.3) 2.9 (2.7–3.1) 6.6 (5.8–7.6) 3.7 0.59 - -

temephos

+ DEF

3.2 (0.2) 1.3 (0.9–1.7) 4.2 (3.4–8.1) 11.9 0.0075 2.23 1.57

temephos

+ DEM

8.1 (0.8) 5.3 (5.1–5.6) 8.5 (7.6–9.8) 5.7 0.057 0.54 0.78

temephos

+ PBO

5 (0.4) 4.3 (3.6–5.2) 9.1 (8.2–16.3) 8.7 0.034 0.67 0.73

SRVLKP temephos 2.5 (0.3) 9.7 (8.3–11.1) 43.1 (33.4–63.7) 1.6 0.66 - -

temephos

+ DEF

3.6 (0.4) 3.2 (2.9–3.6) 9.4 (7.5–13) 0.24 0.62 3.03 4.59

temephos

+ DEM

5.9 (0.8) 7.5 (7–8) 14.1 (12.2–17.9) 0.006 0.94 1.29 3.06

temephos

+ PBO

6.2 (0.5) 7.3 (6.8–7.8) 13.4 (12–15) 0.26 0.61 1.33 3.21

XBRTL temephos 2.2 (0.14) 13.5 (12.2–15.2) 73.8 (57.5–101) 1.6 0.44 - -

temephos

+ DEF

1.8 (0.1) 3.3 (2.7–3.9) 24.9 (19.8–33.8) 8.8 0.12 4.1 2.96

temephos

+ DEM

5.5 (0.5) 11 (10.3–11.7) 21.9 (19.5–25.7) 6.4 0.09 1.23 3.37

temephos

+ PBO

4.3 (0.4) 10.1 (9.4–10.9) 24.5 (21.3–29.8) 6.4 0.09 1.34 3.01

LPBTCL temephos 5.5 (0.4) 6.7 (6.5–7.1) 14.1 (12.7–16.2) 0.31 0.95 - -

temephos

+ DEF

3.8 (0.4) 2.1 (1.9–2.3) 5.8 (4.9–7.2) 5.5 0.14 3.19 2.43

temephos

+ DEM

5.5 (0.8) 5.2 (4.9–5.6) 8.7 (7.5–11.5) 0.026 0.87 1.29 1.66

temephos

+ PBO

7.4 (1.3) 5.7 (5.3–6.4) 11.4 (9.2–16.7) 0.15 0.92 1.17 1.24

VTEIPL temephos 6.6 (0.5) 6.6 (6.2–6.9) 11.6 (10.5–13.5) 5.3 0.07 - -

temephos

+ DEF

3.7 (0.3) 3 (2.7–3.3) 8.3 (7.1–10.2) 3.4 0.49 2.2 1.4

e temephos

+ DEM

6.5 (0.9) 5,4 (5.1–5.8) 9.7 (8.3–12.5) 1.5 0.48 1.22 1.2

e temephos

+ PBO

7.6 (0.9) 5.6 (5.3–6) 9.2 (8.2–11) 0.7 0.4 1.18 1.26

ATPXR temephos 2.9 (0.8) 9.9 (6.9–33) 36.7 (36.2–61) 0.5 0.78 - -

temephos

+ DEF

3.7 (0.3) 3 (2.7–3.3) 8.3 (7.1–10.2) 3.3 0.5 3.3 4.42

temephos

+ DEM

6.4 (0.8) 5.4 (5.1–5.8) 9.7 (8.3–12.5) 1.5 0.48 1.83 3.78

temephos

+ PBO

7.6 (0.9) 5.6 (5.3–6) 9.2 (8.2–11) 0.7 0.4 1.77 3.99

�LC = Lethal concentration. CI = Confidence Interval. SR = Synergist ratio, Significant SR are shown in bold.

https://doi.org/10.1371/journal.pntd.0007852.t003
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Effect of detoxification enzymes on resistance

Larvae. In the susceptible strain, temephos toxicity was significantly increased (for SR50

but not for SR95) in the presence of the detoxification enzyme inhibitor DEF. There was a sig-

nificant but low decreased temephos toxicity in the presence of PBO and DEM (SRs < 1).

Except for VTEIPL and LPBTCL populations, the toxicity of temephos increased significantly

in all populations in the presence of detoxification enzyme inhibitors (Table 3). The levels of

resistance to temephos was reduced for all the population particularly in the presence of DEF

compared to DEM and PBO indicating the major role of CCEs in resistance to

organophosphates.

Adults. We did not observe full insecticide susceptibility recovery after pre-exposure to

synergists except in one population (LPBTCL) that was exposed with malathion and DEF syn-

ergist (from 71% to> 98% mortality, Fig 3). For several populations tested, the toxicity of per-

methrin and malathion increased in the presence of inhibitors, indicating the involvement of

P450s, CCEs and GSTs in the resistance to these two insecticides. Specifically, five out of the

six populations (VTIPL, VTODP, LPBTCL, SRVLKP, and ATPXA) exhibited higher suscepti-

bility to malathion in the presence of DEF indicating the involvement of CCEs in the resis-

tance. Several populations showed a higher susceptibility to malathion in the presence of PBO

(VTEODP, XBLTL, and SRVLKP) and DEM (VTEODP, SRVLKP, and ATPXA) indicating a

potential role of P450s and GSTs in the phenotypic resistance, respectively. All populations

Fig 3. Mortality (%) and standard deviation of adult Aedes aegypti after exposure to permethrin (0.25%) and

malathion (0.8%) with and without inhibitors (DEF: 8%, DEM: 8%, and PBO: 4%).

https://doi.org/10.1371/journal.pntd.0007852.g003
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(except XBRTL) showed a significantly increased susceptibility to permethrin after PBO pre-

exposure. We observed a partial recovery of susceptibility with both DEM and DEF synergists

(VTEIPL and XRBTL) suggesting a possible additional role of GSTs and CCEs in permethrin

resistance.

Biochemical assays

Compared to the USDA strain, all populations (except LPBTCL for GST) showed a signifi-

cantly higher constitutive detoxification enzymes level/activities for the P450s, GSTs, α-CCE

and β-CCE enzymes tested (P< 0.01, Wilcoxon—Mann Whitney, Fig 4).

Fig 4. Activity of detoxification enzymes and 95% Confidence Interval in field caught Aedes aegypti populations in

comparison to the susceptible reference strain (USDA): cytochrome P450 monooxygenases (P450s; A), Glutathione-S

transferases (GSTs; B), Esterases (α and β-CCEs; C and D). Sample sizes are 47 specimens/population. An asterisk (�)

denotes significantly higher levels of detoxifying enzyme compared to the susceptible reference strain USDA.

https://doi.org/10.1371/journal.pntd.0007852.g004

Table 4. Genotype distribution and allelic frequency of the V1016G and F1534C kdr mutations.

V1016G F1534C

POPULATION SS RS RR F(R) SS RS RR F(R)

VTEIPL 86 30 2 0.14 2 31 85 0.85

VTEDPL 34 40 10 0.36 12 43 32 0.62

VTEODP 53 43 12 0.31 12 43 53 0.69

VTEPLM 90 8 0 0.04 0 11 87 0.94

XBRTL 91 24 1 0.11 1 27 88 0.88

LPBKKG 102 4 2 0.04 1 7 100 0.96

LPBTCL 81 6 18 0.20 2 34 69 0.82

LPBTNY 87 28 2 0.14 2 31 84 0.85

SRVLKP 101 13 1 0.07 0 13 102 0.94

SRVKS 50 0 0 0.00 3 27 20 0.67

ATPXA 50 0 0 0.00 37 14 0 0.14

https://doi.org/10.1371/journal.pntd.0007852.t004
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Alleles and haplotypes frequencies of kdr mutations

A total of 1,076 Ae. aegypti females from 11 field-caught populations were tested by real-time

PCR to detect the presence of the V1016G and F1534C kdr mutations (Table 4). The V1016G

mutation was found at low and variable frequencies from 0 (SRVKS and ATPXA) to 0.36

(VTEDPL). The 1534C mutation was found at high frequency in all populations (> 0.6) except

at ATPXA where the prevalence was low (F(R) = 0.14). Significant differences in the frequency

of the 1016G and 1534C alleles were found between populations (P< 0.05). All populations

were at Hardy-Weinberg Equilibrium except LPBKKG (P = 0.0043) and LPBTCL (P< 0.001)

for the V1016G mutation (S3 Table). We also checked for linkage disequilibrium between

V1016G and F1534C in all populations (S3 Table). All but two populations, SRVKS and

ATPXA, had a non-random negative association of alleles at the two kdr loci (P< 0.001). In

other words, individuals exhibiting RR genotypes for the 1016G were mostly SS for the 1534C

and vice versa (Fig 5). Only 4 mosquitoes out of 1,076 were double homozygote resistant for

both 1534C and 1016G. We did not find any association between the frequency of kdr muta-

tions (for both F1534C and 1016G and haplotypes) and the survival rate to DDT and permeth-

rin (P> 0.05; S4 Table).

Copy Number Variations of detoxification genes

CNV were first analyzed at the individual level by comparing relative gene copy number

between the dead and survivors exposed to DDT or permethrin in each population. Although

some populations showed an elevated average higher gene copy number as compared to the

USDA population, no significant association was found for any gene between gene copy num-

ber and survival to insecticide within and among populations. However, when copy number

values were averaged for each population (including both the dead and survivors) and tested

against population resistance levels (RR50 for larvae and survival rate to WHO test for adults),

significant positive associations were found for three detoxification genes (Fig 6). CYP6BB2

gene copy number was correlated to both DDT and permethrin resistance in larvae and to per-

methrin resistance in adults. CYP6P12 gene copy number was correlated with permethrin

resistance in larvae. Finally, CCEAE3A gene copy number was significantly positively corre-

lated to malathion resistance in adults.

Because individuals used for CNV analysis were also genotyped for the presence of kdr
mutations, the association between any particular kdr haplotype mutation and CNV affecting

detoxification genes was tested. As expected, because CNV loci are distant from kdr loci, no

significant association was found between kdr haplotypes and CNV for any gene.

Discussion

The purpose of this study was to evaluate the insecticide resistance status of Ae. aegypti popula-

tions in several provinces throughout northern to southern areas of Laos. Insecticides repre-

senting the major families of insecticide used for vector control and (OC, OP, PYR) were

tested against larvae and adult mosquitoes following WHO protocols. The possible insecticide

resistance mechanisms involved were investigated using both biochemical and molecular

assays and the association between gene copy number variations and resistance was investi-

gated for a set of detoxification enzymes previously associated with resistance.

Insecticide resistance levels in Laos and implication for public health

The use of temephos as larvicide has been broad and continuous for 30 years in Laos and have

favored the selection of resistant Aedes sp. populations across the country. The resistance levels

Insecticide resistance in Aedes aegypti Laos
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to this larvicide were evaluated in Ae. aegypti populations for the first time and our study

showed that the populations tested were moderately resistant. Additionally, recent studies

showed that Ae. albopictus populations, the secondary dengue vector in the country, were also

resistant to temephos [58]. These results suggest that the use of alternative insecticides with dif-

ferent mode of action is urgently needed for the larval control of Aedes sp. in Laos. A semi-

field trial implemented at the Institut Pasteur du Laos (IPL; VTEIPL strain) showed that Bacil-
lus thuringiensis israelensis (Bti, biolarvicide) and diflubenzuron (insect growth regulator) for-

mulations remain effective for extended periods (i.e. 28 weeks) in the containers widely used

in Vientiane households for water storage [59]. Based on our findings, Lao Public Health

authorities have recently modified their National Strategic Plan (NSP) to fight against dengue

and have recommended the use of these alternative insecticides in yearly rotation (effective in

2019). The aim of this insecticide resistance management strategy is to preserve the efficacy

(and susceptibility) of the few new alternative larvicides available for the control of dengue in

the country.

Our study showed that resistance of adults to the OP malathion was widespread in Laos

although resistance levels were heterogeneous across geographic regions. Our larvicide

Fig 5. Haplotypes frequencies of V1016G and F1534C kdr mutations in Aedes aegypti populations from Laos.

https://doi.org/10.1371/journal.pntd.0007852.g005

Fig 6. Significant positive correlations identified CNV of detoxification genes and population resistance levels.

Resistance levels are expressed as RR50 for larvae and % survival to WHO insecticide test for adults.

https://doi.org/10.1371/journal.pntd.0007852.g006
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(temephos) findings showed that the use of OPs for vector control programs in Laos is no lon-

ger recommended. Furthermore, high levels of malathion resistance were detected in Ae. albo-
pictus populations in Vientiane Capital and Luang-Prabang city in both rural and urban areas

[58]. Malathion fogging treatments were used in the 1990’s and were progressively replaced by

the use of PYRs in the 2000’s. Worldwide, resistance to malathion has been reported, and in

several countries, this resulted in the replacement by other insecticides such as PYRs [60–62].

Unfortunately, PYR resistance in Aedes sp. mosquitoes is established in many countries [17]

and our results in Laos reconfirm this trend. All the adult populations tested were highly resis-

tant to permethrin and two of them, Attapeu and Vientiane Capital populations, were also

resistant to deltamethrin. Similarly, Ae. albopictus mosquitoes showed high resistance levels to

PYR in Laos [58]. All the populations tested against DDT were highly resistant even though

this insecticide is no longer used for vector control. It is possible that Aedes mosquito popula-

tions are still exposed to DDT in Laos through illegal use and persistence in the environment

[63], hence exerting constant selection pressure by maintaining DDT resistant alleles, such as

kdr mutations, and P450s/GSTs resistant genes. These resistance mechanisms may confer

selective advantages, such as cross-resistance to commonly-used PYR [24–26]. As already

mentioned above, our study showed that most of the Ae. aegypti populations are still suscepti-

ble to the adulticide deltamethrin. However, we used the previous discriminating concentra-

tion of 0.05% recommended by WHO for Aedes mosquitoes, the tentative discriminating dose

recommended for Aedes is now 0.03% [44] so we may have underestimated the phenotypic

resistance to deltamethrin in our study. This hypothesis was confirmed with the larval bioas-

says results that show that all the populations tested were resistant to deltamethrin (Table 2).

Knock down resistance mutations

Real-time PCR revealed that the 1016G and 1534C kdr alleles were present in Ae. aegypti in

Laos at various frequencies. The population from Attapeu (ATPXA) had the lowest kdr fre-

quencies for both mutations (F(R) = 0% for 1016G and = 14% for 1534C) and was also the

most susceptible against PYR among all populations tested. The synergist study showed that

resistance was partially recovered in the presence of synergists (<15%), suggesting that both

enzymatic mechanisms and kdr mutations may play a role in the resistance to PYR in this pop-

ulation. However, for all the populations tested, no correlation was found between the pres-

ence of mutant alleles for both mutations and the survival rates of mosquitoes to DDT and

permethrin, but several confounding factors may explain the outcomes. First, the metabolic-

resistance background of live and dead mosquitoes was not taken into account in the geno-

type/phenotype association studies. It is likely that P450 genes associated with permethrin and

deltamethrin resistance may have interfered with the survival rates of mosquitoes regardless of

the kdr haplotype. Furthermore, a negative genetic association between the 1016 and 1534 kdr
locus was found, indicating that the two genes are not independent from each other. The non-

random association of the V1016G and F1534C haplotypes may have then interfered with the

distribution of genotypes among dead and alive. The fact that only four mosquitoes (of 1,076)

were found homozygote resistant for both 1534C and 1016G confirm this trend and suggest a

high genetic cost associated with the double mutants. Similar results were reported in Aedes
populations from Thailand and Myanmar [21,30]. Nevertheless, both mutations have been

associated with PYR resistance in Ae. aegypti in SEA but with a contrasted pattern in their geo-

graphic frequencies distribution and correlation with insecticide resistance. For example, in

Thailand, Malaysia, and Vietnam the 1534C allele was found at high frequency and 1016G at

low frequency in populations resistant to PYRs, thus corroborating our results [31,52,64].

Other studies showed the opposite pattern in Thailand, southern China, and Myanmar
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[21,22,65]. As suggested by Kawada et al. [21], it possible that the use of DDT and permethrin

(type I pyrethroid) and the use of deltamethrin (type II pyrethroid) favor the selection of

F1534C and V1016G mutations, respectively. Wuliandari et al. [66] showed that the V1016G

mutation was also associated with resistance to type II pyrethroids. The low frequency of this

mutation in Laos might explain the low levels of resistance to deltamethrin in contrast to the

high levels of permethrin resistance and high frequency of the F1534C substitution found in

our study.

Several studies showed that another mutation in the sodium channel (S989P), if associated

with the V1016G mutation can increase the resistance levels to PYR in Ae. aegypti [21,22,67],

especially in a triple mutant 989P/1016G/1534C haplotype, which can engender extreme resis-

tance [29]. However, triple mutants have been detected at low frequency in different Asian

locations and monitoring of the occurrence and frequency of these association is a high prior-

ity [17]. The 989P/1016G/1534C heterozygote genotype confers moderate resistance to delta-

methrin and may present an important step in the evolution of high-level resistance or a

genotype providing benefit across different PYRs classes [33]. Recently, it has been demon-

strated that a new mutation (V410L) alone or associated with F1534C confers resistance to

both type I and II pyrethroid in Brazil [28]. The presence of this mutation should be investi-

gated in Asia.

Role of metabolic resistance mechanisms

Brooke and colleagues [68] early showed that resistance could be multigenic, and that the kdr
genotype might not fully explain all the variance in phenotype. As discussed above, we assume

that the absence of correlation between kdr mutations and survival rates to DDT and permeth-

rin may also be explained by the co-occurrence of metabolic mechanisms and target site-muta-

tions at the population level without any genetic link between them.

In our study, increasing mortality rates in larvae with temephos after pre-exposure to DEF

suggest that CCEs are playing a predominant role in the observed resistance. Some reports

based on routine biochemical assays in different Ae. aegypti field populations also supported

the role of CCEs in OP resistance [39,69,70]. Furthermore, previous reports based on molecu-

lar tools correlated temephos resistance with CCEs over transcription [38]. In the adults, we

observed a partial recovery of susceptibility after pre-exposure of the three synergists for both

malathion and permethrin. For malathion, the synergist action of DEF indicates elevated

CCEs activities thus showing that CCE genes are playing a major role in the resistance

observed. However, mortality rates also increased with the use of DEM and PBO suggesting

that other detoxification enzymes such as GSTs and P450s may also contribute to OP resis-

tance. For deltamethrin, the effect of PBO confirms that the overexpression of P450 genes is

playing an important role in the resistance although we cannot exclude that other detoxifica-

tion enzyme families such as CCEs and GSTs may contribute to resistance. Our biochemical

assays confirmed these results since most populations tested presented higher GSTs and CCEs

activities and higher amounts of P450s compared to the susceptible strain (Fig 4). Overall

these results confirm the important role of metabolic resistance in the resistance to OP, PYR,

and DDT in Ae. aegypti in Laos as previously reported in the region [17]. Although classic bio-

chemical and synergistic assays provide a first assessment of the presence of metabolic resis-

tance, quantifying its importance versus other resistance mechanisms requires additional

work.
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Gene copy number variations associated with metabolic resistance

At the individual level, CNV of candidate genes were not found significantly associated to

insecticide survival for both insecticides. This was expected for DDT as no DDT marker was

included in the candidate gene set but it was not expected for permethrin for which targeted

detoxification genes have frequently been involved in pyrethroid resistance. Indeed, CYP6BB2

and CYP9J28 are known to encode cytochrome P450s able to degrade permethrin in Ae.
aegypti and CNV affecting these genes have previously been associated with pyrethroid resis-

tance [32,37,53,71]. In the present case, this absence of association may be explained by the

low number of individual mosquitoes tested for each population/insecticide but also by the

importance of kdr mutations in the ability of mosquitoes to survive high doses of permethrin

and DDT. However, analyses performed at the population level allowed us to detect a signifi-

cant correlation between permethrin resistance (adult and larvae) and CYP6BB2 gene copy

number. This result suggests that although CYP6BB2 duplication was only detected in South

America and that CYP6BB2 over-expression was not caused by a gene duplication in a pyre-

throid-selected strain from Singapore [32,37,41], this duplication may still occur in South-East

Asia. Whether CYP6BB2 up-regulation, genomic duplication, or both mechanisms can be

selected in pyrethroid-resistant populations and be used as pyrethroid resistance markers in

Souht-East Asia deserve further work. Finally, a strong correlation was detected in adults

between malathion resistance, and CCEAE3A gene copy number. This suggests that this ester-

ase previously shown to sequester and metabolize temephos [72,73], may also confer mala-

thion resistance in Laos. Given the very low probability of occurrence of the Ace1 mutation

conferring OP resistance in Ae. aegypti [74], the detection of CCEAE3A gene duplication rep-

resent a promising tool to track OP resistance in South-East Asia. Overall, although CNV

affecting detoxification genes show a good potential to be used as DNA-based metabolic resis-

tance markers in the field, their association with resistance to different insecticides and their

importance in the overall resistance phenotype need to be confirmed.

Conclusion

Overall, insecticide resistance in Ae. aegypti populations from Laos are concerning because of

the lack of insecticides available for vector control, particularly for adult mosquitoes. Recently,

the Lao government adopted a new strategy to deploy alternative larvicides with different

modes of action in a yearly rotation. In the long term, this will help to maintain an effective

vector control to prevent dengue and chikungunya transmission while preserving the suscepti-

bility of available public health pesticides.

Our study suggests that both kdr mutations and metabolic resistance mechanisms are pres-

ent in Laos but their impact on the resistance may differ in proportion at the population or

individual level. Molecular analyses suggest that CNV affecting CCEAE3A previously associ-

ated with temephos resistance is strongly associated with malathion resistance while CNV

affecting the two P450s, CYP6BB2 and CYP6P12, are associated with pyrethroid and possibly

DDT resistance. The development of new tools to detect and better understand IR mechanism

in Ae. aegypti is crucial to improve vector control and insecticide resistance monitoring.
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Resources: Sébastien Marcombe.

Supervision: Sébastien Marcombe, Jean-Philippe David, Vincent Corbel.
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Visualization: Sébastien Marcombe.

Writing – original draft: Sébastien Marcombe.
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