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Abstract.
The Cherenkov Telescope Array (CTA) is the next generation ground-based ob-

servatory for γ-ray astronomy. It will be used to study γ-ray sources, allowing to better
understand the Universe. One order of magnitude more sensitive than the current gen-
eration of experiments, CTA will propose unseen challenges to standard reconstruction
methods. The GammaLearn project offers to apply deep learning as a part of the analy-
sis of CTA data. Its goal is to separate the γ photons from cosmic particles, and recon-
struct the γ photon parameters (energy and arrival direction) from noisy unconventional
images, with expected better performance and faster reconstruction than standard meth-
ods. Here we present a complete reconstruction of IACT events using state-of-the-art
deep learning techniques. The network is then applied in the single telescope context
of the LST1, the first CTA telescope prototype built on the Northern hemisphere site
(La Palma, Canary Island). We show that the full event reconstruction is possible with
a single multi-task network, reducing the computing needs.

1. Introduction

Imaging Atmospheric Cherenkov Telescopes (IACT) detect the Cherenkov light in-
duced by particle showers generated by cosmic rays and gamma rays entering the at-
mosphere. A complex data analysis is then required to reconstruct the direction, energy
and type of the incoming particle from the telescope images. Since the 2012 ImageNet
breakthrough, deep learning advances have shown dramatic improvements in data anal-
ysis across a variety of fields. Convolutional neural networks look particularly suited
to the task of analyzing IACT camera images for event reconstruction as they pro-
vide a way to reconstruct the interesting physical parameters directly from calibrated
images, skipping the preprocessing steps of standard methods, such as image clean-
ing and image parametrization. Moreover, despite demanding substantial computing
resources to be trained and optimized, neural networks show very good performance
during inference in a production setup. Some effort has been made to explore deep
learning techniques for IACT data analysis, especially to perform gamma event recon-
struction of CTA data (Nieto Castaño et al. 2017; Mangano et al. 2018) or other IACTs
(Shilon et al. 2019). Although these papers present promising results, especially for
gamma/proton classification, they all handle the different reconstruction problems as
single tasks, without considering their strong interdependence.
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2. γ-PhysNet for Full Event Reconstruction

γ-PhysNet is a multi-task learning (Caruana 1997) architecture that performs full-event
reconstruction with a single neural network, exploiting the interdependence of the pa-
rameters to reconstruct. It is composed of two parts. The first one is a very deep
backbone (the convolutional part of the ResNet 56 (He et al. 2016)) augmented with
Dual Attention (Sun et al. 2020). The attention blocks help the model focus on the rel-
evant part of the feature maps to extract a meaningful latent representation of the input
data. This representation is then fed to a multitask block inspired by the physics knowl-
edge. This block is divided into two paths, a global path to reconstruct the energy and
a local path to perform gamma/proton separation, direction reconstruction and virtual
impact point reconstruction as an auxiliary task. Multi-task learning helps improve the
generalization ability of the model, and so the reconstruction performance by reducing
the degeneracy introduced by the monoscopic detection by a single IACT. To automat-
ically balance the tasks during the learning process, we use an adaptive method relying
on the modeling of the homoscedastic uncertainty of each task (Kendall et al. 2018).
In addition, in order to prevent protons from disturbing the learning of the energy and
direction reconstruction of gamma events, we use a masked loss strategy. γ-PhysNet is
implemented with indexed convolution (Jacquemont et al. 2019) to apply deep learning
directly to the hexagonal pixel images of the LST1, thus reducing the number of pre-
processing steps. Besides, γ-PhysNet inference rate on an NVIDIA V100 is compatible
with data acquisition rates, making it a potential solution for real-time analysis.

Figure 1. γ-PhysNet, a physically inspired multi-task architecture for single tele-
scope full-event reconstruction.

3. γ-PhysNet Performance

Experiments. We evaluate γ-PhysNet in the single-telescope context of the LST1.
We use the large-scale Monte Carlo production generated by the LST collaboration
for the LST1 commissioning, referenced as the LST4 mono-trigger Production (from
2019/04/15). This dataset has been calibrated and integrated with DL1Data-Handler
(Kim et al. 2019). It is separated into a training set, a validating set and a test set. The
images have two channels, one for pixel intensity (unit being the number of photoelec-
trons) and the other containing per-pixel mean arrival time of the photoelectrons. A
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series of loose selection cuts on image amplitude and truncated showers is applied to
the data, resulting in a training set composed of 874k gammas and 506k protons. With
the help of the GammaLearn framework (Jacquemont et al. 2019), we train γ-PhysNet
on diffuse gamma and proton events scattered over the full field of view of the 4 tele-
scopes of the dataset to provide a more accurate overview of the data variability. The
model is evaluated on point-like gamma and proton events detected by the LST1 only.

Results. We compare the performance of the proposed architecture with the wide-
spread Hillas + RF method (Bock et al. 2004) that relies on image Hillas parametriza-
tion followed by Random Forest regressions and classifications. We repeat the experi-
ments 10 times for γ-PhysNet, in order to take into account the variability introduced by
the network parameter initialization. The resolution curves and the sensitivity presented
in Figure 2 and 3 are then drawn as bands to illustrate this variability. Both angular and
energy resolution curves and the sensitivity one show that γ-PhysNet outperforms the
Hillas + RF method below 1 TeV. The improvement is remarkable at the lowest energies
(below 100 GeV), and is especially relevant for the study of extragalactic sources and
transient phenomena. In particular, γ-PhysNet improves the direction reconstruction up
to 0.3 ° at very low energy. Moreover, it has a sensitivity twice better on the same en-
ergy range. Besides, we observe a very low variability for the three metrics presented,
highlighting the robustness of our architecture. Combined with its computing perfor-
mances, this approach is therefore a good candidate for offline and online analysis for
CTA, although moving from simulations to real data will be challenging.

Figure 2. Comparison of γ-PhysNet and Hillas + RF. Angular (left) and energy
(right) resolutions representing the 68% containment of the error per energy bin.

4. Conclusion

The results obtained by γ-PhysNet on Monte Carlo simulations show that full-event
reconstruction form a single IACT data is possible with a deep multi-task architecture.
In a future work, we will probe how this good results transfer to real data by analyzing
the data produced by the LST1. We also plan to lean on this good performance in a
single telescope context to build a model for stereoscopic data reconstruction.
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Figure 3. Sensitivity. Comparison of γ-PhysNet and the widespread Hillas + RF
method. The performance of MAGIC (Aleksić et al. 2016) is included for reference.
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