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Abstract

Several prokaryotes and eukaryotic cells swim in presence of deformable and
rigid surfaces that form confinement. Most commonly observed examples from
biological systems are motility of leukocytes and pathogens present within blood
suspension through microvascular network, locomotion of eukaryotic cells such
as immune system cells, cancerous cells through interstices between soft intersti-
tial cells and extracellular matrix within interstitial tissue. This motivated us to
investigate numerically flow dynamics of amoeboid swimming in flexible channel.
The effects of wall stiffness and channel confinement on the flow dynamics and
swimmer motion are studied. The swimmer motion through the flexible channel
is substantially decelerated compared to the rigid channel. The strong confine-
ment in amply flexible channel imprisons the swimmer by severely restricting
its forward motion. The swimmer velocity in a stiff channel displays nonmono-
tonic variation with the confinement while it shows monotonic reduction in a
highly flexible channel. The physical rationale behind such distinct velocity
behaviour in flexible and rigid channels is illustrated using instantaneous flow
field and flow history displayed by the swimmer. This behavior follows from a
subtle interplay between the shape changes exhibited by the swimmer and the
wall compliance. This study may aid in understanding influence of elasticity
of surrounding environment on cell motility in immunological surveillance and
invasiveness of cancer cells.



1 Introduction

Last two decades have witnessed plethora of studies from various interdisci-
plinary research groups who investigated different aspects of hydrodynamics of
microorganism swimming due to their significance in aquatic ecosystem [1, 2, 3],
proliferation of pathogenic infections [4, 5], cellular scale hydrodynamics [6, 7, 8]
and designing of efficient swimming microrobots [9, 10, 11]. These microswim-
mers are often surrounded by active or passive particles such as microbes and
cells, rigid or deforming surfaces such as microvascular network, cell walls, in-
terstitium, microtubules, membranes. Pathogens exploit these surroundings to
facilitate their motility. The hydrodynamic interaction between microswimmers
and neighbouring surfaces influences swimmer speed, its efficiency, trajectory,
orientation and collective behaviour.

Microswimmers exhibit peculiar behaviour in presence of surfaces. Some
bacteria such as Escherichia Coli exhibit circular clockwise motion in presence
of solid surface [12, 13, 14], anticlockwise circular trajectory near liquid-air free
surface [15, 16, 14] and reversal of its direction in presence of obstacle [17].
Recent experimental [18, 19] and theoretical [20] studies have reported changes
in the direction of circular trajectory of E. Coli in presence of polymers in the
fluid near solid wall and surfactant in the solution near free surface. Crowdy
et al. [21] showed that free capillary surface can be deformed to induce steady
locomotion parallel to the free interface. The bacteria tends to be trapped close
to the surface and forms aggregates [22, 23, 24, 25]. This microbial behaviour
is purely governed by passive hydrodynamic interaction [12, 15]. This shows
that surface plays pivotal role in controlling hydrodynamic behaviour of mi-
croswimmers. Thus new strategies can be developed by tuning hydrodynamic
properties of surface and direct motility and sorting of microswimmers purely
based on their hydrodynamic interaction with the surface and eliminate usage
of external means such as pumping, valving, chemical gradient etc, to direct
their motion.

Recent studies [26, 27, 28, 29, 30] have reported that several eukaryotic cells
such as neutrophils, T-lymphocytes and microorganisms such as Dictyostelium
amoeba can exhibit shape deformation based pure swimming away from the
substrate instead of conventional adhesion assisted crawling on the substrate
and display comparable swimming speed (as fast as crawling). This corrobo-
rates the observed fact that leukocytes can move in extracellular matrix despite
the inactivity of the principal adhesion molecules (integrins)[29]. These findings
motivated studies on locomotion of eukaryotic cells and microorganisms such
as Euglena [31], Eutreptiella Gymnastica [32] by considering deformation based
pure swimming and eliminate complexity involved in adhesion assisted crawl-
ing. The swimming dynamics of such deformable non-adherent self propelled
particles has been investigated by several numerical and experimental studies
[33, 34, 35, 36, 37, 31, 38, 39, 40, 41, 42, 43].

Many biological systems involve motility of microorganisms, pathogens and
eukaryotic cells through confinement formed by deformable surfaces within in-
terstitium and microvascular network [44, 45, 8, 46, 47, 48]. The stiffness of
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extracellular matrix (ECM) is known to control cell locomotion [49, 50, 51].
Some cancerous cells enhance stiffness of surrounding ECM environment to fa-
cilitate their motility and invasiveness. For example, malignant tumor cells such
as astrocytoma, breast cancer, pancreatic adenocarcinoma remodel and stiffen
surrounding extracellular matrix in order to enhance cell motility and prolifer-
ation [52, 53, 54, 55, 56, 57]. The cell locomotion through ECM is governed
by cell type, motility strategy employed by the cell (such as adhesion assisted
crawling, pure swimming), composition and elasticity of surrounding ECM etc.
In order to decipher such complex hydrodynamics question, it seems logical to
simplify the problem by ignoring the role of adhesion and focusing on the effects
of surface deformability on pure swimming based cell locomotion. The numer-
ical investigation of Ledesma-Aguilar and Yeomans [58] reported that motility
of dipolar swimmer is enhanced due to elastic confinement while Fauci and
McDonald [59] and Shaik et al. [60] for spermatozoid and squirmer model re-
spectively, observed that the swimmer velocity reduces with an increase in the
wall deformability. This points to the fact that the nature of the swimmer may
play a decisive role.

In this article, we numerically investigate the effects of the wall flexibility
and the channel confinement on the migration, speed, trajectory and efficiency
of an amoeboid swimmer in two dimension. The article is organized as follow.
Section 2 presents governing equations, models for passive, active and elastic
forces and numerical methodology. The results are discussed in section 3. The
swimming mechanism of amoeboid swimmer in rigid and flexible channels is
explained in section 3.3. Concluding remarks and future lines of research are
the subject of section 4.

2 Formulation

The deformable microswimmer with an inextensible membrane (say a phospho-
lipid membrane) denoted by Ω3 that encapsulates Newtonian fluid is suspended
in a Newtonian matrix delimited by the two flexible walls, Ω1 and Ω2, that forms
flexible channel of an undeformed width W as shown in the schematic of two
dimensional system in figure 1. For simplicity, the viscosity, η, of the enclosed
fluid is taken to be constant and is equal to that of the suspending fluid. The
reasoning behind this assumption is discussed in the conclusion section.

We define the effective radius of the swimmer as Ro =
√
Ao/π, where Ao is

the enclosed area and Po is the perimeter (which is conserved due to membrane
inextensibility). The excess perimeter, Γ = Po/(2πRo)− 1, describes the degree
of deflation of swimmer shape. Γ = 0 corresponds to a circular shape while
larger Γ represents shape deformation and deviation from a circular shape. We
model shape deformation based propulsion of a swimmer referred to as amoe-
boid swimming. The swimmer’s internal propulsion machinery responsible for
its shape changes and motion are modeled by assuming that the swimmer de-
ploys active force distribution along its membrane. The active force distribution
depends on time and on material point on the membrane.
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Figure 1: (color online) Schematics of amoeboid swimmer suspended in flexible
channel. Swimmer deforms elastic wall from its reference configuration xref to
the deformed configuration xdef . Linear elastic law governs the wall deforma-
tion.

The flow of microswimmer in an incompressible viscous Newtonian fluid
bounded by the flexible walls (such flow is characterized by very small Re ∼
10−2 − 10−3 due to both small swimming velocity and small swimmer size) is
governed by continuity and Stokes equation.

∇ · u = 0,

−∇p+ η∇2u + f = 0, (1)

where u is fluid velocity, p is pressure and f is the total force acting along
the membrane of the swimmer. The major contribution to this total force is
the active force distribution (fa) imposed on the swimmer. In order to repli-
cate cell locomotion, the swimmer membrane is modeled as a two dimensional
incompressible fluid. This conditions is fulfilled by local membrane inextensi-
bility which induces tension like internal force within the swimmer membrane
that resists tendency of the active force to extend or compress the membrane.
The changes in the membrane curvature with time induces bending force on the
membrane. The tension and bending forces acting on the membrane are referred
as passive force contribution (fp). The flexible wall is modeled as an extensi-
ble membrane and it comprises of restoring elastic force contribution (fw) that
arises due to deviation of the membrane position from its planar reference con-
figuration. We now discuss the framework used for modeling of passive, active
and elastic forces acting on the membrane.

2.1 Passive membrane forces

The swimmers surface is modeled as an incompressible and inextensible mem-
brane. The inextensibility of the swimmer membrane is conserved locally by
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employing local Lagrange multiplier ζ (s, t). Using Helfrich model [61, 62], the
elastic energy of the membrane can be expressed as composition of bending
energy and tension.

E =
κb
2

∮
Ωi

H2 ds+

∮
Ωi

ζ (s, t) ds, (2)

where H is the local membrane curvature. s is the arc length and κb is the
bending energy modulus. The force acting on the membrane is obtained by
functional derivative of the membrane energy, E, with respect to the membrane
displacement as shown in Kaoui et al. [62].

fp = κb

(
∂2H

∂s2
+
H3

2

)
n−Hζn +

∂ζ

∂s
t, (3)

where n and t are local normal and tangent vector respectively.

2.2 Active force model

Several microorganisms such as Eutreptiella Gymnastica [32] and eukaryotic
cells such as neutrophiles, fibroblasts, leukocytes, cancerous cells undergo shape
deformation in order to propel themselves. We represent active force distribu-
tion as time dependent and material point position function [35, 36, 37]. The
active force on the swimmer membrane is decomposed into Fourier series as,

fa (α, t) =

kmax∑
k=−kmax,|k|6=0,1

F̂k (t) eikα · n. (4)

Here α is a normalized arc length, α = 2πs/Po. We consider that the active
force acts along normal direction. In appendix, we have shown that it is possible
to redefine the tension force (Lagrange multiplier (ζ)) and express active force in
terms of normal component only. The isolated nature of the swimmer imposes
that the total force and torque exerted by the swimmer on the fluid vanishes at
every instant. ∮

Ω3

f ds = 0,

∮
Ω3

r× f ds = 0. (5)

These two vectorial conditions yields three scalar equations which are linear
in terms of active force. The Fourier coefficients of the system depend on the
swimmer shape, which is unknown a priori and equation (5) imposes linear rela-
tions between Fourier coefficients F̂k. These relations could not reduce number
of independent Fourier coefficients as resulting system of equations was some-
times ill-conditioned. The additional term, f0 + f̃0t, is added to the active force
whose first component is constant while second component is purely tangential.
The components, f0 and f̃0, can be expressed in terms of F̂k using equation (5).
The resulting system of linear equations, comprising of f0 whose coefficients are
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proportional to the swimmer perimeter and f̃0 whose coefficients are propor-
tional to the swimmer area, becomes nonsingular irrespective of the swimmer
evolution as swimmer perimeter and area are positive definite quantities (see
[37]). Thus, the total force acting on the swimmer membrane is,

f = fp + fa + f0 + f̃0t. (6)

For simplicity, we restrict Fourier series expansion of the active force in equa-
tion (4) to kmax = 3. In earlier studies [35, 36, 37], we have observed that
including higher harmonics for the active force (fa) representation does not alter
the results. Due to fluid incompressibility, the mode k = 0 does not contribute.
For simplicity, we set F1 = 0. In addition, we impose mirror symmetry of the
swimmer, so that active force is written as,

fa (α, t) = (2F2 (t) cos (2α) + 2F3 (t) cos (3α)) n. (7)

We express quantities F2 and F3 as simple time dependent function that induces
non reciprocal cyclic forward motion of the swimmer and overcome constraints
of the Scallop theorem.

F2 (t) = −A2 cos (ωt) , F3 (t) = A3 sin (ωt) .

For simplicity, we set A2 = A3 = A. Thus the active force consists of four
parameters A, scalar f̃0 and two components of f0. The force-free and torque-
free conditions (equation (5)) are used to deduce f0x, f0y and f̃0 as a function
of force amplitude, A. Thus the active forces can be controlled by adjusting
single parameter which is the force amplitude, A.

2.3 Modeling of flexible wall

We adopted simple plate spring type compliant wall model [63, 64, 65, 66, 67]
for modeling flexible walls as shown in schematics in figure 1. The undeformed
reference configuration of the flexible wall is xref (x). The presence of swimmer
disturbs the flow field in the vicinity of elastic wall resulting in its deformation.
The deformed configuration of the flexible wall is xdef (x, t). In the absence
of flow disturbance, deformed wall configuration xdef (x, t) coincides with its
reference configuration xref (x) and does not induce elastic force. The flow
disturbance displaces flexible wall to the deformed configuration resulting in an
elastic force acting on each material point of the flexible wall. These elastic
forces are modeled using linear elastic law [68] given by,

fw (x, t) = −K [xdef (x, t)− xref (x)] . (8)

Here K is spring stiffness. Large spring stiffness represents rigid wall (K →∞)
while small spring stiffness depicts soft wall (K → 0). This spring stiffness is
related to the Young’s modulus [68] and will be discussed in the section 2.5.
We introduce a small bending contribution to the force in order to suppress
numerical instabilities and sharp deformation of the wall (such as cusps). This

5



bending term is merely introduced as a numerical regularization, rather than
as a physical effect. The non-slip boundary condition is imposed on the flexible
wall surface. The periodic boundary condition is employed along the channel
axis. The channel length is chosen large enough to approximate the case of a
single swimmer in an infinite channel. The space between flexible walls and
top or bottom boundaries of a computational domain is chosen large enough to
eliminate hydrodynamic effects arising due to presence of finite space on either
sides of the flexible walls.

2.4 Boundary integral method

The linearity of Stokes equation allows velocity field in a fluid domain to be
represented using boundary integral equation as a superposition of contribu-
tion from i) the imposed flow, ii) the membrane forces at the interface and iii)
contribution due to viscosity contrast between ambient fluid and internal fluid
[69, 70]. The contribution due to first component is neglected due to absence of
the imposed flow. As viscosity of ambient and internal fluid is equal, contribu-
tion due to third component vanishes. The velocity at some point ro in a fluid
domain is given by,

u (ro) =
1

4πηo

∑
i

∮
Ωi

ds (rm) f (rm) G (ro, rm) , (9)

where integrals are performed around membrane contour, Ωi, of the swimmer
(Ω3) and the deformable walls (Ω1,Ω2), G (ro, rm) is an appropriate Green’s
function of the Stokes flow for the velocity that satisfies boundary conditions
at the system boundaries (it vanishes at the wall and infinity), ro and rm are
target and source points, f (rm) = fp + fa + fw is hydrodynamic traction jump
across the membrane and comprises of contribution due to passive (equation
(3)), active (equation (4)) and wall elastic forces (equation (8)) and n (rm) is
outward unit normal vector at the membrane. The term on right side of the
equation (9) is referred as single layer potential integral. Boundary integral
method (BIM) involves discretization of the membrane and the wall surfaces.
All quantities are discretized using Fourier spectral boundary integral method
in space [71].

2.4.1 Spectral boundary integral method

We use Fourier basis discretization of all functions and compute all derivatives in
Fourier domain in order to preserve high accuracy [71]. Fourier basis is used to
represent membrane interface. The interface (x (α)) in a parametrized domain
is divided into M uniformly spaced positions {αk = 2π (k − 1) /M}Mk=1. The
interface positions and its derivatives are represented in terms of Fourier basis
as,

x (α) =

M/2∑
k=−M/2

x̂ (k) eikα, xα =

M/2∑
k=−M/2

(−ik)x̂ (k) eikα, α ∈ [0, 2π]. (10)
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where the subscript α refers to derivative with respect to α. FFT is used to
evaluate discrete Fourier transform of x (α) and inverse Fourier transform of
x̂ (k). The parametrized arc length is represented by s (α) =

∫ α
0
|xα|dα. The

derivative of any function Y with respect to arc length is evaluated using FFT
as,

Ys =
∂Y

∂s
=
Yα
sα

=
∂α

∂s

∂Y

∂α
=

1

|∂x/dα|
∂Y

dα
. (11)

The integrand for single layer potential in equation (9) exhibits singular
behaviour as Green kernel, G, diverges in the vicinity of the pole where target
(ro) and source points (rm) coincide. This singular behaviour is circumvented
by using singularity subtraction method (SS) discussed in Farutin et al. [72].
The regularized smooth integrals are evaluated using trapezoidal rule. The
details of this approach are discussed in Farutin et al. [72]. The membrane
positions are advected by integrating in time using explicit Euler scheme as,
xk (t+ dt) = xk (t) + uk (t) dt.

2.5 Nondimensional parameters

Besides the excess perimeter, Γ, defined earlier, there are other dimensionless
parameters that are used to analyse flow behaviour. The confinement strength
of undeformed flexible channel is defined as C = 2Ro/W , whereW is the channel
width of the undeformed channel. The time period of swimming stroke is given
by Ts = 2π/ω and A is the amplitude of active force distribution. The important
dimensionless parameters explored in this study are,

� the confinement strength, C = 2Ro/W ,

� the dimensionless wall stiffness, Kw = KRo/A and

� the dimensionless active force, S = A/(ωη).

The wall stiffness, K, is, as an order of magnitude, of order Young’s modulus,
E, so that Kw ∼ E/A, where A is force per unit area. The swimming microor-
ganisms such as green algae Chlamydomonas reinhardtii of size ∼ 5 µm deploys
propulsive forces in the range of ∼ 1− 10 pN [73, 74, 75]. Bacteria, such as E.
coli, generates thrust force of order ∼ 0.4−1 pN [76, 22, 77]. The elastic moduli
for most of the mammalian tissue varies in the range 50 − 10000 Pa spanning
from the softest tissue such as brain, retina, mammary glands to the stiffest
tissue such as muscles, cartilage [78, 79, 80]. This yields Kw ∼ 10− 10000. We
have explored here the range 10 6 Kw 6 10000 and 0.05 6 C 6 1 respectively.
We set dimensionless active force, S = 10, such that swimmer has sufficient
time to assume a saturated shape in response to the imposed active force and
excess perimeter, Γ = 0.085.
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3 Results and discussion

The objective of this study is to investigate the effects of flexible walls on swim-
ming hydrodynamics. The swimmer swims with its axis of symmetry along
centerline. We first consider the instantaneous behavior and then the time av-
eraged dynamics over a swimming cycle. The results are extracted after several
initial swimming strokes once all transient dynamics have completely decayed.

3.1 Instantaneous behavior within a swimming cycle

3.1.1 Swimmer shape evolution

The non reciprocal cyclic shape changes exhibited by the axially moving amoe-
boid swimmer in flexible channel of confinement C = 0.8 and wall stiffness
Kw = 10, during swimming cycle are shown in figure 2. The amoeboid swim-
mer displays deformation based propulsion mechanism that involves formation
of protrusion at the front of the body which propagates forward and then rear-
ward resulting in a net forward motion as described in [35, 37]. The swimming
cycle is broadly composed of four phases, namely, oblate, pusher, prolate and
puller (see swimmer shapes in figure 2). This categorization is based on changes
in swimmer shapes, flow pattern and corresponding instantaneous stresslet as
discussed in earlier studies [37]. In brief, the swimmer with protrusion at the
front end and dimple at the rear end that pushes fluid out from its anterior
and posterior ends and pulls fluid towards its sides with positive instantaneous
stresslet corresponds to the pusher while mirror image of shape of the pusher
that pushes fluid out from sides of the swimmer and pulls in fluid to its ends
with negative instantaneous stresslet corresponds to the puller (see flow field for
pusher and puller in figure 5 (b) and (d) respectively).

Figure 2: (color online) Temporal snapshots of shape changes, namely, (a)
oblate, (b) pusher, (c) prolate and (d) puller, displayed by the axially mov-
ing amoeboid swimmer in flexible channel of confinement C = 0.8 and wall
stiffness Kw = 10 over one swimming stroke.

3.1.2 Analysis of the swimmer and wall deformation

In order to understand swimmer behavior in flexible channel, we first analyse
morphological features of the swimmer and flexible walls. Figure 3 (a) shows
the temporal evolution of the lateral elongation, Dy, of the swimmer during two
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swimming strokes for different wall stiffnesses, Kw (along with the corresponding
swimmer shapes). The lateral deformation, Dy, measures the extension of the
swimmer in the direction perpendicular to the flow (see schematics in figure
1). The maximum lateral extension over a swimming cycle is represented by
Dmax
y . Large wall stiffness (Kw →∞) restricts lateral extension of the swimmer

whereas extremely flexible walls (Kw → 0) allow swimmer to freely exhibit shape
changes. The highly flexible walls comply with the shape changes exhibited by
the swimmer and display large wall deformation (see figure 2).

(a) (b) (c)

Figure 3: (color online) Temporal variation in (a) lateral deformation, Dy/Ro,
of swimmer, (b) film thickness between swimmer and channel walls, d⊥/Ro,
and (c) instantaneous velocity, V = V Ts/Ro, of an axially moving amoeboid
swimmer in flexible channels of confinement C = 0.8 and wall stiffnesses Kw =
10, 100, 1000 and ∞ over two swimming strokes. The variation of the swimmer
shapes with time are shown at the top of the figures.

3.1.3 Liquid film between the swimmer and channel walls

The film thickness between swimmer and flexible channel wall is denoted by d⊥.
Figure 3 (b) shows temporal variation of the film thickness, d⊥, for different
wall deformabilities during two swimming periods (along with the corresponding
swimmer shapes). The minimum and maximum film thickness over one swim-
ming cycle are denoted as dmin⊥ and dmax⊥ respectively so that the amplitude of
variation in film thickness over one swimming cycle is damp⊥ = dmax⊥ −dmin⊥ . The
film thickness displays sharp variation in the stiffer channel (Kw →∞) com-
pared to the flexible channel (Kw → 0). The flexible walls adapt according to
the swimmer shapes and allow the swimmer to freely express its lateral exten-
sion, Dy, resulting in a minor variation in the film thickness, d⊥, over swimming
stroke. In contrast, stiffer channel obstructs lateral elongation of the swimmer
and facilitates large variation in the film thickness between swimmer and chan-
nel walls over swimming stroke. The peak in d⊥ curve represents prolate shape
with large film thickness. The smaller film thickness is obtained for the pusher
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and oblate shape. A rigid channel (Kw =∞) displays sharp increase in the film
thickness, d⊥, during transition from pusher to prolate shape and facilitates
dragging of large fluid mass rearwards while flexible channel (Kw = 10) due to
its adaptability to the swimmer shape shows minor increase in the film thickness
displacing thus a smaller fluid volume rearwards. The minimum film thickness,
dmin⊥ , in the flexible channel is large compared to that in the rigid channel al-
lowing forward leakage of the fluid that was dragged rearward (see variation
in d⊥ for the flexible channel (Kw = 10) in figure 3 (b)). The influence of the
film thickness, d⊥, and its variation, damp⊥ , on the swimmer motion is further
discussed in sections 3.2.3 and 3.3.

3.1.4 Swimmer motion and flow field

The temporal variation of the instantaneous velocity, V (t), of the swimmer for
different wall stiffnesses over two swimming cycles (along with the correspond-
ing swimmer shapes) is shown in figure 3 (c). The dimensional instantaneous
swimmer velocity, V , is scaled to obtain dimensionless instantaneous swimmer
velocity, V = V Ts/Ro. A general outcome is the decline of the swimmer velocity
due to wall compliance. This may seem a priori surprising since rigid channel
restricts lateral extension of the swimmer, precluding thus the swimmer to fully
deploy its amoeboid latitude. The physical interpretation of this observation
is given in section 3.3. Figure 4 shows comparison of the instantaneous swim-
mer velocity in flexible (Kw = 10) and rigid (Kw = ∞) channels. In highly
flexible channel (Kw ∼ 10), weaker forward motion is exhibited during pusher
and oblate phase while rearward motion is displayed in the puller phase. In
stiffer channel (Kw →∞), strong forward motion is exhibited during puller and
pusher phases while comparatively weaker backward motion is displayed by the
oblate and the prolate swimmer resulting in a strong net forward motion of the
swimmer.

Figure 4: (color online) Temporal variation of the instantaneous swimmer ve-
locity, V = V Ts/Ro, in flexible (Kw = 10) and rigid (Kw = ∞) channels of
confinement C = 0.8 over two swimming strokes.
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The comparison of instantaneous flow field is shown in figure 5 by superim-
posing velocity vector field over velocity contours. As discussed in section 3.1.1
and figure 2, the swimming stroke comprised of four phases, namely, oblate,
pusher, prolate and puller.

� In the oblate phase, the swimmer in the flexible channel (see figure 5 (a))
shows weaker forward velocity compared to the rigid channel (compare
figures 5 (a) and (e)). In stiff channel, fluid along sides of the oblate
swimmer close to the walls moves rearward (see figure 5 (e)) while the fluid
inside the swimmer moves forward. However, the net swimmer motion
is rearward. This contrasts with flexible channel case (see figure 5 (a))
where swimmer moves forward (see instantaneous swimmer velocity for
the oblate swimmer in flexible and rigid channels in figure 4). In other
words, flexible channel facilitates motion of the oblate swimmer.

� The pusher in the rigid channel (see figure 5 (f)) shows forward veloc-
ity field at its front tip and very weak rearward velocity field at its rear
dimpled end resulting in a strong net forward motion. The pusher in the
flexible channel (see figure 5 (b)) displays weaker forward motion (due to
presence of strong rearward velocity field at its rear end; compare instan-
taneous velocity of pusher in flexible and rigid channels in figure 4). In
this regime, when lateral extension of the swimmer is large, the channel
flexibility does not allow the swimmer to efficiently grasp on the wall to
move forward. Thus flexibility in this phase unfavors swimmer motion.

� The prolate swimmer in the rigid channel exhibits strong backward motion
(see figure 5 (g)) compared to the soft channel (see figure 5 (c); compare
instantaneous velocity of the prolate swimmer in flexible and rigid channels
in figure 4). The rigid channel unfavors swimmer motion.

� Finally, in the puller phase, the swimmer in the rigid channel (see figure
5 (h)) exhibits significant forward motion contrary to the flexible channel
(see figure 5 (d)) where it shows net rearward motion (see instantaneous
velocity of the puller in flexible and rigid channels in figure 4). In this
phase, wall flexibility again reduces grasping of the swimmer on the wall.

3.1.5 Flow history

The velocity vector field and contour plot provide instantaneous description of
the flow field. It provides little information about history of the flow. Thus, in
order to distinguish between the flow behaviour in rigid and flexible channels,
we introduced massless tracer particles in the flow field and examined their flow
pattern over several swimming strokes. Figure 6 shows comparison of evolution
of tracer particles in rigid and flexible channels. The evolution of tracer particles
for an unconfined swimmer (C = 0) is shown in figure 7. In figures 6 and 7,
subfigures (a) and (d) show initial and (b) and (e) display final positions of
tracer particles after single swimming cycle, while subfigures (c) and (f) show
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positions of tracer particles after five swimming cycles. The particles in each
column are colored differently to facilitate tracking of position of each particle.
As shown in subfigures 6 (a) and (d), the tracer particles along sides of the
swimmer whose motion is to be tracked are enclosed by the red boundary.
These tracer particles in flexible and rigid channels are displaced rearwards
(see subfigures 6 (b) and (e)). The tracer particles in flexible channel display
significantly smaller displacement in rearward direction while tracer particles
in rigid channel show large backward displacement (compare displacement and
position of the tracer particles enclosed by the red boundary in subfigures 6 (b)
and (e) for rigid and flexible channels respectively). This shows that there is
strong net reverse flow through the film between swimmer and channel walls
in rigid channel compared to the flexible channel. In the case of an unconfined
swimmer, a small layer of tracer particles along sides of the swimmer experiences
forward drag due to swimmer forward motion while shape changes exhibited by
the swimmer displaces fluid mass which is slightly away from the swimmer
surface rearwards (compare displacement and position of the tracer particles in
subfigures 7 (a), (b) and (c)). The fluid far away from the unconfined swimmer
remains unaffected.

The active force imposed on the swimmer is responsible for shape changes
in the swimmer, its deformation, Dy, and variation in the film thickness, d⊥,
between swimmer and channel walls over swimming stroke which in turn play
crucial role in trapping and dragging of fluid mass rearwards and obstructing
its forward leakage (see variation in Dy and d⊥ over swimming stroke in figures
3 (a) and (b) respectively). The significant pressure drag developed across the
swimmer and sharp variation in the film thickness, d⊥, over swimming period
for the swimmer in rigid channel utilizes viscous effects at the walls to facilitate
entrapping and rearward dragging of large fluid volume through the film be-
tween swimmer and channel walls while smaller minimum film thickness, dmin⊥ ,
prevents its forward leakage (see d⊥ in figure 3(b)). In contrast to rigid channel,
flexible walls comply with changes in swimmer shapes yielding weaker pressure
drag across the swimmer and small variation in the film thickness (roughly con-
stant film thickness) over swimming cycle drives smaller fluid volume rearwards
as it allows forward leakage due to larger minimum film thickness (see variation
in film thickness, d⊥, in flexible (Kw = 10) and rigid (Kw =∞) channel in fig-
ure 3(b)). (See rearward displacement of tracer particles in rigid and flexible
channels in figure 6). In brief, the presence of rigid walls facilitates swimmer to
induce stronger net reverse flow through the film between swimmer and channel
walls compared to deformable walls.

3.2 Time averaged dynamics over a swimming cycle

In this section, we study the effects of wall deformability on the time averaged
behaviour of the swimmer in a flexible channel over one swimming cycle.
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3.2.1 Time averaged swimmer velocity

The swimmer motion is characterized by its average velocity over a swimming
period, Ts. The average swimmer velocity is defined as displacement of centroid
of the swimmer over one swimming cycle. The dimensionless instantaneous ve-
locity and displacement are V = V Ts/Ro and Xc = Xc/Ro respectively where
Xc is center of mass of the swimmer. The dimensionless time averaged velocity
is 〈V 〉 = 〈Xc (t+ Ts)−Xc (t)〉. Figure 8 shows variation of time averaged swim-
mer velocity, 〈V 〉, with confinement, C, in deformable channels for different wall
stiffnesses, Kw. The flexible channel of wall stiffness, Kw → ∞, quantitatively
reproduces results corresponding to the rigid channel study of Wu et al. [37].
The swimmer velocity in stiffer channel (Kw > 100) initially increases for weak
confinement reaching maximum magnitude for an optimum confinement and
then decreases for higher confinements. Wu et al. [37] also showed that amoe-
boid swimmer bounded between rigid walls exhibits nonmonotonous variation
in velocity with confinement. Earlier studies in the literature for non amoeboid
swimmer [81, 82, 83, 84, 85] showed enhancement or a decline of swimmer speed
due to confinement.

The swimmer velocity decreases with wall softness (compare 〈V 〉 for different
wall stiffnesses in figure 8). Extremely soft channel (Kw = 10) shows monotonic
decrease in the swimmer velocity with the confinement. Eventually at high
confinement (C ∼ 1) and very small wall stiffness (Kw ∼ 10), the swimmer is
trapped and is unable to move forward. We will discuss potential causes for
such swimming dynamics in rigid and flexible channels in section 3.3.

3.2.2 Deformation of the swimmer and the walls

Figures 9 (a) and (b) show maximum deformation of the wall, |δw|max, and
maximum lateral deformation of the swimmer, Dmax

y , with confinement, C,
over one swimming cycle for different wall stiffnesses. The wall deformation,
|δw|, is computed as the vertical deviation of the wall position from its initial
reference configuration, and is defined as |δw| = |xdef − xref |. Here xref and
xdef represents undeformed (reference) and deformed configuration (see figure
1). The maximum wall deformation over one swimming period is expressed as
|δw|max. As discussed earlier, strong confinement of rigid channel (Kw = ∞)
restricts swimmer’s lateral elongation but allows its axial elongation whereas
flexible walls (Kw = 10) deform as per swimmer shape and allow its complete
lateral elongation. Thus the swimmer moving through highly flexible channel
can exhibits shape changes similar to an unconfined swimmer.

3.2.3 Film thickness

The variation in minimum film thickness, dmin⊥ , and amplitude of variation
in film thickness, damp⊥ = dmax⊥ − dmin⊥ , between swimmer and channel walls,
are shown in figures 10 (a) and (b) respectively. The increase in confinement
results in a decrease in minimum film thickness and reduction in amplitude of
variation in film thickness. The minimum film thickness, dmin⊥ , for the flexible
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channel is higher than that of the rigid channel. In contrasts, the amplitude
of variation in film thickness, damp⊥ , in flexible channel is smaller than that in
the rigid channel for the same confinement due to adaptability of flexible walls
to the swimmer shapes. The role played by the minimum film thickness and
amplitude of variation in film thickness over swimming stroke in controlling flow
dynamics and propulsion speed of the swimmer in rigid and flexible channels is
discussed in section 3.3.

3.2.4 Stresslet, power consumption and swimming efficiency

The nature of the swimmer either pusher or puller is defined based on the
stresslet. The instantaneous dimensionless stresslet is defined as Σ = (σxx − σyy) /

(
ηR2

o/Ts
)
,

σij =
∮

Ω3
firjds. The negative stresslet corresponds to the puller whereas posi-

tive stresslet represents pusher. During single swimming stroke, amoeboid swim-
mer switches between puller and pusher nature. Thus average nature of the
swimmer (pusher or puller) over swimming cycle is obtained by time averaging
of the stresslet over swimming period. The time averaged stresslet is expressed

as 〈Σ〉 =
(∫ Ts

0
Σdt

)
/Ts. The variation of time averaged stresslet, 〈Σ〉, with con-

finement over one swimming cycle for different wall stiffnesses is shown in figure
11 (a). The swimmer in high confinement rigid channel displays strong time
averaged puller behaviour while it shows comparatively weaker time averaged
puller nature in the flexible channel.

The power consumed by the swimmer over one swimming cycle is evaluated
as follows [37].

〈Ps〉 =
1

Ts

∫ Ts

0

∮
Ω3

(f (s) · u (s)) dsdt =

〈∮
Ω3

(f (s) · u (s)) ds

〉
, (12)

where Ps is time averaged power consumption, Ts is time period of a swimming
cycle and 〈·〉 represents time averaged quantities. Figure 11 (b) shows variation
of dimensionless average power, 〈P s〉 = 〈Ps〉T 2

s /
(
ηR2

o

)
, with confinement for

different wall stiffnesses. The power consumed by the swimmer is reduced due
to presence of softer walls (Kw → 10). The power consumption in stiffer channel
(Kw =∞) is maximum at the confinement slightly higher than the confinement
where maximum swimmer velocity is attained whereas for very soft channel
(Kw = 10), power consumed by the swimmer remains roughly constant. The
power consumption alone does not provide significant information about the
swimmer performance. Thus it is crucial to analyse swimmer efficiency. The
swimmer efficiency, Π, can be defined as the ratio of least power consumed to
displace swimmer with its time averaged velocity to the swimmer’s actual time
averaged power consumption as discussed in [37, 86, 87, 88]. Π = η〈V 〉2/〈Ps〉.
Figure 11 (c) shows swimmer efficiency, Π, as a function of confinement, for
different wall stiffnesses. The amoeboid swimmer in stiffer channel shows max-
imum efficiency for the confinement slightly lower than the confinement cor-
responding to maximum swimmer velocity. The swimmer efficiency drops in
presence of flexible walls. The swimmer in softer channel (Kw = 10) displays
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sharp decrease in efficiency with increase in the confinement strength. This
shows that amoeboid swimmer is inefficient in presence of deformable walls.

3.3 Swimming mechanism in confined channel

The study of instantaneous flow field and history of the flow by tracing mo-
tion and trajectory of fluid particles showed that amoeboid swimmer utilizes
two complementary mechanisms that govern its propulsion speed in confined
channel. They comprise of swimmer propulsion due to imposed active force
complemented by purely hydrodynamic means which involves utilizing shape
changes exhibited by the swimmer and viscous drag along the walls to drive
fluid mass rearwards from front of the swimmer. The forward motion of swim-
mer in a stagnant fluid requires swimmer to develop a passage for its locomotion
by displacing fluid mass present in its anterior region and driving this displaced
fluid rearward which then occupy the posterior space vacated due to swimmer
mobility.

3.3.1 Swimming in weakly confined channel

In an unconfined and weakly confined channel (C 6 0.25), the swimmer is far
away from the walls and the minimum film thickness, dmin⊥ , between the swim-
mer and channel walls is large (see minimum film thickness, dmin⊥ , for the confine-
ment of C 6 0.25 in figure 10 (a)). Thus the swimmer motion is not affected by
the channel walls and the swimmer moves with a constant time averaged veloc-
ity (see time averaged velocity, 〈V 〉, of the swimmer for confinements, C 6 0.25,
in figure 8). The swimmer forward motion in a weakly confined channel pushes
the fluid mass present in front of the swimmer resulting in a free lateral motion
of the fluid particles as shown in figure 7 for an unconfined swimmer. The shape
changes exhibited by the swimmer propels this fluid mass rearwards along its
sides (see rearward displacement of tracer particles for an unconfined swimmer
after five swimming periods in figure 7 (c)).

3.3.2 Swimming in confined rigid channel

As the channel confinement increases, the minimum film thickness, dmin⊥ , be-
tween the swimmer and plane rigid wall decreases and the viscous drag along
rigid wall increases, influencing thus the flow field in the vicinity of the swim-
mer. The shape changes displayed by the swimmer induces variation in the film
thickness, d⊥, over swimming cycle and utilizes viscous drag along the chan-
nel walls to facilitate trapping of the fluid mass from the front of the swimmer
within the film between the swimmer and channel walls, dragging it rearward
and obstructing its forward leakage.

In moderately confined rigid channels (0.4 6 C 6 0.7), the minimum film
thickness, dmin⊥ , between the swimmer and the channel walls is modest and
thus allows large lateral deformation of the swimmer, Dmax

y , and corresponding
large amplitude of variation in film thickness, damp⊥ , over swimming cycle (see
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variation of Dmax
y , dmin⊥ and damp⊥ for moderately confined rigid channels in

figures 9 (b), 10 (a) and (b) respectively). The cyclic non reciprocal swimmer
shape changes utilize the viscous drag along rigid walls and variation in the film
thickness to accelerate rearward transport of a larger fluid volume. Thus the
swimmer forward motion imposed by the active force is complemented by an
increase in the net reverse flow rate of the fluid through the film between the
swimmer and the channel walls with an increase in confinement in moderately
confined rigid channels resulting in an enhancement of the swimmer velocity
(see figure 8).

The maximum swimmer velocity is attained in rigid channels for a confine-
ment of C ∼ 0.7 (see figure 8) with an optimum minimum film thickness that
slightly obstructs the lateral elongation of the swimmer. This helps swimmer
to efficiently utilize viscous drag developed at the rigid walls to drive maximum
rearward flow through the film while inhibiting its forward leakage.

In strongly confined rigid channels (C > 0.8), substantial pressure drag de-
velops across the swimmer. The minimum film thickness between the swimmer
and channel walls reduces and the rigid walls restrict lateral deformation of the
swimmer resulting in small amplitude of variation in the film thickness over
swimming cycle (see reduction in variation in Dmax

y and damp⊥ for strongly con-
fined rigid channel (C > 0.8) in figures 9 (b) and 10 (b) respectively). The
swimmer can not propel enough fluid volume rearwards through the thin film
between the swimmer and channel walls against strong viscous drag developed
along rigid walls and swimmer surface. This results in a significant reduction in
swimmer velocity in highly confined rigid channel (C > 0.8) (see figure 8).

3.3.3 Swimming in confined flexible channel

The highly flexible channel (Kw = 10) allows the swimmer to freely exhibit
shape changes imposed by the active force and display large lateral elongation
for all confinements (maximum lateral elongation, Dmax

y , of the swimmer in
flexible channel (Kw = 10) for all confinement is constant as shown in figure
9 (b)). The minimum film thickness between the swimmer and flexible walls,
which slowly reduces with an increase in confinement in soft channel, is still
larger compared to the rigid channel for the same confinement strength (compare
dmin⊥ for rigid (Kw =∞) and flexible channel (Kw = 10) in figure 10 (a)). As
the flexible walls adapt their configuration according to the swimmer shapes,
the amplitude of variation in film thickness over a swimming period sharply
reduces with an increase in confinement (see reduction in damp⊥ in flexible channel
(Kw = 10) in figure 10 (b)). The small amplitude of variation in film thickness
over swimming period can trap and drag smaller fluid volume rearwards and
allows considerable forward leakage due to larger minimum film thickness. The
rearward displacement of the fluid mass is reduced resulting in a decrease in
net reverse flow rate through the film with an increase in confinement. As the
fluid flow through the film becomes sluggish, the frictional drag within the film
retards the swimmer forward motion imposed by the active force. This causes
reduction in the swimmer velocity with an increase in confinement in flexible
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channel (see results for 〈V 〉 for (Kw = 10) in figure 8).
In strongly confined flexible channel, smaller film thickness with its negligible

variation over swimming stroke (see dmin⊥ and damp⊥ → 0 in flexible channels
(Kw = 10) for confinements of C> 0.8 in figures 10 (a) and (b) respectively)
develops larger viscous drag along flexible walls and swimmer surface compared
to the weaker confinement. This hinders net rearward fluid flow through the
film resulting in a substantial deceleration of the swimmer forward motion in
strong confinement. The active force merely serves to displace the channel walls
than to transfer momentum to the swimmer, so that the swimmer is trapped at
its initial position (see swimmer velocity, 〈V 〉, in flexible channel (Kw = 10) of
confinement C = 1 in figure 8).

4 Conclusion

The current two dimensional numerical study investigated the effects of wall
flexibility and channel confinement on the motion of an amoeboid microswimmer
through the flexible channel. The time averaged velocity of the swimmer in
flexible channels is lower than that in a rigid channel. The swimmer velocity in
flexible channels decreases substantially with an increase in confinement whereas
the swimmer velocity in stiffer channel displays nonmonotonic variation. The
strongly confined soft channel severely obstructs forward motion of the swimmer
and imprisons it.

Such reduction in swimming speed with an increase in wall flexibility is also
observed in numerical studies by Fauci and McDonald [59] and Shaik et al. [60]
who investigated spermatozoid and squirmer model respectively while Ledesma-
Aguilar and Yeomans [58] reported increase in motility of dipolar swimmer. In
view of these results and the present work, it seems that the nature of the swim-
mer may play a decisive role. The same conclusion is reached while analyzing
the role of confinement by rigid walls. The confinement is found to enhance
or decelerate the swimmer motion depending on the nature of the swimmer
[81, 82, 83, 84, 36]. A recent analytical calculation has confirmed this conclu-
sion [89]. This highlights the subtle character of wall effects on motility of the
swimmer.

In this study, we explored the role of dimensionless wall stiffness on the
swimming dynamics. It will be interesting to investigate the impact of other
parameters such as dimensionless active force and confinement on the swim-
ming dynamics in future studies in order to explore full potential of the present
model. Our earlier three dimensional studies on an amoeboid swimming [35, 90]
did not reveal any new interesting features as compared to the two dimensional
studies [36, 37]. Thus we performed two dimensional investigation in this arti-
cle. Nevertheless, three dimensional study will be explored in the future. We
consider viscosity of enclosing and suspending fluid to be equal for simplifica-
tion. Our previous study [90] investigated effects of viscosity contrast on the
swimming dynamics but did not divulge any new findings. The enclosing and
suspending fluid and cell cortex act as a dashpots in parallel and are responsible
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for dissipation within the system. In other words, swimming features depend on
the effective viscosity of the system which is linear combination of these three
viscosities (see [91]).

We used here a simplified plate spring type model for modeling the flexi-
ble walls (described in section 2.3). But flexible walls representing real media
(such as tissues) can be accurately represented as continuum elastic solid with
dissipative effects. These elastic solids can be modeled as either incompressible
linearized elastic solids with dissipative viscous effects for low strains or incom-
pressible neo Hookean viscoelastic solids for large strains. More realistic models
should be considered in future studies to check the impact of the complexity of
the model on the main results. Finally, the walls have been considered to be
impermeable. In the case of swimmer motion through tissues, this hypothesis
ceases to be valid and the effect of permeation to liquid may add an extra level
of complexity. It is hoped to investigate this matter further in future studies.

5 Appendix: Justification for selection of nor-
mal active force

In this appendix, we justify assumption of considering active force acting along
the normal direction. Let’s consider active force comprising of both normal and
tangential components and is expressed as,

fa = fann + fatt.

The objective here is to show that we are at liberty to choose new active force
distribution, f ′a = f ′ann, which acts purely along normal direction without af-
fecting total force, f , that is the new total force acting along the swimmer
membrane is equal to the old one, f ′ = f .

From equations (6) and (3), the total force acting along the swimmer mem-
brane is written as,

f = fa + f0 + f̃0t− cζn +
∂ζ

∂s
t.

For simplicity, the bending force is ignored from total active force expression
as it is purely normal component and does not play any role in the current
discussion. Similarly, new total force, f ′, is expressed as,

f ′ = f ′a + f ′0 + f̃ ′0t− cζ ′n +
∂ζ ′

∂s
t.

We impose that the old and new total forces are equal, f = f ′, and compare
their normal and tangential components.

fan + f0 · n− cζ = f ′an + f ′0 · n− cζ ′,

fat + f0 · t + f̃0 +
∂ζ

∂s
= f ′0 · t + f̃ ′0 +

∂ζ ′

∂s
. (13)
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We integrate last equation over swimmer perimeter and use definition of
tangent to the curve, t = ∂r

∂s , where r is the position of a point on the membrane,
to obtain,

f̃ ′0 = f̃0 +

∮
fatds∮
ds

. (14)

We use results from equation (14) in equation (13) to derive following expres-
sions.

ζ ′ =

∫ s

0

fat(s
′)ds′ + (f0 − f ′0) · r−

∮
fatds

′∮
ds′

s+ ζ,

f ′an = fan + (f0 − f ′0) · n− c (ζ − ζ ′) . (15)

This shows that redefinition of the Lagrange multiplier and normal active force
allows us to rewrite active force expression in terms of a normal component only.
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Figure 5: (color online) Comparison of velocity vector field superimposed over
contours of velocity magnitude for an axially moving amoeboid swimmer in the
flexible (Kw = 10) (left column) and rigid (Kw = ∞) (right column) channels
of confinement C = 0.8 during four shape changes, namely, oblate in subfigures
(a) and (e), pusher in subfigures (b) and (f), prolate in subfigures (c) and (g)
and puller in subfigures (d) and (h) over one swimming stroke. Here subfigures
in left and right columns correspond to flexible (Kw = 10) and rigid (Kw =∞)
channels respectively.
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Figure 6: (color online) Comparison of snapshots of positions of massless tracer
particles that follow flow field of an amoeboid swimmer suspended in the rigid
(Kw = ∞) (left column) and flexible (Kw = 10) (right column) channels of
confinement C = 0.8 at time t = to (some initial time) in subfigures (a) and
(d) , t = to + Ts (after one swimming stroke) in subfigures (b) and (e) and
t = to + 5 × Ts (after five swimming strokes) in subfigures (c) and (f). Here
subfigures in left and right column correspond to the rigid (Kw = ∞) and
flexible (Kw = 10) channel respectively.
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(a) (b) (c)

Figure 7: (color online) Snapshots of positions of massless tracer particles that
follow flow field of an amoeboid swimmer suspended in an unconfined fluid at
time, t = to (some initial time) in subfigure (a), t = to+Ts (after one swimming
stroke) in subfigure (b) and t = to + 5 × Ts (after five swimming strokes) in
subfigure (c).

Figure 8: (color online) Variation of time averaged velocity, 〈V 〉 =(
Xc (t+ Ts)−Xc (t)

)
, over swimming stroke with confinement, C, for an axially

moving amoeboid swimmer in flexible channels of wall stiffnesses, Kw = 10, 100,
1000 and ∞. The dimensionless quantities are V = V Tc/Ro and Xc = Xc/Ro.
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(a)

(b)

Figure 9: (color online) Variation of (a) maximum wall deformation, |δw|max,
and (b) maximum lateral elongation, Dmax

y , of the swimmer over swimming
stroke with confinement, C, for an axially moving amoeboid swimmer in flexible
channels of wall stiffnesses Kw = 10, 100, 1000 and ∞.
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(a)

(b)

Figure 10: (color online) Variation of (a) minimum film thickness, dmin⊥ , and (b)
amplitude of variation in film thickness, damp⊥ = dmax⊥ −dmin⊥ , between swimmer
and channel walls, over swimming stroke with confinement, C, for an axially
moving amoeboid swimmer in flexible channels of wall stiffnesses Kw = 10, 100,
1000 and ∞.
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(a) (b) (c)

Figure 11: (color online) Variation of (a) time averaged stresslet, 〈Σ〉 =(∫ Ts

0
Σdt

)
/Ts, where Σ = (σxx − σyy) /

(
ηR2

o/Ts
)
, σij =

∮
Ω3
firjds, (b)

time averaged power consumption, 〈P s〉 = 〈Ps〉T 2
s /
(
ηR2

o

)
where 〈Ps〉 =

1
Ts

∫ Ts

0

∮
Ω3

(f (s) · u (s)) dsdt =
〈∮

Ω3
(f (s) · u (s)) ds

〉
, and (c) efficiency of the

swimmer, Π = η〈V 〉2/〈Ps〉, over swimming stroke with confinement, C, for an
axially moving amoeboid swimmer in flexible channels of wall stiffnesses Kw =
10, 100, 1000 and ∞.
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