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Abstract

This paper is the second part of an energetic upscaling strategy to simulate grain growth at
the macroscopic scale with state variables that contain statistical descriptors of the grain struc-
ture. The first part was dedicated to the derivation of a fast mesoscopic model of grain growth
based on oriented tessellation updating method, which consists in a succession of Voronoi-
Laguerre tessellations obtained by establishing an evolution law directly on the parameters
defining the tessellations. In this contribution, the final step of the upscaling strategy is detailed
by deriving macroscopic evolutions laws of the state variables representing statistical distribu-
tions of the grain structure. The approach relies on macroscopic free energy and dissipation
potentials that are identified not axiomatically with experimental calibration, but using a large
database of mesoscopic computations. The macroscopic energy is found to be purely deter-
ministic, although the dissipation necessitates to introduce a probabilistic framework. Indeed,
an epistemic uncertainty arises due to the loss of information in the reduction of the amount
of data between the detailed mesoscopic state and the statistical macroscopic state (i.e., several
mesoscopic states can share the same macroscopic state). Classical Bayesian inference has
been used to identify the probability density functions associated to the epistemic uncertainty.
The resulting stochastic macroscopic model has been compared to several particular meso-
scopic evolutions, and good agreement is observed. Thus, this work can be used to simulate
grain growth at very large scale with short computation time, while processing rich statistical
information about the grain structure, such as mean and standard deviation of the boundary
misorientation distribution, grain boundary length density or grain size.

Keywords: Grain growth, Upscaling, Macroscopic, Anisotropic grain boundary energy,
Bayesian calibration, Stochastic model

1. Introduction

Grain growth is a thermally activated mechanism that usually occurs after recrystalliza-
tion during annealing of metals. During grain growth some grains grow at the expense of
other grains depending of their respective sizes and crystallographic orientations, which leads
to grain coarsening [1]. Classical statistical descriptors of the polycrystalline structure such
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as morphological and crystallographic textures (e.g., grain size, shape and crystal orientation
distributions) evolve during the process. Thus, for different fabrication or forming processes,
temperature conditions could be optimized to obtain targeted microstructures, especially for
large heterogeneous parts. However, mechanisms involved during grain growth arise at the
scale of grain boundaries (GB). Thus, numerical simulations of texture evolution may be dif-
ficult for macroscopic parts, which hinders the development of optimization loops to adjust
process parameters.

This paper is the second part of an energetic upscaling strategy introduced in [2] and [3].
This strategy aims at developing a model of grain growth at the macroscopic scale that fully
relies on finer scales and whose state variables contain statistical descriptors of the grain struc-
ture. The proposed upscaling strategy, which involves considering grain growth at various
scales, is briefly recalled for the sake of clarity. As shown in figure 1, four typical scales are
distinguished: (i) the atomic scale (e.g., crystal lattice and interatomic potential), (ii) the micro-
scopic scale (e.g., grain boundaries), (iii) the mesoscopic scale (e.g., polycrystalline structure)
and (iv) the macroscopic scale (statistical descriptors of the grain structure). As energetic con-
cepts are valid at all scales, the upscaling strategy fundamentally relies on various energetic
contributions arising at different scales. This energetic upscaling strategy is developed within
the framework of standard generalized media [4] that are characterized by their free energy
and dissipated power. These two potentials arise in the energy balance equation combining
the first and second laws of thermodynamics, and they depend on macroscopic state variables
that should be defined so that the macroscopic state statistically represents the grain structure.
The determination of the macroscopic free energy and dissipation potentials as a function of
the state variables enables to establish the evolution law of the system at the macroscopic scale.
The proposed upscaling strategy consists in determining these two potentials not axiomatically
(with parametric functions and calibration with experiments), but on a more physical basis by
using a large database of computations carried out at the mesoscopic scale. Thus, the macro-
scopic model emerges from finer scales and is compatible with thermodynamics. It should be

Figure 1: Different scales involved in the upscaling strategy
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noted that we do not propose a multiscale approach, for which simulations at the mesoscopic
scale are performed online during the macroscopic computation. On the contrary, all the com-
putations at the mesoscopic scale are performed in advance and stored in the database probing
the space of polycrystalline structures. On this basis, we can identify the macroscopic free
energy and dissipated power as a function of the macroscopic state variables in order to obtain
an evolution law that accounts for statistical descriptors of the grain structure.

Therefore, on the one hand the database requires to use intensively a mesoscopic model
of grain growth. As a consequence, a sufficiently fast mesoscopic model has been established
in the first part of this paper [2]. Many numerical methods have been developed to simulate
grain growth at the mesoscopic scale. For instance, models based on cellular automaton and
Monte Carlo method [5–9], mobile finite element modeling [10, 11], level set functions [12–
14], phase field [15–20], molecular dynamics [21–23], or vertex methods [24–27] have been
proposed. In [2] the model relies on updating orientated tessellation method (OTUM), which
consists in modeling grain growth by a succession of Voronoi-Laguerre tessellations equipped
with a crystal orientation field bu using NEPER [28]. The first contributions in this field are
[29, 30].

On the other hand, the final step of the proposed upscaling strategy is broached in the
present contribution, and consists in establishing the macroscopic model by using the large
database of mesoscopic computations to define macroscopic state variables as well as their
macroscopic evolution laws. The main information that is usually upscaled at the macroscopic
scale is the average grain size denoted by ⟨R⟩ (i.e., the average equivalent grain radius). Within
the context of grain growth, mean field approaches have been continuously developed for sev-
eral decades in order to establish suitable evolution laws for ⟨R⟩. Mean field approaches consist
in using idealized structures usually with spherical grains representing different grain families
in the polycrystalline structure sharing the same properties such as size, GB energy and mobil-
ity. However, in real polycrystalline structures, fundamental properties such as misorientation
depend not only on the intrinsic characteristics of the grains but also on their connection, that is
to say their relative positions. This aspect is neglected in classic mean field approaches, which
are based on simplified relationships between the different grain families, as the detailed grain
structure is not considered. The early works [31, 32] deriving a growth law for the mean grain
radius ⟨R⟩ can be considered as one of the first mean field approaches. This model relies on
the curvature driven evolution law, and isotropic GB energy and mobility (i.e., independent on
misorientation and GB plane). The classical relationship is obtained:

⟨R⟩ ∝ t
1
n (1)

where n = 2 is called the growth exponent. In practice, experiments give evidences that the
growth exponent may lie in the following interval [2, 4] [33]. An other famous model called the
von Neumann-Mullins (vNM) law [34, 35] relates the number of sides and the area change rate
of each grain family. The classical vNM law is formulated within a fully isotropic framework
(i.e., isotropic GB energy and isotropic mobility), and relies on the curvature driven evolution
law and the assumption that angles at triple junctions are 120◦. In addition, an extended vNM
law has also been proposed for anisotropic grain growth and tested with a mesoscopic stochastic
Monte-Carlo simulations [36]. Among the early mean field theories, the statistical approaches
are well known [37]. Considering a grain family of radius R the following relationship is found
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in [37]:
dR
dt
= m γ

(
1
⟨R⟩ −

1
R

)
(2)

where m and γ are respectively the constant mobility and GB energy per unit area of the con-
sidered grain family, and ⟨R⟩ is the overall average grain radius. This relationship (2) has been
obtained within the framework of a more general mean field approach in [38, 39]. By solving
(2) Hillert [37] found a steady state statistical distribution of R/ ⟨R⟩. Other well known dis-
tributions have been obtained in [40, 41]. At the macroscopic scale (i.e., without referring to
mesoscopic quantities) these steady-state distributions are usually the only information. How-
ever, a refined analysis based on thermodynamic extremal principle, for which grain families
have different GB energies and mobilities, enabled to establish a more general evolution law
[42], and the same thermodynamic extremal principle has been used to establish an evolution
law directly on the statistic distribution of grain radii [43, 44]. Thus, with an initial distribution,
GB energies and mobilities, one can easily determine the evolution of the distribution. These
approaches may be considered as a macroscopic model, as grain size distribution evolution is
determined without computing a detailed evolution at the mesoscopic scale, even though GB
energies and mobilities of each spherical grain are needed. However, since this approach does
not take into account the real connectivity between grains (i.e., there is no reference to real-
istic morphologies), the evolution of boundary misorientation distribution (BMD), GB length
density or morphological aspects such as sphericity distributions are not accessible. On the
contrary, the approach proposed in this contribution aims at establishing evolution laws for the
statistical distribution of the grain structure, including BMDs and GB length density for in-
stance. Semi-topological approaches have also been developed in [45], and enable to introduce
some topological and stochastic features in the migration of GBs. However, within the context
of grain growth, these semi-topological approaches are still limited to grain size distribution,
the main difference with previous approaches being to obtain more realistic distributions. In
addition, mean field approaches are usually used to reproduce full field computations (e.g., us-
ing level set method or phase field models) to save computation time for industrial processes.
A commercial code DIGIMU [46] has been developed, and can perform both full field compu-
tations and calibrated mean field estimations.

Thus, the information upscaled at the macroscopic scale is limited to grain size statistics.
To overcome this difficulty, the present contribution deals with additional grain statistics, such
as mean and standard deviation of misorientations or GB lengths per unit area. The paper is
organized as follows. First, the main theoretical results obtained in the mesoscopic model and
assumptions are recalled in section 2 for the sake of clarity. The reduction of the amount of
data for the construction the macroscopic state variables is broached in section 3. Primary
state variables are defined to explain GB energy, and an additional secondary state variable
is introduced to deal with the sensitivity to small grains (i.e., vanishing grains) of a mobility
tensor arising in the mesoscopic evolution law. In section 4 the macroscopic evolution laws
of both primary and secondary state variables are derived based on the mesoscopic model.
These macroscopic evolution laws involve to identify several functions that fully depend on
the macroscopic state variables. The identification is performed by using a large database of
mesoscopic computations whose content is described in section 5. The function involved in the
energy is deterministic and identified in section 6 although the function involved in the mobility
is identified in section 7, and is probabilistic. Indeed the reduction of the amount of data leads
to an epistemic uncertainty that is modeled as a random variable. This epistemic uncertainty
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is identified by using Bayesian techniques in section 8. Results are provided in section 9, and
additional statistical descriptors of the polycrystalline structure such as the average grain size
are estimated as a post-processing. Conclusive remarks are given in section 10.

2. Summary of the mesoscopic model

In this section, the main theoretical results and assumptions of the mesoscopic model de-
rived in [2] are briefly recalled for the sake of clarity. The proposed upscaling methodology is
applied to plane hexagonal polycrystals. In 3D, this would correspond to face-centered cubic
(fcc) crystals, and for each grain the direction [111] is assumed to be aligned with the out of
plane direction. Thus, there are three plastic slip systems in 2D. Misorientation between two
neighboring grains (characterized by five parameters in 3D) is characterized only by two pa-
rameters in 2D: the misorientation angle (denoted by ∆θ), and the orientation of the GB plane.
Thus, the GB energy considered in this paper is computed from fcc crystals sharing the same
orientation ⟨111⟩ (tilt boundaries) and the effect of the GB plane is neglected. The plane as-
sumption enables to deal with thin structures such as thin films. In addition, since there are 3
plastic slip systems in the plane, the proposed approach also enables to reasonably approximate
3D structures.

Polycrystalline structures are approximated with Voronoi-Laguerre tessellations defined by
N seeds whose dimensionless Cartesian coordinates are denoted by (x j, y j) ∈ [0, 1]2 and N
dimensionless weights denoted by w j ∈ R+ (where 1 ≤ j ≤ N). In addition, N crystal ori-
entations θ j ∈ [0, π/3] that represent the ⟨111⟩ tilt angles of plane hexagonal lattices (where
1 ≤ j ≤ N). The orientated tessellation (OT) is completely determined by the parame-
ter vector α = (x, y,w, θ) where x = (x1, · · · , xN), y = (y1, · · · , yN), w = (w1, · · · ,wN) and
θ = (θ1, · · · , θN). Crystal lattice misorientation between grains i and j is defined by:

∆θi j =
∣∣∣θ j − θi

∣∣∣ ∈ [
0,
π

3

]
(3)

Furthermore, representative volume elements (RVE) are considered by selecting a subset of n
grains as detailed in [2]. The following evolution law of weights (other parameters being fixed)
has been established in [2]:

ẇmeso = −
m(T )

L3
0

Mmeso(α) ·
∂Emeso(T,α)
∂w

(4)

where wmeso are the weights of the OT, Emeso is the total energy per unit depth in the RVE, m(T )
is a scalar mobility (m4.J−1.s−1) that depends on temperature, and Mmeso is a dimensionless
mobility second order tensor of size n×n depending on the mesoscopic state α. The index meso
refers to the fact that mesoscopic quantities are needed to compute the associated variable. In
comparison with [2] the term m(T ) has been factorized although it was included in the second
order tensor. It should be noted that Mmeso depends on the choice of the mobility as a function
of misorientation at the scale of GBs. In the following the database and then the macroscopic
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model are based on the GB energy (5) and the mobility function (6) introduced in [2].

γ(0,∆θ) = γ1 sin
(
π

2
∆θ

∆θ1

) [
1 − a1 ln

(
sin

(
π

2
∆θ

∆θ1

))]
(0 ≤ ∆θ ≤ ∆θ1)

γ(0,∆θ) = γ2 + (γ1 − γ2) sin
(
π

2
∆θ − π3
∆θ1 − π3

) [
1 − a2 ln

(
sin

(
π

2
∆θ − π3
∆θ1 − π3

))]
(
∆θ1 ≤ ∆θ ≤

π

3

)
(5)

where γ1 = 0.95 J.m−2, γ2 = 0.67 J.m−2, a1 = 0.5, a2 = 0.1 and ∆θ1 = π/6.

mCD(T,∆θ) =


m(T )
X(∆θ)

if min
{
∆θ, π3 − ∆θ

}
≤ ∆θ0

mmax(T )
(
1 − exp

[
−K

(
∆θ

∆θ1

)p])
if min

{
∆θ, π3 − ∆θ

}
≥ ∆θ0

(6)

where ∆θ0 = 4.5π/180 is a threshold between very low angle boundaries and high and inter-
mediate angle boundaries, ∆θ1 = π/9, K = 5, p = 4 and:

m(T ) = mmax(T )
(
1 − exp

[
−K

(
∆θ0
∆θ1

)p])
X(∆θ0) (7)

and where:

X(∆θ) =
6
π

π3 + 2
√

3 ln
 √3

2

 min
{
∆θ,
π

3
− ∆θ

}
(8)

3. Macroscopic state variables

3.1. Primary state variables
In this section, the macroscopic state variables considered in this work are introduced and

discussed. Since the model identification relies on a database that depends on the choice of the
macroscopic state variables, it is convenient to define dimensionless state variables so that the
database does not depend on the physical length of the tessellations. All physical quantities
are explicitly written as a scaling factor in the dimensionless macroscopic evolution laws. This
choice presents the advantage to obtain a dimensionless database (e.g, the same tessellation is
not computed several times depending on its physical length) and to demonstrate analytically in
the evolution law the influence of physical length, mobility and surface energy. State variables
are not defined arbitrarily as the macroscopic energy should be a function of these variables.
However, it is a difficult task to determine suitable variables directly from raw data. Thus, intu-
itive state variables are introduced, and then it is demonstrated that such variables are suitable
to describe the macroscopic energy.

Each material point of the macroscopic model should represent a polycrystalline structure
(i.e., an RVE) whose energy is the sum of the surface energies carried by the GBs multiplied
by their respective length (see [2]). Since the surface energy depends on misorientation, it
is expected that the total macroscopic energy at each material point depend on the statistical
distributions of GB lengths and misorientations. However, it is clear that complete statistical
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distributions constitute a far too rich information to be reasonably processed at each material
point of the macroscopic domain. Thus, statistical descriptors (e.g., mean, standard deviation
etc.) of length and misorientation distributions should be considered instead of the complete
statistical distributions. The successive statistical moments of the misorientation distribution
weighted by the GB lengths are chosen. Since GB lengths continuously tend to zero when a
grain disappear, they are used as weights in the statistical moments so that the statistical mo-
ments evolve continuously with respect to time. Indeed, otherwise (i.e., without the GB lengths
as weights) the statistical moments would be piecewise constant with a discontinuity each time
a grain disappear. Thus, the weighted statistical moments obtained from the mesoscopic state
read:

µk =
∑

(i, j)∈IRVE

li j∆θ
k
i j (9)

where IRVE is the set of grain boundaries in the RVE, li j the dimensionless GB lengths, and ∆θi j

the misorientations. In addition, k ∈ {0, 1, 2}, indeed as demonstrated in section 6 it is sufficient
to consider only the three first statistical moments to accurately account for the total energy.

To give a more intuitive interpretation of µk (k ∈ {0, 1, 2}), one can refer to the length
L0 (m), which has been introduced as the physical side of the OT in [2]. This parameter enables
to determine the average grain size. Thus, for instance µ0/L0 is the GB length density (length
per unit surface). In addition, the mean of misorientations in the RVE denoted by µ̃1, and the
square of the relative standard deviation1 denoted by µ̃2 read:

µ̃1 =
µ1

µ0

µ̃2 =
µ2µ0

µ2
1

− 1
(10)

For the sake of clarity, following notations are considered. On the one hand, the statistical
moments µk (k ∈ {0, 1, 2}) may be computed from the detailed mesoscopic structure by using
(9). In this case, these variables are denoted by µmeso = (µ0, µ1, µ2) and correspond to a reduc-
tion of the amount of data with respect to the complete information needed to characterize the
OT. Thus, µmeso is a function of α (where α = (x, y,w, θ) is the mesoscopic state as introduced
in [2]). The role of µmeso is twofold: (i) give an overview of mesoscopic evolutions with a
limited amount of data, and (ii) provide a tool to define macroscopic state variables within the
framework of the upscaling strategy from the mesoscopic scale to the macroscopic scale, as
shown in section 4.

On the other hand, the overall aim of this paper is to derive a macroscopic evolution law
that do not rely on detailed knowledge of the mesoscopic state. At each material point, only
the macroscopic state variables are known, without computing any mesoscopic evolution. The
upscaling strategy actually consists in establishing such a macroscopic evolution law. These
primary state variables are denoted by µmacro, and correspond to a macroscopic version of µmeso,
but exist and can be computed independently from the mesoscopic model, that is to say without
using the very definition (9). Of course, the identification of the macroscopic model relies on
the database of mesoscopic computations, but as soon as this identification is performed, both

1ratio of the standard deviation over the mean
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models are independent. Thus, µmacro does not refer to a specific RVE, but should represent all
possible RVEs sharing the same macroscopic state µmacro.

The quality of the proposed upscaling strategy can be evaluated by comparing (i) the overall
behavior of detailed mesoscopic evolutions of specific RVEs, obtained by the reduction of the
amount of data in (9), and (ii) the corresponding macroscopic evolutions obtained directly from
the macroscopic evolution law. Hence the requirement:

µmacro(t) ≈ µmeso(t)

µ̇macro(t) ≈ µ̇meso(t)
(11)

As detailed in the following, the loss of information (due to the fact that several different
mesoscopic states can share the same macroscopic state) require to consider the macroscopic
evolution law within a probabilistic framework. Thus, the condition (11), which guaranties the
upscaling strategy to be reliable should be understood in a probabilistic sense. Intuitively, that
is to say that for a particular RVE, the mesoscopic evolution summarized by µmeso(t) should
lie in the zone defined by the point-wise dispersion around the mean macroscopic evolution⟨
µmacro(t)

⟩
, where µmacro is a random variable. Alternatively, considering a large number of dif-

ferent RVEs initially sharing the same overall state µmeso(t = 0), one can compute the empirical
mean and standard deviation as a function of time, and compare them to the mean and standard
deviation as a function of time of the macroscopic probabilistic evolution.

Consistently with previous notations, for any given quantity denoted by Q, Qmeso refers to
the quantity Q computed from the mesoscopic state α = (x, y,w, θ), although Qmacro refers
to the quantity Q computed from the macroscopic evolution law, without knowledge of the
mesoscopic state, hence Qmacro only depends on macroscopic state variables.

3.2. Secondary state variable
In addition, even though it is demonstrated in section 6 that the total energy of a particu-

lar RVE is completely determined by µmeso, it is shown in section 7 that the dissipated power
requires a probabilistic framework and necessitates the introduction of an additional state vari-
able. Indeed, at the mesoscopic scale the dissipated power depends on a second order mobility
tensor Mmeso introduced in (4) in section 2. When a grain i tends to vanish (i.e. S i → 0 where
S i is the dimensionless surface of the grain), the corresponding grain boundaries vanish (i.e.,
li j → 0 with j denoting the neighboring grains). Since the mobility tensor Mmeso includes the
inverse of a tensor that linearly depends on the GB lengths, when a grain i tends to vanish the
corresponding components in the mobility tensor Mmeso diverge. This could be interpreted as
a numerical conditioning issue. However, this behavior actually reflects an instability of small
grains that can freely disappear with negligible dissipation cost (i.e., very high mobility). This
sensitivity of the mobility tensor to small grains also arises at the macroscopic scale as dis-
cussed in section 7. Thus, an additional variable should be added to capture this behavior. To
that end, the following variable is introduced:

ηmeso = −
n∑

k=1

log (S k) (12)

where S k are the dimensionless grain surfaces in the RVE. At first glance this variable may
seem arbitrary. However, it is clear that ηmeso rapidly increases when grain sizes decrease.
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Unlike µmeso, the variable ηmeso is not continuous with respect to time as it diverges each time
a grain disappear. This is illustrated in figure 2a, where 0.5 ηmeso is presented as a function
of time with a refined time discretization in order to detect discontinuities (the time step is
10 s). It is clear that 0.5 ηmeso is fairly well correlated with the evolution of the number of GBs
nGB. This aspect is demonstrated more systematically in figure 2b where nGB is presented as a
function of 0.5 ηmeso for the tessellations extracted from the database presented in section 5. As
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(b) nGB vs 0.5 ηmeso for the tessellations extracted
from the database.

Figure 2: Approximation of nGB by 0.5 ηmeso.

for the primary state variables µmacro, a secondary state variable ηmacro should be determined by
establishing a macroscopic evolution law that do not refer to the mesoscopic scale and such as:

ηmacro(t) ≈ ηmeso(t) (13)

However, a difficulty arises with the fact that ηmeso is discontinuous. Indeed, the time derivative
η̇meso is always positive although the overall variation with respect to time is negative (see.
figure 2a), which implies that:

η̇macro(t) , η̇meso(t) (14)

To overcome this difficulty, a smooth approximation of ηmeso(t) is sought by considering a larger
time scale avoiding the jumps of ηmeso(t) as shown in figure 2a. This continuous approxima-
tion is obtained by considering the overall variation of nGB during a finite time interval. More
precisely the following idealized situation is considered. During a mesoscopic evolution, con-
sider an instant t0 belonging to the macroscopic time scale (see figure 2a). In particular small
grains sizes are not negligible as ηmeso is stable. Consider the grain i, which is the next grain to
disappear. This grain i is much smaller than the others, and reduces in size. The time needed
for the grain i to disappear is denoted by ∆t (see. figure 2a). A crude approximation of ∆t
is determined by considering a first order Taylor expansion of the dimensionless grain radius√

S i/
√
π, namely: √

S i(t0 + ∆t) ≈
√

S i(t0) +
Ṡ i(t0)

2
√

S i(t0)
∆t = 0 (15)

Hence:
∆t ≈ −2

S i(t0)
Ṡ i(t0)

(16)
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It should be noted that the choice of
√

S i instead of S i to estimate the time needed for the grain
to disappear is not arbitrary: the equivalent radius evolves more linearly than the grain surface.

The vanishing grain i is very likely to be triangular, therefore three GBs disappear. In
addition, since nGB and 0.5 ηmeso share the same overall evolution, it is imposed that the time
derivative of 0.5 η̇macro is equal to the overall variation of nGB over ∆t. However, it can be
observed in figure 2a that when a grain i disappears at t0+∆t, several other grains may disappear
almost immediately after that. This shorter time scale cannot be considered at the macroscopic
scale as a smooth representation of nGB is sought. To overcome this difficulty, consider βdis the
average number of grains that almost immediately disappear after the grain i, hence:

0.5 η̇macro =
nGB(t0 + ∆t) − nGB(t0)

∆t
= −3 βdis

∆t
(17)

At t0 the only grain that is much smaller than the other is the grain i (i.e., 1/S i(t0) ≫ S k(t0) for
k , i), therefore the time derivative of ηmeso defined in (12) can be approximated as follows:

η̇meso(t0) = −
n∑

k=1

Ṡ k(t0)
S k(t0)

≈ −βdis
Ṡ i(t0)
S i(t0)

(18)

Thus, by using (16), (17) and (18) one obtains:

η̇macro ≈ −3 βdis η̇meso(t0) (19)

Since the previous analysis is very simplified, the factor −3 βdis in (19) is not fully determined
as βdis is unknown. A specific analysis could be carried out to identify βdis as a function of
ηmeso (and potentially additional morphological variables). However, this aspect has not been
broached in this work. Instead, βdis is approximated in a phenomenological way, that is to say
without rigorous derivation from the mesoscopic scale, as for the rest of the model. The very
definition of ηmeso (12) shows that βdis is an increasing function of ηmeso. Moreover, βdis = 1
when ηmeso is under a certain threshold. Indeed, when a grain i is disappearing, the minimum
number of grains that can disappear is one. These remarks lead to consider a power law with a
threshold, and by replacing ηmeso by its macroscopic counterpart ηmacro:

βdis =


(
0.5 ηmacro

β0

)δ
0.5 ηmacro ≥ β0

1 0.5 ηmacro ≤ β0

(20)

where δ = 3 and β0 = 1000 are identified from numerical results presented in section 9 so that
nGB is rather well captured by 0.5 ηmacro. It should be noted that the other quantities arising in
the macroscopic evolution laws derived in section 4 are not identified in a phenomenological
way as for βdis, but in a more theoretical and systematic way as detailed in sections 6 and 7.
The simplified phenomenological identification of βdis is an exception that is proposed to avoid
unnecessary technicalities. The choice of βdis has a significant impact on ηmacro, however since
µmacro only slightly depends on ηmacro, the choice of βdis has a limited impact on µmacro. Thus,
this phenomenological identification seems sufficient.

In addition, the latter relation (19) shows that to overcome the difficulty due to the discon-
tinuity of ηmeso, the database should avoid tessellations with very small grains, whose sizes are
negligible. Indeed, a smooth macroscopic secondary state variable is derived by using η̇meso(t0),
which should be finite (i.e., without grains such as S i ≈ 0).
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4. Macroscopic evolution laws

4.1. Primary state variables evolution law
In this section, the macroscopic evolution law is derived. Some results related to the

database of mesoscopic computations and presented in following sections are required in this
section. Nevertheless, the derivation of the macroscopic evolution law is derived first as it
enables us to introduce the mathematical quantities to compute in the database.

The mesoscopic evolution law (4), has been derived in [2] from thermodynamical princi-
ples. Thus, considering a mesoscopic structure the evolution law (4) is considered. Since µmeso
depends on the mesoscopic state the following derivation rule holds:

µ̇meso =
∂µmeso

∂w
· ẇmeso (21)

where ∂µmeso/∂w is a dimensionless second order tensor of size 3 × n, which can be computed
analytically (see. [2]). Hence from (4) and (21):

µ̇meso = −
m(T )

L3
0

∂µmeso

∂w
· Mmeso ·

∂Emeso

∂w
(22)

In addition, in section 6 the analysis of the database of mesoscopic computations shows that
the total mesoscopic energy per unit depth denoted by Emeso can be very accurately approxi-
mated by a deterministic function f (µmeso):

Emeso(T,α) ≈ L0γS
G(T )
G(0)

f (µmeso) (23)

where γS = 1 J.m−2, G(T ) is the temperature dependent shear modulus that captures the tem-
perature dependance of the GB energy, and f is an analytic function determined in (46) in
section 6. Hence, from (4), (22) and (23) one obtains the overall mesoscopic evolution law:

µ̇meso = −
(
γS m(T )

L2
0

G(T )
G(0)

) 
∂µmeso

∂w

 · Mmeso ·
∂µmeso

∂w

T  · ∂ f (µmeso)
∂µ

(24)

On the basis of (24) the following dimensionless second order tensor of size 3 × 3 (called
mobility tensor) is introduced:

Γmeso =
∂µ

∂w
· Mmeso ·

∂µ∂w
T

(25)

Since the upscaling strategy relies on the objective that the macroscopic state variables
µmacro provide a good approximation of the mesoscopic overall state µmeso (see. (11)), the
macroscopic energy is defined as the same deterministic function f but evaluated in µmacro, that
is to say:

Emacro(T,µmacro) = L0γS
G(T )
G(0)

f (µmacro) ≈ Emeso(T,α) (26)

For the energy, the upscaling strategy reduces to the identification of the deterministic dimen-
sionless function f . In addition, the upscaling strategy also consists in approximating the di-
mensionless mesoscopic mobility tensor Γmeso by a macroscopic tensor Γmacro defined in (77)
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that only depends on the macroscopic state without any knowledge of the detailed mesoscopic
state:

Γmacro ≈ Γmeso (27)

In addition, it is shown in section 7 that Γmeso depends on the secondary variable ηmeso defined in
(12) and Γmacro requires a probabilistic framework and depends on the secondary state variable
ηmacro. Thus, by using (11), (26), (27) and (13) into (24), the macroscopic evolution law of the
primary state variables is obtained:

µ̇macro = −
(
γS m(T )

L2
0

G(T )
G(0)

)
Γmacro

(
µmacro, ηmacro

) · ∂ f (µmacro)
∂µ

(28)

where ∂ f (µmacro)/∂µ can be interpreted as the dimensionless macroscopic driving force.

4.2. Secondary state variable evolution law
Of course, a macroscopic evolution law is also requested for the secondary state variable

ηM in order to update Γmacro
(
µmacro, ηmacro

)
at each time step. Since grain surfaces S k depend on

the mesoscopic state, the following derivation rule holds:

η̇meso = −
n∑

k=1

Ṡ k

S k
(29)

where:
Ṡ k =

∂S k

∂w
· ẇmeso (30)

And by using (4) one obtains:

η̇meso =
m(T )

L3
0

 n∑
k=1

1
S k

∂S k

∂w

 · Mmeso ·
∂Emeso

∂w
(31)

Hence, from (4), (31) and (23) one obtains the overall mesoscopic evolution law:

η̇meso =

(
γS m(T )

L2
0

G(T )
G(0)

) 
 n∑

k=1

1
S k

∂S k

∂w

 · Mmeso ·
∂µmeso

∂w

T  · ∂ f (µmeso)
∂µ

(32)

On the basis of (32), the following dimensionless vector of size 3 is introduced:

Λmeso =

 n∑
k=1

1
S k

∂S k

∂w

 · Mmeso ·
∂µmeso

∂w

T

(33)

With the same reasoning as before, the upscaling strategy consists in approximating the di-
mensionless mesoscopic vector Λmeso by a macroscopic vector Λmacro defined in (77) that only
depends on the macroscopic state without any knowledge of the detailed mesoscopic state:

Λmacro ≈ Λmeso (34)

Thus, the macroscopic evolution law of the secondary state variable is obtained:

η̇macro = −3 βdis (ηmacro)
(
γS m(T )

L2
0

G(T )
G(0)

)
Λmacro

(
µmacro, ηmacro

) · ∂ f (µmacro)
∂µ

(35)
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where the factor −3 βdis is due to (19).
All terms involved in (28) and (35) are defined from the macroscopic state, and do not refer

to the RVE. However, L0 explicitly arises in (28) and (35), which shows the influence of the
physical grain size on grain growth as already discussed in [2]. Of course, it seems that L0

refers to the RVE, and that state variables could have been defined as densities per unit area
instead of being defined as dimensionless quantities in order to discard L0 from (28) and (35).
Nevertheless, L0 can be seen as a scaling parameter enabling to set the average grain size,
which is a macroscopic quantity. In addition to the primary state variables µmacro several other
interesting macroscopic quantities such as the average grain size or the average GB length can
be computed as a post-processing of the macroscopic evolution law, as shown in section 9.3.

5. Database content

In this section, the database of mesoscopic computations is presented. The mesoscopic
model based on OTUM has mainly been developed to be intensively used in order to construct
a large database that probes the space of OTs. The database is analyzed to identify the energy
Emeso in (23), the mobility tensor Γmeso in (25), and the vector Λmacro in (33).

The free software NEPER [28] is used to generate Voronoi-Laguerre tessellations with var-
ious morphological statistics. In addition, the probabilistic procedure described in [2] enables
us to obtain OTs with various crystallographic textures. In figure 3 three examples of RVEs
are presented with grain size and circularity distribution as well as boundary misorientation
distribution (BMD).
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Figure 3: Three different examples of OTs considered for the database, with histograms of grain size, grain
circularity, and BMD.

The database that has been used in this work does not include results from mesoscopic
evolutions, which would provide successions of OTs that could be included in the database.
Instead a more static approach has been chosen, the database is constructed from Ntess = 121
different tessellations, each of which is assigned with Nori = 162 different crystal orientation
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fields, leading to a total of Ndata = 19.602 OTs. Crystal orientation fields are generated as fol-
lows. First, a beta probability density B(α, β) has been used with (α, β) ∈ {1, · · · , 9}2 (i.e., 81
crystal orientation fields), then a normal probability densityN(µ, σ) has been used with µ andσ
describing a homogeneous discretization (with 9 steps) of intervals [15, 45] and [5, 30] respec-
tively (i.e., 81 crystal orientation fields). Of course, several draws of each probability density
function involved in the orientation field assignment procedure could be generated instead of
only one to enrich the database.

This static approach has been chosen to optimize the computation time, as the succession of
OTs obtained during a mesoscopic evolution provides rather similar OTs, although the proposed
static approach enables to probe more efficiently the large space of OTs by selecting very
different OTs. But of course, a more dynamic approach can also be used to complete the
database. When running the mesoscopic code for a given RVE, the intermediate states at each
time step can be stored along with the different elements needed for the database, making easy
to enrich the database automatically each time the mesoscopic code is used.

The database is constructed on the basis of RVEs obtained from the OTs. Indeed, as dis-
cussed in [2], boundary conditions in the mesoscopic model are defined by considering a group
of connected grains in the OT that do not belong to the edge of the OT.

Even though the database is dimensionless and does not depend for instance on L0, it should
be noted that the database obviously depends on the choice of the local GB energy (5) and mo-
bility (6) as a function of misorientation at the scale of GBs. These choices has been discussed
in [2].

An extract of the database is given in table 1 where id (with 1 ≤ id ≤ Ntess) is the index
of the Voronoi-Laguerre tessellation, k (with 1 ≤ k ≤ Ndata) is the index of each entry in the
database, and Emeso is the dimensionless GB energy at 0 K:

Emeso =
Emeso(T = 0)

L0γS
(36)

The complete database for pure iron that has been constructed in this work is available as a
supplementary marterial.

Table 1: Extract of the database of mesoscopic computations for pure iron.

k id n nGB µmeso Emeso Γmeso Λmeso ηmeso

µ0 µ1 µ2 Γ11 Γ22 Γ33 Γ12 Γ13 Γ23 Λ1 Λ2 Λ3

1 1 397 1268 39 8.7 2.4 26.3 1593 387 77 475 153 166 37961 10592 3269 2505
2 1 397 1268 39 8.9 2.7 26.0 1903 521 133 410 116 251 48056 11834 3819 2505
3 1 397 1268 39 9.4 3.1 26.1 1892 550 151 554 190 269 47833 13775 4376 2505
4 1 397 1268 39 10.2 3.8 26.6 1951 969 387 662 312 587 50740 12303 4950 2505
5 1 397 1268 39 9.9 3.7 26.1 1947 1017 349 823 355 561 47579 17698 7287 2505
6 1 397 1268 39 11.1 4.6 27.1 1919 949 420 711 324 595 46292 15144 5529 2505
7 1 397 1268 39 11.5 4.9 27.4 2436 1230 633 996 463 826 60631 20881 8602 2505
8 1 397 1268 39 11.4 5.0 26.9 2445 1371 699 974 427 911 63145 22542 7226 2505
9 1 397 1268 39 11.7 5.3 26.8 2300 1600 911 991 504 1150 66895 36583 20213 2505
10 1 397 1268 39 10.5 3.5 28.7 2686 850 264 806 291 456 66612 19521 6991 2505
11 1 397 1268 39 10.6 3.7 28.1 2198 751 264 585 200 422 55423 14248 4402 2505
12 1 397 1268 39 10.8 4.0 27.8 2430 1104 406 910 381 633 62014 19663 8526 2505
13 1 397 1268 39 11.0 4.4 27.3 2414 1035 445 883 383 640 61547 22430 9771 2505
...
...
...

...
...
...

...
...

...
...

...
...

...
...

...
...

...
...
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6. Identification of the macroscopic free energy

In this section, the macroscopic GB energy per unit depth Emacro is identified on the basis
of Emeso computed for all the OTs listed in the database. The upscaling strategy is conducted in
two steps. (i) The first step consists in determining an analytic expression for Emeso as a function
of µmeso by considering small angle misorientations, which enables to use the analytical local
GB energy function proposed by Read & Shockley [47] and a Taylor expansion of the total
energy per unit depth in the RVE. (ii) The second step consists in identifying the unknown co-
efficients involved in the analytic expression exhibited for small angle misorientations (step (i))
by a simple minimization process (i.e., least-squares method) between the energy stored in the
database and predictions of the analytic expression. This identification procedure leads to a
macroscopic energy function that fit the data almost perfectly, which strongly supports the idea
of modeling the macroscopic energy Emacro as a deterministic function of µmacro.

6.1. Analytic expression for the grain boundary energy
The total mesoscopic GB energy defined in [2] is recalled here for the sake of clarity:

Emeso(T,α) = L0
G(T )
G(0)

∑
(i, j)∈IRVE

li jγ(0,∆θi j) (37)

where γ(0,∆θi j) is the local anisotropic GB energy per unit area at 0 K. If small angle mis-
orientations are considered the Read & Shockley formula [47] is accurate, and presents the
advantage to deal with simple analytic expressions, and then:

γ(0,∆θ) = γS κ1 ∆θ
(
κ2 − log (∆θ)

)
(38)

where γS = 1 J.m−2, and κ1, κ2 are dimensionless parameters. Hence:

Emeso(T,α) = L0
G(T )
G(0)

γS κ1
∑

(i, j)∈IRVE

li j∆θi j

(
κ2 − log

(
∆θi j

))
(39)

Moreover, ϵi j denotes the deviation of the misorientation ∆θi j from the mean misorientation µ̃1

defined in (10), hence:
∆θi j = µ̃1 + ϵi j (40)

Thus, combining (39) and (40) one obtains:

Emeso(T,α) = L0
G(T )
G(0)

γS κ1
∑

(i, j)∈IRVE

li j

(̃
µ1 + ϵi j

) κ2 − log (̃µ1) − log

1 + ϵi j

µ̃1

 (41)

By considering that the deviations ϵi j are small compared to µ̃1 (i.e., ϵi j/µ̃1 ≪ 1), the Taylor
expansion at the second order in ϵi j reads:

Emeso(T,α) = L0
G(T )
G(0)

γS κ1
∑

(i, j)∈IRVE

li j

(̃
µ1 + ϵi j

) κ2 − log (̃µ1) −
ϵi j

µ̃1
+
ϵ2i j

2µ̃2
1

+ o
(
ϵ2i j

) (42)

Moreover, using the definition (40), the following equations can be easily verified:
∑

(i, j)∈IRVE

li jϵi j = 0

∑
(i, j)∈IRVE

li jϵ
2
i j = µ2 −

µ2
1

µ0

(43)
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Hence:

Emeso(T,α) ≈ L0
G(T )
G(0)

γS κ1 µ0 µ̃1

(
κ2 − log (̃µ1) − µ2µ0

2µ2
1

)
(44)

By using the definition of the squared relative standard deviation introduced in (10), the total
GB energy for small angle misorientations can approximated as follows:

Emeso(T,α) ≈ L0
G(T )
G(0)

γS f (µmeso) (45)

where the dimensionless function f reads:

f (µ0, µ1, µ2) = κ1 µ0 µ̃1

(
κ2 − log (̃µ1) − 1

2
(̃µ2 + 1)

)
(46)

The simple analytic expression (45) is used to fit the energy stored in the database as a function
of µmeso. The two coefficients κ1 and κ2 need to be identified.

6.2. Identification of the unknown coefficients
As introduced in [2], the local GB energy used in the model is not the Read & Shockley

formula [47] but an analytic function (5) proposed by Wolf [48], which enabled to interpolate
molecular dynamics computations. However, for low angle misorientations the interpolation
function matches the Read & Shockley formula and the analysis presented in section 6.1 re-
mains valid. In addition, even though the analysis has been conducted for very small angle
misorientations, the obtained analytic function f in (46) is used as an educated guess to inter-
polate the energy in the database even for large angle misorientations.

In the following, a minimization is performed to identify κ1 and κ2, in order to fully deter-
mine the function f defined in (46). This function is essential to define the macroscopic energy
Emacro as detailed in (26). The data set used for the minimization is composed of the following
components of the database:

U =
{(
µ(k)

0 , µ
(k)
1 , µ

(k)
2 , E

(k)
meso

)
, 1 ≤ k ≤ Ndata

}
(47)

where Emeso is the dimensionless GB energy at 0 K defined in (36), and the exponent (k) stands
for the k-th entry in the database. The least-squares method is used to carry out the minimiza-
tion procedure. More precisely, the natural Euclidean distance between the dimensionless GB
energy Emeso in the database and predictions of the analytical function f in (46) is minimized.
Thus the minimization problem reads:

(κ1, κ2) = argmin
(κ∗1, κ

∗
2) ∈ R2

Ndata∑
k=1

(
E(k)

meso − F (k) [κ∗1, κ∗2])2
(48)

where:

F (k) [κ∗1, κ∗2] = κ∗1 µ(k)
0 µ̃

(k)
1

(
κ∗2 − log

(̃
µ(k)

1

)
− 1

2

(̃
µ(k)

2 + 1
))

(49)

where µ̃(k)
1 , µ̃

(k)
2 are computed from µ(k)

0 , µ
(k)
1 , µ

(k)
2 accordingly to (10).

The linear minimization problem (48) is fairly simple and the solution reads:κ1 κ2
κ1

 = (
XT · X

)−1
· XT · Emeso (50)
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where Emeso = (E(k)
meso)1≤k≤Ndata is a vector of size Ndata, and X is a second order tensor of size

Ndata × 2 defined by: 
Xk,1 = µ

(k)
0 µ̃

(k)
1

Xk,2 = −µ(k)
0 µ̃

(k)
1

(
log

(̃
µ(k)

1

)
+

1
2

(̃
µ(k)

2 + 1
)) (51)

Results are listed in table 2.

Table 2: Dimensionless coefficients involved in the energy.

κ1 1.7
κ2 0.9

The coefficient of determination r2 quantifies the part of the variance of the data (i.e., Emeso)
that is explained by the model (i.e., the f function). This coefficient of determination has
been computed, and r2 = 0.998. Thus, the dimensionless analytic function f almost perfectly
captures the GB energy at the macroscopic scale, which can be considered as deterministic
function. A comparison between data and the model is presented in figure 4, and a perfect fit is
observed.

Figure 4: Dimensionless GB energy Emeso/µ0 and analytic function f /µ0 as a function of µ̃1 and µ̃2 computed
from µmeso.

The main result of this section is that the upscaling of the total GB energy leads to a deter-
ministic function of the macroscopic state. Therefore, the choice of considering the successive
statistical moments in (9) as a basis to construct the primary state variables µmacro is validated.

7. Identification of the macroscopic mobility tensor

In this section, the mobility tensor Γmeso arising in(25) and the vector Λmeso arising in (33)
are analyzed. There is no available analytical computation such as presented in section 6.1 to
guide the development of a macroscopic model. Thus, the identification is carried out only with
statistical treatments of the data. In addition, as already mentioned in section 3.2, a secondary
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state variable ηmacro is necessary to deal with the sensitivity of Γmeso andΛmeso to the presence of
very small grains. The secondary state variable is introduced to explain a new quantity that will
be called the tessellation amplification factor, which is a scaling factor so that all tessellations
are comparable.

7.1. Raw data
In figure 5, raw data of the dimensionless mobility tensor Γmeso and the vector Λmeso are

presented as a function of µ̃1 (computed from µmeso according to (10)). Colors correspond
to the tessellation index. More precisely, each point in figure 5 correspond to a specific OT
indexed by k (with 1 ≤ k ≤ Ndata) and all points sharing the same color correspond to a single
tessellation indexed by id (where 1 ≤ id ≤ Ntess) with different BMDs. It should be noted that
the variable µ̃2 that has been used for the energy (see. figure 4) does not explain the variance
of the raw data for Γmeso and Λmeso, and is not used to interpret these results. In addition, it is

Figure 5: Raw data of the dimensionless mobility tensor Γmeso and the vector Λmeso as a function of µ̃1 computed
from µmeso. Colors correspond to the tessellation index id (1 ≤ id ≤ Ntess).
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clear from figure 5 that the dispersion of the raw data is very significant, which would hinders
the development of the macroscopic mobility tensor Γmacro and vector Λmacro involved in the
macroscopic evolution laws (28) and (35) respectively. However, it seems that the tessellation
index id explains a significant part of the variance of the raw data, thus there is a quantity that
only depends on the tessellation (and does not depends on BMD) that explains a large part
of the dispersion observed in figure 5, this quantity is introduced as a scaling factor in the
following. This aspect is evidenced in logarithmic scales as shown in figure 6. Indeed, for each
component the behaviors corresponding to the different tessellations id are very similar for all
tessellations up to an offset in logarithmic scales, which shows that a tessellation amplification
factor can be introduced in the usual scales in order to reduce data dispersion.

Figure 6: Raw data of the dimensionless mobility tensor Γmeso and vector Λmeso as a function of µ̃1 computed from
µmeso in logarithmic scales. Colors correspond to the tessellation index id (1 ≤ id ≤ Ntess).

7.2. Interpolation in logarithmic scales and amplification factor
The raw data in logarithmic scales are almost linear as a function of log µ̃1, as shown in

figure 6. More precisely, it is convenient to interpolate these data with two linear functions that
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smoothly merge at log (̃µ1) = xcut where xcut = −0.82. Thus, sigmoid functions are considered
for the interpolation to carry out the smooth connection between the two linear functions. Thus
the interpolation function in logarithmic scales, for each tessellation id, and each component
reads:

F(id)
(.) : x 7→

A(id)
(.) x + B(id)

(.)

1 + exp (a (x − xcut))
+

C(id)
(.) x + D(id)

(.)

1 + exp (−a (x − xcut))
(52)

where the symbol (.) stands for the index of the component (i.e., 11,22, etc. for Γmeso and 1,2,3
for Λmeso), and a is a parameter that determines the behavior of the connection between the two
linear functions x 7→ A(id)

(.) x+B(id)
(.) and x 7→ C(id)

(.) x+D(id)
(.) . This parameters has been set to a = 10.

Coefficients A(id)
(.) , B

(id)
(.) ,C

(id)
(.) ,D

(id)
(.) are not independent as the linear functions should connect in

x = xcut. Thus the following condition holds:

D(id)
(.) =

(
A(id)

(.) −C(id)
(.)

)
xcut + B(id)

(.) (53)

Thus, coefficients A(id)
(.) , B

(id)
(.) ,C

(id)
(.) should be determined by minimizing a distance between the

data and the predictions of the interpolation functions F(id)
(.) defined in (52). The least-squares

method is used to carry out the minimization, thus:(
A(id)

(.) , B
(id)
(.) ,C

(id)
(.)

)
= argmin

(A∗, B∗,C∗) ∈ R4

∑
k∈K(id)

[
log

(
Γ

(k)
(.)

)
− F(id)

(.)

(
log

(̃
µ(k)

1

))]2
(54)

where Γ(k)
(.) is the component (.) of Γmeso for the k-th OT in the database, and where K(id) is

the set of OTs sharing the tessellation id. Thus, card [K(id)] = Nori, where Nori is the number
of crystallographic orientation fields for each tessellation id. Of course the same minimization
problem holds for the components of Λmeso. The minimization problem (54) is linear and the
solution reads: 

A(id)
(.)

B(id)
(.)

C(id)
(.)

 =
(
XT · X

)−1
· XT · Γ(id)

(.) (55)

where Γ(id)
(.) =

(
Γ

(k)
(.)

)
k∈K(id)

. The vector Γ(id)
(.) is of size Nori, and X is a second order tensor of size

Nori × 3 defined by:

∀k ∈ K(id),



Xk,1 =
log

(̃
µ(k)

1

)(
1 + exp

(
a

(
log

(̃
µ(k)

1

)
− xcut

))) + xcut(
1 + exp

(
−a

(
log

(̃
µ(k)

1

)
− xcut

)))
Xk,2 =

1(
1 + exp

(
a

(
log

(̃
µ(k)

1

)
− xcut

))) + 1(
1 + exp

(
−a

(
log

(̃
µ(k)

1

)
− xcut

)))
Xk,3 =

(
log

(̃
µ(k)

1

)
− xcut

)(
1 + exp

(
−a

(
log

(̃
µ(k)

1

)
− xcut

)))
(56)

Of course the same minimization procedure holds for the components of Λmeso. For instance, in
figure 7a the interpolation is demonstrated for some tessellations for the 11 component of Γmeso.
It is clear that all tessellations have similar interpolation up to an offset. Thus in classic scales
there is a tessellation amplification factor denoted by ζ(.), which leads in logarithmic scales to
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an additive offset log
(
ζ(.)

)
. This quantity is specific to each tessellation and does not depend on

the crystal orientation distribution in the RVE. Thus, in the following the notation ζ(id)
(.) refers

to the specific value of ζ(.) for the tessellation id where 1 ≤ id ≤ Ntess. For the first tessellation
(i.e., id = 1) the offset is arbitrarily set to:

log
(
ζ(1)

(.)

)
= F(1)

(.) (xcut) (57)

For the other tessellations (i.e., id ≥ 2), the offset log
(
ζ(id)

(.)

)
is determined by solving the follow-

ing least-squares minimization problem:

log
(
ζ(id)

(.)

)
= argmin

log (ζ∗) ∈ R

∑
k∈K(id)

[
F(id)

(.)

(
log

(̃
µ(k)

1

))
− log (ζ∗) −

(
F(1)

(.)

(
log

(̃
µ(k)

1

))
− log

(
ζ(1)

(.)

))]2

(58)
The minimization problem (58) is linear, and the solution reads for id ≥ 2:

log
(
ζ(id)

(.)

)
=

1
Nori

∑
k∈K(id)

F(id)
(.)

(
log

(̃
µ(k)

1

))
−

(
F(1)

(.)

(
log

(̃
µ(k)

1

))
− log

(
ζ(1)

(.)

))
(59)

Of course (59) also holds for the components of Λmeso. For instance, in figure 7b the interpola-
tion corrected with the tessellation amplification factor is demonstrated for the 11 component
of Γmeso.
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Figure 7: Comparison between data and interpolation for some tessellations.

7.3. Interpolation of rescaled data
The rescaled data are by definition:

S =

Γ(k)

11

ζ(id)
11

,
Γ

(k)
22

ζ(id)
22

,
Γ

(k)
33

ζ(id)
33

,
Γ

(k)
12

ζ(id)
12

,
Γ

(k)
13

ζ(id)
13

,
Γ

(k)
23

ζ(id)
23

,
Λ

(k)
1

ζ(id)
1

,
Λ

(k)
2

ζ(id)
2

,
Λ

(k)
3

ζ(id)
3

 ,∀k ∈ K(id), ∀id ∈ {1, · · · ,Ntess}

(60)
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Since the rescaled data coincide on a common trend (see. figure 7b), it is possible to propose a
single interpolation function in logarithmic scales for all the tessellations:

Fsc
(.) : x 7→

A(.)x + B(.)

1 + exp (a (x − xcut))
+

C(.)x + D(.)

1 + exp (−a (x − xcut))
(61)

where the exponent sc stands for re-scaled, and the symbol (.) stands for 11, 22, etc. for the
components of Γmeso and for 1,2,3 for the components of Λmeso and where:

D(.) =
(
A(.) −C(.)

)
xcut + B(.) (62)

Coefficients A(.), B(.),C(.) are determined in a very similar way as in section 7.2. The first differ-
ence is that the rescaled data (60) are considered instead of the raw data. The second difference
is that for each component of Γmeso and Λmeso instead of identifying an interpolation for each
tessellation, a single interpolation is identified for all the tessellations considered as a whole.
The rescaled data (60) are presented along with the interpolation (61) in logarithmic scales in
figure 8 and in classic scales in figure 9. The identified coefficients are listed in table 3.

Table 3: Coefficients for the interpolation of rescaled data.

Component A(.) B(.) C(.)

11 1.238 1.031 -0.926
22 2.585 2.245 1.129
33 3.991 3.534 3.459
12 1.925 1.609 -0.402
13 2.506 2.086 0.238
23 3.296 2.898 2.332
1 1.244 1.043 -0.986
2 1.944 1.643 -0.58
3 2.554 2.174 -0.239

Moreover, it should be noted that the different components of ζ(.) are strongly correlated. In
figure 10 linear relationships are exhibited. Thus, in order to simplify the subsequent analysis,
only ζ33 is analyzed in the following, as the other components can be inferred with reasonable
accuracy from ζ33. Proportionality coefficients are listed in table 4. Of course, this analysis is
simplified and a multivariate model with a covariance could have been used instead, neverthe-
less the correlation between the different components of the tessellation amplification factor ζ(.)
is sufficient to enable such an assumption.

7.4. Macroscopic amplification factor
At this stage, the interpolation (61) can be used at the macroscopic scale. However, the

tessellation amplification factor ζ(.) obtained in (59) highly depends on the detailed arrangement
of the tessellation. An interpolation function that can be used at the macroscopic scale is derived
in this section. This interpolation relies on the variable ηmeso introduced in (12). In figure 11
the values of ζ33 obtained for all tessellations in (59) are presented as a function of ηmeso. A
correlation can be observed and a linear interpolation function is proposed:

G : x 7→ Â x + B̂ (63)
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Figure 8: Rescaled data corresponding to Γmeso and Λmeso as a function of µ̃1 computed from µmeso in logarithmic
scales. Colors correspond to the tessellation index id (1 ≤ id ≤ Ntess).

Table 4: Proportionality coefficients for ζ(.).

Component Coefficient
11 2.189
22 1.431
33 1.000
12 1.019
13 0.543
23 1.137
1 61.980
2 28.428
3 14.450
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Figure 9: Raw data corresponding to Γmeso and Λmeso as a function of µ̃1 computed from µmeso. Colors correspond
to the tessellation index id (1 ≤ id ≤ Ntess).

It should be mentioned that the proposed linear model explains a large part of the variance
observed in the data (i.e., r2 = 0.79), however the linear relationship between the different
components of ζ(.) is imperfect (see. figure 10). Therefore, further work should focus on
improving this particular aspect of the model.

A simple linear regression can be performed by minimizing with the least-squares method.
However since the are a limited amount of data with non negligible statistical dispersion, it is
preferable to identify the linear model within the framework of Bayesian inference as detailed
in section 8.

In addition, since ηmeso has a macroscopic counterpart ηmacro defined in section 3.2, whose
evolution has been obtained in (35), a macroscopic amplification factor can be defined on the
basis of the interpolation function G(.) (ηmacro).
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Figure 11: Amplification factor ζ33 as a function of ηmeso

8. Epistemic uncertainty and Bayesian identification

8.1. Model for the tessellation amplification factor
In figures 9 and 11, it is clear that data are affected by a non negligible statistical dispersion

around the interpolation models (61) and (63) respectively. Since the mesoscopic model in-
troduced in [2] is fully deterministic, this statistical dispersion arises from the reduction of the
amount of data introduced in section 3. Indeed, to a single overall state µmeso, ηmeso correspond
several different detailed mesoscopic states α = (x, y,w). The statistical dispersion evidenced
in figures 9 and 11 shows that these different detailed mesoscopic states are not equivalent
with respect to the mobility tensor Γmeso, the vector Λmeso and the amplification factor ζ(.). In
other words, different RVEs sharing the same initial overall state µmeso, ηmeso do not have the
same evolution paths. Thus, the dispersion around the interpolation models (61) and (63) can
be understood as the evidence of an epistemic uncertainty due to the loss of information in

25



the process of reducing the amount of data by introducing the overall state µmeso, ηmeso. This
epistemic uncertainty is not due to the rescaling process detailed in section 7.2. Indeed, the
statistical dispersion can be observed for each tessellation individually as shown in figure 7.
Thus, even for the same tessellation, the detailed arrangement of crystal orientations is lost in
the overall state2, and the epistemic uncertainty arises.

As mentioned in section 7.4, parameters Â, B̂ involved in the interpolation model (63) are
identified by using Bayesian techniques. It consists in considering a prior probability density
for the model parameters Â, B̂, and the likelihood, which is the conditional probability density
of the data ζ33 with respect to the model parameters Â, B̂. Then, by using the Bayes theorem, the
posterior probability density is obtained as the conditional probability of the model parameters
with respect to the observed data. A normal model is considered, and the likelihood reads:

ζ(id)
33 |Â, B̂, σ̂ ∼ N

(
Â ηmacro + B̂, σ̂2

)
(64)

where N
(
Â ηmacro + B̂, σ̂2

)
is the normal distribution of mean Â ηmacro + B̂, and σ̂ is the stan-

dard deviation, which characterizes the dispersion around the mean. In addition, Bayesian
techniques rely on prior distributions for the unknown parameters. An informative normal dis-
tribution is chosen for Â as the slope can be clearly identified in figure 11, and a non-informative
uniform distribution is chosen for B̂. Classically conjugate standard deviation prior follows an
inverted chi-squared probability density. Hence:

Â ∼ N
(
µÂ, sÂ

)
B̂ ∼ U

(
B̂min, B̂max

)
σ̂ ∼ Inv−χ2

(̂
s2, ν̂

) (65)

where parameters µÂ, sÂ, B̂min, B̂max, ŝ, ν̂ are chosen so that the priors are consistent with fig-
ure 11: 

µÂ = 1.5
sÂ = 0.3
B̂min = −1300
B̂max = 300
ŝ = 400
ν̂ = 20

(66)

Bayesian inference consists in computing the posterior probability density by using the Bayes
theorem, hence:

p(Â, B̂, σ̂|ζ33) ∝ p(ζ33|Â, B̂, σ)p(Â)p(B̂)p(σ) (67)

Statistics of posterior probability density function (67) are explored by Markov-Chain Monte
Carlo (MCMC) sampling techniques. In practice, a No U-Turn Sampler (NUTS) developed
by [49] is used within the framework of the PYMC3 package developed by [50] in PYTHON
([51]). The posterior densities are presented in figure 12 as well as a scatter-plot of pairwise
joint densities showing a correlation between Â and B̂. In addition, maximum a posteriori
estimates are computed and listed in table 5, and have been used in figure 11.

2even though a part of the information is not lost as mean and standard deviation of the BMD are managed at
the macroscopic scale
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Figure 12: Posterior densities and pairplot

Table 5: Maximum a posteriori estimates.

Component Â B̂ σ̂

33 1.451 -802 512

Thus, one can define a macroscopic deviation with respect to the interpolation model (63)
denoted by ϵ̂macro, whose probability density function reads:

ϵ̂macro ∼ N
(
0, σ̂2

)
(68)

8.2. Uncertainty associated to the macroscopic mobility
For each entry k in the rescaled database (60), the deviation with respect to the interpolation

model (61) is denoted by ϵ(k)
(.) and reads:

∀id ∈ {1, · · · ,Ntess} , ∀k ∈ K(id), ϵ(k)
(.) =

Γ
(k)
(.)

ζ(id)
(.)

− exp
[
Fsc

(.)

(
log

(̃
µ(k)

1

))]
(69)

Of course, replacing Γ(k)
(.) by Λ(k)

(.) in (69), the same definition applies for the deviation with
respect to the interpolation model of Λmeso. For instance ϵ(k)

33 is presented as a function of µ̃(k)
1

for 1 ≤ k ≤ Ndata in figure 13a. It is clear that the deviation depends on µ̃1, and ϵ(k)
33 /

(̃
µ(k)

1

)2
is

presented in figure 13b. The corresponding histogram is presented in figure 15 showing that a
Gaussian model is acceptable.

Since the different components of the deviation (69) are correlated, a multivariate Gaussian
distribution is chosen. Thus, one can define the macroscopic deviation as a random variable
vector denoted by ϵmacro/µ̃

2
1 whose probability density function is a multivariate Gaussian dis-

tribution of zero mean and covariance matrix C of size 9 × 9. One can estimate the probability
density function of C within the framework of Bayesian inference. Since a Gaussian model has
been chosen, the likelihood is the following conditional probability density function:

ϵmacro

µ̃2
1

|C ∼ N9

(
0,C

)
(70)
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(a) ϵ33 vs µ̃1. (b) ϵ33/µ̃
2
1 vs µ̃1.

Figure 13: Statistical dispersion around the interpolation function.
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Figure 14: Histogram of statistical dispersion around the interpolation function for the 33 component of Γmeso.

Figure 15: Statistical dispersion around the interpolation function.

The inverse-Wishart distribution is the conjugate prior distribution for the covariance matrix of
a multivariate normal distribution. However, such a distribution is not implemented in usual
Bayesian computational packages. Thus, the LKJ-Cholesky covariance prior is used, which is
well-suited to computational Bayesian methods:

L ∼ LKJ-C (9, ν, σ) (71)

where L is a lower triangular matrix arising in the Cholesky decomposition of C, namely:

C = L · LT (72)

and where LKJ-C (9, ν, σ) the the LKJ-Cholesky distribution of size 9 × 9, ν is a parameter,
which controls the amount of correlation between components of ϵmacro/µ

2
1, and σ controls the
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distribution of standard deviation. Teh following parameters are chosen for the prior distribu-
tion: 

σ ∼ E (λ)
λ = 1
ν = 2

(73)

where E (λ) is the exponential density function of parameter λ. The posterior density function
reads:

p
(
L|ϵmacro

µ̃2
1

)
∝ p

(
ϵmacro

µ̃2
1

|C
)

p(L) (74)

Statistics of posterior probability density function (74) are explored by Markov-Chain Monte
Carlo (MCMC) sampling techniques. In practice, a No U-Turn Sampler (NUTS) developed by
[49] is used within the framework of the PYMC3 package developed by [50] in Python ([51]).

8.3. Time dependance and numerical implementation
The fundamental nature of the epistemic uncertainty can be understood as follows. Con-

sider random variables denoted by Ω(.), each of which corresponds to a component (.) of Γmeso
and Λmeso. The random variable vector Ω = (Ω11, . . . ,Ω23,Ω1 · · · ,Ω3) of size 9 captures the
uncertainty due to the random “selection” of a virtual mesoscopic state given a macroscopic
state. Ideally, a single scalar random variable Ω∗ could account for this random “selection”.
However, the link between the different components of Γmeso and Λmeso, which would enable
from a single draw of Ω∗ to compute the deviations associated to the different components, is
unknown at the macroscopic scale and fully depends on the mesoscopic scale. That is why
at the macroscopic scale the uncertainty is modeled by a random variable vector Ω. It should
be noted that the covariance matrix C represents the macroscopic link between the different
components. The deviation with respect to the interpolation model reads:{

ϵmacro = µ̃
2
1 L ·Ω

ϵ̂macro = σ̂ Ω̂
(75)

where L is defined in (72). In addition, Ω(.) are independent and identically distributed standard
normal distributions as well as Ω̂: {

Ω(.) ∼ N (0, 1)
Ω̂ ∼ N (0, 1)

(76)

The macroscopic model is therefore probabilistic. However, since the mesoscopic model is
fully deterministic, there is no fundamental indeterminacy, only an epistemic uncertainty within
the upscaling process due to the loss of information.

At this stage the macroscopic counterparts Γmacro andΛmacro of Γmeso andΛmeso can be stated:
Γmacro =

(
G (ηmacro) + υ̂macro

) (
exp

[
Fsc (µmacro

)]
+ υmacro

)
Λmacro =

(
G (ηmacro) + υ̂macro

) (
exp

[
Fsc (µmacro

)]
+ υmacro

) (77)

where Fsc and Fsc are the tensor and vector interpolation functions defined from (61), G and
G are the tensor and vector interpolation functions defined from (63). In addition υmacro and
υmacro are the tensors and vectors derived from ϵmacro defined in (75). Second order tensors are
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symmetric of size 3× 3 composed of the 11, 22, 33, 12, 13 and 23 components, and vectors are
composed of the 1, 2, 3 components. Similarly υ̂macro and υ̂macro are obtained from ϵ̂macro defined
in (68) and the proportionality coefficients listed in table 4.

With the macroscopic definition (77), the evolution law (28) for µmacro and the evolution
law (35) for ηmacro can be computed numerically. The main difficulty lies in the fact that the
random vectorΩ correspond to the random “selection” of a virtual mesoscopic state for given a
known macroscopic state. However, the mesoscopic state slowly evolves during grain growth.
Thus, this “selection” of a virtual mesoscopic state should be updated at each time step. If
new draws of the random vector Ω were computed at each time step, a completely new virtual
mesoscopic state would be “selected” leading to Brownian motion. Of course, this does not
correspond to the epistemic uncertainty that has been introduced. Ideally, at each time step new
draws ofΩ, which strongly depend on the draws at the previous time step, would be computed.
However, this would need to identify an autocovariance matrix, which is the function of the
covariance with respect to pairs of different time steps. In this work, the identification of the
macroscopic model has been done according to a static approach, as mentioned in section 5.
Thus, the identification of such an autocovariance matrix is not possible. To overcome this
difficulty, we assume that the virtual mesoscopic state, which has been “selected” by the initial
draw of the random vector Ω, evolves sufficiently slowly so that there is no need to “re-select”
a new virtual mesoscopic state for further time steps. That is to say that Ω does not depend
on time, and draws of Ω are computed only at t = 0 and remain constant during the evolution.
However, since ϵmacro in (75) explicitly depends on µ̃1(t) (computed from µmacro), the overall
epistemic uncertainty is nevertheless adjusted during the evolution, but in a simplified way.

This leads to consider the evolution laws (28) and (35) as simple stochastic processes. The
evolutions of means

⟨
µmacro

⟩
(t), ⟨ηmacro⟩ (t) and point-wise standard deviationsσµmacro

(t), σηmacro(t)
can be computed easily by simulating a large number of evolutions with various draws of
Ω, ϵ̂macro. One could significantly reduce the number of evolutions to accurately estimate⟨
µmacro

⟩
(t), ⟨ηmacro⟩ (t) and σµmacro

(t), σηmacro(t) by using spectral approaches [52], but this has
not been done in this study as computation time is fairly reduced.

9. Results

In this section, the macroscopic model is implemented numerically and applied to various
conditions. More precisely the evolution laws (28) and (35) are discretized with a simple
explicit scheme. It should be mentioned that the temperature T in (28) and (35) is an external
quantity, which of course can depend on time if temperature cycles are considered for instance.
To take into account time dependent temperature it is sufficient to update the temperature at each
time step in the explicit scheme. However, in the following constant temperature is considered.

Comparisons with the evolution of the overall mesoscopic state are provided to evaluate the
model quality. Several tessellations included in the data base id ∈ I where I = {1, 80, 100}
have been considered as initial states for mesoscopic evolutions with crystal orientations as-
signed with a beta probability density B(α, β) where (α, β) = (1, 1) and (α, β) = (5, 9). These
tessellations have been selected so that very different morphological textures can be tested. In
addition, four tessellations that do not belong to the database have also been considered with
very similar initial overall mesoscopic state (these four tessellations are referred in the follow-
ing as id = 0). All mesoscopic evolutions have been computed according to the mesoscopic
model detailed in [2], and parameters are listed in table 6. Some examples of OTs at different
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times during grain growth are presented in figures 16, 17 and 18.

Table 6: Simulation parameters used for the mesoscopic evolutions.

Temperature (˚C) T 800
Mobility (m4.J−1.s−1) m(T ) 0.146×10−13

Physical size (mm) L0 1
Duration (hours) d 10

Figure 16: OTs at different times for two different BMDs obtained with a beta density B (α, β) for (α, β) = (1, 1)
and (α, β) = (5, 9), id = 1.

9.1. First validation and numerical implementation
Since the macroscopic model is probabilistic, typical results are the means

⟨
µmacro

⟩
(t), ⟨ηmacro⟩ (t)

and point-wise standard deviations σµmacro
(t), σηmacro(t). However, a simplified condition is con-

sidered in this section, and consists in neglecting the epistemic uncertainty, that is to say ne-
glecting υmacro, υ̂macro, υmacro, and υ̂macro in (77). Thus, a single particular macroscopic evolution
is compared to the evolution of the overall mesoscopic state µmeso, ηmeso in order to determine
how both models behave with respect to smoothness.

Comparisons for id = 1 are presented in figure 19. These results show that the general
behavior of the macroscopic model is satisfying, but as expected it is smoother than the over-
all mesoscopic evolution. At the beginning of the evolution the macroscopic model is rather
accurate even though it may significantly diverge from the overall mesoscopic behavior after
the first few hours. A perfect match is of course not expected as the macroscopic evolution is a
particular draw of a stochastic process. Nevertheless, the proposed comparisons show that the
macroscopic model is unable to capture sudden slope changes for long duration simulations.
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Figure 17: OTs at different times for two different BMDs obtained with a beta density B (α, β) for (α, β) = (1, 1)
and (α, β) = (5, 9), id = 80.

Figure 18: OTs at different times for two different BMDs obtained with a beta density B (α, β) for (α, β) = (1, 1)
and (α, β) = (5, 9), id = 100.

These slope changes correspond to local events that have significant overall effect. However,
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Γmacro depends on µmacro, ηmacro in a smooth manner, which explains the regularity of the macro-
scopic evolutions. This observation shows that the proposed static approach, which leads to set
the epistemic uncertainty at a constant value during the evolution, contributes to the smooth-
ness of the obtained solution. To take into account sudden slope changes at the macroscopic
scale one could propose a dynamic approach with a probability of local “events” increasing
with time, and leading to sudden changes of Γmacro. However, such an approach seems difficult
to develop as the identification of the probability density of local “events” would necessitate to
analyze in details a large number of mesoscopic evolutions, although the database used in this
study is only composed of various and disconnected mesoscopic states.

9.2. Probabilistic results
In this section, the epistemic uncertainty is not neglected in (77), thus the probabilistic

nature of the macroscopic model is evidenced. Draws of the various model parameters involved
in the Bayesian identification are obtained as detailed in section 8 and used to generate Nstat =

500 macroscopic evolutions whose means, medians and point-wise standard deviations are
computed. The comparisons between the overall mesoscopic state µmeso, ηmeso and the mean
macroscopic state

⟨
µmacro

⟩
(t), ⟨ηmacro⟩ (t) with point-wise standard deviations σµmacro

(t), σηmacro(t)
are presented for the different tested conditions in figures 20, 21 and 22 for id ∈ {1, 80, 100} and
in figure 23 for the 4 tessellations, which do not belong to the database (i.e., id = 0). The zone
defined by more or less one standard deviation is centered on the median and not the mean in
case the distribution is not symmetrical (e.g., µ̃2). Results show that the macroscopic model is
satisfying, as mesoscopic evolutions lie for the most part in the zone defined by more or less
one standard deviation around the median.

It should be noted that the mesoscopic “events”, which are not easily captured by the
macroscopic model are more likely for tessellations whose morphological textures are very
pronounced (i.e., id = 80 or id = 100). This is a general trend that has been checked for
many other tessellations. Nevertheless, the macroscopic model proposed in this study seems
sufficiently accurate to carry out macroscopic simulations of annealing processes or large fab-
rication or forming processes with heterogeneous and unsteady temperature.

In figure 23 all the four mesoscopic evolutions are stacked in one half of the zone defined by
the point-wise standard deviation for µ1, µ2. This observation could raise the idea that there is a
bias, that is to say a systematic error in the estimation of the mean evolution. However, this is
likely due to the fact that all the four evolutions have been obtained from similar tessellations to
facilitate the search of almost identical initial overall mesoscopic states µmeso(t = 0), ηmeso(t =
0). Since the macroscopic model has been identified by using very different tessellations, the
epistemic uncertainty reflects this diversity, and the macroscopic results spread on a larger
zone than if similar tessellations were used for the identification. Thus, for some applications,
if equiaxed grains are the most likely mesoscopic structure, the macroscopic model could be
identified with a specific database, which only involves such tessellations, and therefore the
epistemic uncertainty could be reduced.

9.3. Average grain size
Results obtained in section 9.2 provide interesting information such as the GB length den-

sity per unit area µ0/L0 (m−1), the average misorientation µ̃1 (rad), the square of the relative
standard deviation µ̃2, and the standard deviation that can be obtained from µ̃1, µ̃2. In addition
to these statistical descriptors of the polycrystalline structure, a morphological quantity is also
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Figure 19: Comparison between the overall mesoscopic state and one particular macroscopic state obtained by
neglecting the epistemic uncertainty, id = 1.
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Figure 20: Comparison between overall mesoscopic state and macroscopic state with point-wise standard devia-
tion ±σ, id = 1.
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Figure 21: Comparison between overall mesoscopic state and macroscopic state with point-wise standard devia-
tion ±σ, id = 80.
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Figure 22: Comparison between overall mesoscopic state and macroscopic state with point-wise standard devia-
tion ±σ, id = 100.
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deviation ±σ, id = 0.

38



known ηmacro. Furthermore, the following analysis enables to identify the average grain size
evolution. The dimensionless average grain size reads:

S meso =
1
n

n∑
k=1

S k (78)

where n is the number of grains in the RVE and S k are the dimensionless grain surfaces. A
macroscopic estimation of the number of grains nmacro is obtained from ηmacro. Indeed, since for
each grain that disappears 0.5 η̇macro ≈ ṅGB, and since each grain that disappears is likely to be
triangular:

ṅmacro ≈
ṅGB

3
≈ η̇macro

6
(79)

In addition, the surface of the RVE denoted by S =
∑n

k=1 S k is constant as detailed in [2] due to
mass conservation, that is to say Ṡ = 0, thus:

Ṡ meso = −
ṅ
n2 S (80)

Hence the evolution law of the macroscopic average grain size S macro is obtained by replacing
in (80) the constant surface of the RVE S by S macro(t = 0)nmacro(t = 0):

Ṡ macro = −
ṅmacro

n2
macro

(S macro(t = 0)nmacro(t = 0)) (81)

where nmacro is computed from (79). In figure 24 we present the comparison between dimen-
sionless mesoscopic and macroscopic average grain sizes obtained from (78) and (81) respec-
tively. As for the other statistical estimators of the polycrystalline structure, the average size is
satisfying as it lies for the most part in the zone defined by more or less one standard deviation.

10. Conclusion

In this paper, a macroscopic model of grain growth has been derived as the final step of a
general upscaling strategy, which enables to consider directly at the macroscopic scale statistial
information of the grain structure, such as grain boundary length, mean and standard deviation
of the boundary misorientation distribution etc. The chosen macroscopic variables fully ac-
count for the total energy in a deterministic way, which is essential to compute the macroscopic
driving force. In addition, the evolution laws of these macroscopic variables have been estab-
lished in a rigorous way from the mesoscopic evolution law derived in a previous contribution
[2]. In the macroscopic evolution laws, a mobility tensor and a vector arise, and have been iden-
tified in a static approach by using a large database of different and unrelated mesoscopic states
in opposition to a dynamic approach that would have included mesoscopic evolutions (i.e.,
successive mesoscopic states). The analysis has shown that an epistemic uncertainty arises
from the loss of information due to the reduction of the amount of data encapsulated in the
macroscopic state variables in comparison to the mesoscopic state variables. This epistemic
uncertainty has been modeled by random variables, whose probability density functions have
been estimated by standard Bayesian inference. The macroscopic model is therefore proba-
bilistic and the main result is the mean evolution of the state variables along with point-wise
standard deviation.
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Figure 24: Comparison between dimensionless mesoscopic and macroscopic average grain size with point-wise
standard deviation ±σ.

Results show that the macroscopic model is satisfying especially for the first few hours
as good agreement is observed in the comparisons with particular overall states arising from
mesoscopic evolutions. Indeed, the mesoscopic evolutions lie for the most part in the zone
defined between more or less one standard deviation. In addition, the computation time is
fairly reduced as a few seconds are necessary to compute the entire probabilistic macroscopic
evolution, which involves the computation of Nstat = 500 particular evolutions. Thus, the
proposed approach can be used to carry out simulations of large processes with heterogeneous
temperature fields.

The macroscopic model enables to quantify the grain boundary length per unit area µ0/L0

and other statistical descriptors of the polycrystalline structure such as the mean misorientation,
its standard deviation or the average grain size. Additional morphological descriptors such as
grain circularity have not been included in this study, but there is no fundamental difficulties to
adapt the proposed work and include such details.
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