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Abstract. In the astrophysics domain, the detection and description of
gamma rays is a research direction for our understanding of the universe.
Gamma-ray reconstruction from Cherenkov telescope data is multi-task
by nature. The image recorded in the Cherenkov camera pixels relates
to the type, energy, incoming direction and distance of a particle from
a telescope observation. We propose γ-PhysNet, a physically inspired
multi-task deep neural network for gamma/proton particle classification,
and gamma energy and direction reconstruction. As ground truth does
not exist for real data, γ-PhysNet is trained and evaluated on large-scale
Monte Carlo simulations. Robustness is then crucial for the transfer of
the performance to real data. Relying on a visual explanation method,
we evaluate the influence of attention on the variability due to weight
initialization, and how it helps improve the robustness of the model. All
the experiments are conducted in the context of single telescope analysis
for the Cherenkov Telescope Array simulated data analysis.

Keywords: multitasking · artificial neural networks · gamma rays · at-
tention · visual explanation.
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1 Introduction

Gamma-ray astronomy aims to study astronomical phenomena (supernova rem-
nants, dark matter annihilation...) based on the gamma radiation generated by
these phenomena. The analysis of this radiation is performed through the obser-
vation of telescope images of the particle shower resulting from the penetration
of high-energy particles in the atmosphere (Cherenkov effect [9], see Fig. 1).
The purpose of the image analysis is twofold:

1. identifying the gamma rays in the cosmic ray background mainly composed
of protons (with a signal-to-noise ratio typically lower than 1/1000), which
is a classification problem,

2. estimating the energy and direction of the identified gamma rays, which is
a regression problem.

The Cherenkov Telescope Array (CTA)1 is the next generation of Imaging
Atmospheric Cherenkov Telescopes (IACTs). Composed of ∼ 100 telescopes of
different sizes, it will improve sensitivity and accuracy in gamma-ray analysis.
However, the huge amount of data (210 PB of raw data per year when in full
operation) requires a shift towards new methods of analysis, in particular deep
neural network approaches. The work presented in this paper is carried out on
the large-scale simulation data shared within the CTA international collabora-
tion. As ground truth is not available in the field of astrophysics, the analysis
toolchains are prepared with very high-quality simulation relying on a well-
known physical model of the phenomenon and on the detector simulation [2].
Besides, the first real data are just available.

In this paper, we first propose a new deep multi-task architecture, named
γ-PhysNet, taking into account physics considerations and designed for single
telescope gamma event analysis. We evaluate this model on the simulation data
of the Large Size Telescopes 1 (LST1 [1]), the first prototype installed at the
Northern CTA site in La Palma. In a second step, with the help of a visual
explanation method for neural networks, we analyze the impact of attention
(mechanism that reinforces relevant features) on the variability introduced by
model weights initialization, and show that augmenting the network with atten-
tion improves the robustness of the model.

The rest of the paper is organized as follows. In Section 2, we give a short
state of the art related to this work. Section 3 is a presentation of γ-PhysNet.
Understanding the impact of attention mechanism and weight initialization are
discussed in Section 4. Finally, Section 5 gives conclusions and some perspectives
for future works.

2 Related Work

Over the past decade, deep learning has emerged as the leading approach in
many computer vision tasks. IACT data has not escaped this trend [16,18,20,25].

1 https://www.cta-observatory.org/

https://www.cta-observatory.org/
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Fig. 1. Imaging Atmospheric Cherenkov Telescope. When a gamma particle enters
the atmosphere, it generates an electromagnetic shower of secondary particles emitting
Cherenkov light. This blue light is captured by the telescope on the ground and recorded
as the signal by the camera. The event reconstruction consists in analyzing this signal
to retrieve the physical parameters (type, energy, altitude, azimuth) of the primary
particle.

These papers present promising results, especially for gamma/proton classifica-
tion. However, they have handled the different reconstruction problems as single
tasks, without considering their strong interdependence. Further, multiple single
task models can increase the computational cost, thus making their use compli-
cated in our massive data context.

Multi-Task Models. When dealing with a multi-task problem, it has been shown
[29] that transferring knowledge across related tasks improves the generalization
of the deep models with fewer data. Thus, in Multi-Task Learning (MTL), the
different tasks to address are trained simultaneously, using a partially shared
modeling. In hard parameter sharing architectures, the most frequently used, a
whole part of the network (generally the encoder or its first layers) is shared
between all tasks [22]. In soft parameter sharing architectures [4], each task is
learned with its own network. Some additional layers are shared and constrained
in order to encourage their weights to be similar. In MTL, balancing the tasks
is the critical point. For most of the MTL related papers [15, 21], this is done
manually, requiring an extensive optimization process. However, adaptive meth-
ods have been proposed, with different balancing strategies such as modeling
homoscedastic uncertainty for each task [12], using the task loss gradients [5],



4 M. Jacquemont et al.

using learning progress signals as key performance indicators [6] or regarding the
problem as a multi-objective optimization [24].

Complementary to MTL, the development of deep learning models integrates
attention mechanisms.

Attention Mechanisms. Attention is a mechanism that helps deep learning model
focus on relevant features based on a defined context through trainable weights.
A distinction can be made between restricted self-attention, focusing on local
spatial neighborhoods and global self-attention as a non-local operation [31].
Local and global self-attention can be considered as spatial attention mecha-
nisms, as they capture short- and long-range dependencies in data, by weighting
each pixel. On the contrary, Hu et al. [10] introduce a lightweight channel-wise
attention denoted Squeeze-and-Excitation. The squeeze operation produces de-
scriptors for each input channel, and is followed by an adaptive recalibration,
the excitation, and a scale operation that weights the input channels. Dual At-
tention [28] has been proposed to improve model interpretability and robustness
of U-Net models for a semantic segmentation task. It combines Squeeze-and-
Excitation and a simple spatial attention path. The latter first compresses the
number of input channels to one, and then applies a sigmoid function to the
resulting pixel values, and adds one to them to produce an attention map. This
way, the spatial attention map can only increase pixel values. This map is then
used to rescale the output of the Squeeze-and-Excitation. Such attention strat-
egy then allows for the weighting of both spatial and channel-wise information
in a low-cost operator.

Model Explanation. While traditional expert systems are highly interpretable
and explainable, deep neural networks are often perceived as black boxes. Re-
cently, the deep learning community has put an increasing effort on opening the
black box. Some methods explore the role of individual neurons or linear combi-
nation of units through ablation [17,32] or optimization [19]. Others estimate the
importance of input features for a particular output activation. They produce
saliency maps [3,26,27] also called heatmaps in [23] for network visualization. In
the rest of this paper we rely on Grad-CAM [23], a highly class-discriminative
localization method that produces a heatmap of the region that is the most rel-
evant for the model’s decision. It is applicable to any network structure. The
heatmaps are computed based on the last convolutional layer. In the context of
multi-task learning, Grad-CAM is then especially adapted to hard parameter
sharing networks that share a convolutional encoder between all tasks. In ad-
dition, when available, attention maps, produced by attention mechanisms (see
previous section), can provide insights on the model regions of interest that can
explain the predictions.

3 Proposed Architecture and Performance

To achieve full event reconstruction from IACT data, we propose a MTL archi-
tecture, denoted γ-PhysNet. We then compare the vanilla model to a version
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augmented with attention modules. Our aim is to understand model robustness
against weight initialization, and the regularization effect provided by attention
mechanisms. Model performances are assessed relying on different random seeds.

In this paper we restrict our analysis to a specific model with optional atten-
tion modules. This model is a performing baseline that originates from prelim-
inary extensive comparative studies, and the scope of the paper is to study its
robustness towards weight initialization variability.

3.1 γ-PhysNet Architecture

As illustrated in Fig. 2, γ-PhysNet is a hard parameter sharing architecture
composed of a backbone encoder and a multi-task block inspired by the physics
of the reconstruction. The network is fed with two-channel IACT data discussed
in Section 3.2. It performs gamma rays from background noise separation, and
primary particle energy and arrival direction regression as the altitude and az-
imuth. The regression of the virtual impact point on the ground of the particle
is an auxiliary task (see 1 for the meaning of these characteristics). Even though
it is not required for higher-level analysis, physics shows that this parameter
provides meaningful information to solve the other tasks. The baseline backbone
of γ-PhysNet is the convolutional part of a ResNet-56 [7, 8], CIFAR-10 version,
with full pre-activation implemented with IndexedConv [11]. The latter allows
the direct processing of the hexagonal pixel images of the LST1 data used in
this paper without transforming them to square pixel ones. We also propose a
refined version of the model, named γ-PhysNet DA (DA for Dual Attention),
that makes use of attention. Dual Attention modules are inserted into the back-
bone after every stage, i.e., processing scale, to benefit from attention at each
feature scale. As mentioned in Section 2, Dual Attention is composed of a spa-
tial attention path and a channel-wise attention path. The latter consists of a
Squeeze-and-Excitation module that has a ratio parameter to control its bottle-
neck. An extensive study of this hyperparameter has shown that, in the context
of the experiments carried out for this paper, the default ratio of 16 allows ob-
taining the best results. The physically inspired multi-task block finalizes the
model. It is composed of a global feature network and a local feature one, both
based on fully connected layers. The global feature part, dedicated to energy re-
gression, starts with a global average pooling. This strategy follows the physics of
the phenomenon, as for a given arrival direction and impact point, the amplitude
of the image is roughly proportional to the primary gamma ray energy [30]. The
local feature part is devoted to gamma/proton classification, and regression of
the arrival direction and impact point. It is fed with the flattened feature maps
produced by the backbone. The aim is to exploit local (the shape of the signal in
the image) and spatial (the position and orientation of the signal) information
that is more deeply related to the particle type, its arrival direction and virtual
impact point.
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Fig. 2. γ-PhysNet. Left: the model architecture composed of a convolutional backbone
(ResNet-56) and a physically inspired Multi-task head block based on fully connected
layers (FC). The latter is divided into two paths: a global path for the energy regression
and a local path for the particle type classification, the direction and the virtual impact
point regression. Right: refined model backbone with Dual Attention modules inserted
after each stage.

3.2 Experiments

Dataset. As ground truth is impossible to obtain from real data, γ-PhysNet
and γ-PhysNet DA are evaluated on the LST4 mono-trigger production (from
2019/04/15), the reference large-scale Monte Carlo production generated by the
LST international consortium for the LST1 commissioning. This dataset has
been calibrated and integrated with DL1DataHandler [13]. Each sample corre-
sponds to a single event (particle) and is composed of two-channel images: one
with pixel intensities in number of photoelectrons and the other one containing
per-pixel temporal information in nanoseconds. Data amplitude is not normal-
ized since it is related to the energy of the detected particles. A data selection
step is applied, following the standards in the domain and the project collabora-
tion. It consists of a series of relatively loose selection cuts on image amplitude,
shower size and truncated showers applied to the data in order to discard bad
quality events that would not be reconstructed by standard methods either. The
training set is finally composed of 874k gamma events and 506k proton events,
the validating set 201k and 136k, and the test set 209k and 38k.

Training. In order to analyze the robustness of both models to parameter ini-
tialization, we repeat the experiments with six different random seeds. We define
the following optimization criteria: cross-entropy loss for the classification task
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and the L1 loss for each regression task. Models are trained for 25 epochs with
Adam [14] as the optimizer, and a weight decay of 10−4 for regularization pur-
pose. The learning rate is set to 10−3, decayed by a factor of 10 every 10 epochs.
The different tasks are balanced with the uncertainty estimation method pre-
sented in [12]. In this setup, both models reach their best performance plateau
on the validation set. In gamma-ray astronomy, proton events are considered as
background noise. To prevent them from penalizing the learning of energy and
direction regression for gamma events, we rely on a masked loss method, setting
to zero the loss of the regression parameters (energy, arrival direction and impact
point) when particles are protons.

Evaluation Metrics. The performance on energy and direction reconstruction
tasks is measured through resolution curves. The angular resolution is defined
as the 68% containment radius of the point-spread (distribution) function and
the energy resolution as the 68% containment radius of the relative absolute
deviation. Lower resolutions are better.

Weight initialization plays an important role in neural network performance.
We then repeat the experiment six times for both models, and we illustrate the
variability of these different runs by drawing the average resolution curve per
energy bin, the surfaces representing the standard deviation. The latter, referred
to as dispersion in this paper, serves as measure of the robustness of the models.

For the gamma/proton classification task, the overall performance of the
network is given by the area under the ROC curve (AUC), the precision and the
recall.

Results. As shown in Table 1, both models with and without attention have com-
parable results on the classification task, within the standard deviation range.
However, for the energy and direction regression, as illustrated in Fig. 3, the
model with Dual Attention (γ-PhysNet DA) obtains slightly better average re-
sults above 100 GeV. Furthermore, we observe that the network with attention
has significantly less spread results. In particular, γ-PhysNet DA has a constantly
lower dispersion on the direction reconstruction task. On the energy reconstruc-
tion one, at energies above 200 GeV, the model without attention has dispersion
up to three times higher. This lower dispersion of the results of γ-PhysNet DA
denotes a better robustness to parameter initialization. This will lead to a more
reliable estimation of the particle parameters when we analyze real data.

4 Understanding the Impact of Dual Attention

As we have seen in Section 3.2, the addition of Dual Attention modules to γ-
PhysNet improves the robustness of the model, especially for the energy and
arrival direction reconstruction tasks, by reducing the dispersion due to parame-
ter initialization during the training step. However, it has no clear impact on the
classification task. To understand how and why attention acts on the model pre-
dictions, we carefully observe the Grad-CAM heatmaps produced by γ-PhysNet
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Table 1. Classification performance of both models with and without attention. The
AUC represents the overall performance, while the precision shows the ability of the
model to discard protons (the background noise), and the recall highlights the ability
of the model to retrieve gammas.

Model AUC Precision Recall

γ-PhysNet 0.882±0.001 0.929±0.001 0.935±0.007
γ-PhysNet DA 0.882±0.001 0.929±0.001 0.935±0.005

Fig. 3. Angular (left) and energy (right) resolution as a function of the energy in
the LST1 energy range (lower is better). Both resolution curves represent the error
of the model for the regression of respectively the direction and the energy of the
detected gamma particle. The dispersion, representing the variability induced by weight
initialization, is a measure of the robustness of the models.

and γ-PhysNet DA for 25 well and badly reconstructed events of the test set.
We also observe the spatial attention maps of the three Dual Attention modules.
Additionally, for each input data and model seed, we combine these three spatial
attention maps with the Hadamard product to obtain a global representation of
the spatial attention in the model. Finally, to highlight the variability brought
by the different initialization seeds for a particular event, we compute the mean
and standard deviation of Grad-CAM heatmaps and spatial attention maps at
the pixel level (to lighten the paper, only these means and standard deviations
will be presented in the following figures).

Observation of the Grad-CAM Heatmaps and the Spatial Attention Maps. For
all the 25 events analyzed, we observe a common trend in the averaged heatmaps
produced by the Grad-CAM. Fig. 4, Fig. 5 and Fig. 6 illustrate 3 typical exam-
ples respectively, a well-reconstructed but partially truncated gamma shower, a
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well-reconstructed and centered gamma shower and a badly reconstructed one.
It is worth noticing that the different maps are represented using different color
scales. For the classification task (denoted ”class” in the figures), with or without
attention, the most relevant pixels highlighted by Grad-CAM are located in the
signal area. On another hand, for the regression tasks (denoted ”Energy”, ”Al-
titude” and ”Azimuth” in the figures) we observe different behaviors. Without
attention, the most relevant ones are situated on the border of the camera, while
the signal pixels are of less importance. In our understanding, this phenomenon
serves as an evaluation of the signal outside of the camera, and thus not ac-
quired, that is important for regression tasks. With attention, all the relevant
pixels are located in the shower area, thus better taking into account the signal
pixels and relevant information. Besides, for all tasks, the model with attention
focuses on a larger part of the image. It is worth noticing that, in addition to the
signal pixels themselves, pixels situated in the signal neighborhood contain use-
ful information about the shower shape. Then, the deviation measures (denoted
”std” in the figures) of Grad-CAM heatmaps highlight the same general trend
related to the robustness against the initialization. Although the variability of
pixel relevance is quite important in both cases, for γ-PhysNet with attention
the relevant pixels fluctuate in the signal area, while without attention they vary
on a larger extent between the shower area and the image boundaries.

Then, the observation of the spatial attention maps of γ-PhysNet DA shows
that the action of Dual Attention is different depending on the feature scale. The
output of stage 1 has the same resolution as the input data. At this scale, the
attention module mainly focuses on the shower pixels, and strongly rescales their
value. The value of the signal pixels is multiplied by up to 1.8 in average, while,
by construction, the rescaling factor computed by the spatial attention path of
Dual Attention modules ranges in [1, 2], as explained in Section 2. However, the
attention maps are quite noisy at this scale, as also highlighted by the deviation
measures. After stage 2, the attention modules also strongly favor the pixels in
the signal area, and the attention maps are less noisy. Then, the last attention
modules, after stage 3, have a lighter impact on the feature maps values. Finally,
the observation of the combined spatial attention maps highlights that attention
strongly helps the model focus on the signal pixels, which is consistent with the
observation of the Grad-CAM heatmaps.

Impact of the Attention on the Classification Task. Table 1 shows no significant
effect of the attention of the classification task. This can be explained by the
attention and Grad-Cam heatmaps that always focus on the event shower area.
More into the details, attention allows for a larger extent of the heatmaps around
the shower and also avoids interest on the noisy boundaries of the images. How-
ever since both models report similar predictions performances, one can expect
that they rely on the same most contributing, shower centered, features.

Impact on the Regression Tasks. For the energy and direction reconstruction
tasks, Dual Attention forces the model to focus on the shower area instead of
the image border, by strongly rescaling the signal pixels and their close neigh-
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bors. This is significant enough to improve the results of both tasks presented
in Section 3.2, and to reduce the dispersion introduced by the parameter initial-
ization.

Besides, it is worth noticing that for the event 16 represented in Fig. 4, the
most important pixels are still on the border of the image. Indeed, the signal is
truncated, and the network has learned that it is an important information to
take into account for the estimation of the energy and the direction of the gamma
ray. However, focusing on the signal part of the image does not automatically
imply a good reconstruction, as exemplified by the badly reconstructed event 24
shown in Fig. 6.

5 Conclusion

In this paper we have presented γ-PhysNet, a deep multi-task architecture for
gamma-ray full-event reconstruction for IACT single telescope images. We have
shown that augmenting the model with attention allows for a reduction of the
performance variability induced by parameter initialization. Relying on a visual
explanation method, we have then realized the first steps to understand how
attention modifies the behavior of the model. In a future work, in order to deepen
this analysis, we will define statistical criteria to quantify this effect. Correlating
the pixels highlighted by Grad-CAM and the true signal over the whole test set
is an option. We also consider analyzing statistically the distance of the relevant
pixels to the shower centroid. Finally, it would also be interesting to study if the
robustness brought by attention mechanisms also holds with slightly different
datasets (different levels of noise, altered images, etc.).
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Fig. 6. Badly reconstructed gamma, event 24. The two upper rows represent the Grad-
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the next two rows correspond to the Grad-CAM heatmaps of γ-PhysNet DA (with
attention), and the last two rows show the corresponding spatial attention maps.
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