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Abstract A methodology is presented to quantify uncertainties resulting from the analysis of dynamic
tests performed on classic split Hopkinson pressure bar system in order to improve material parameter
estimation within the framework of Bayesian inference. Since the experimental setup is imperfectly
known, the proposed methodology consists in modeling experimental parameters as random variables.
Then, cumulative effects of all experimental uncertainties are estimated by a statistical analysis based
on one-dimensional wave interpretation. For each test, results consist in stress and strain-rate given as
normal random variables. In addition, an experimental campaign is performed on the aluminum alloy
AA7075-O, in order to identify material variability and repeatability of tests. Additional tests in the
quasi-static regime are performed at two different temperatures to characterize temperature dependence
of behavior. Material parameters of a simple Steinberg-Cochran-Guinan model are then estimated by
(i) standard Bayesian inference exploiting data in the quasi-static regime, and (ii) a hierarchical Bayesian
model exploiting data in the dynamic regime. The fitted model agrees well with the measurements and
model uncertainties are easily quantified. Results are presented in the form of posterior probability density
functions. The systematic quantification of uncertainties in dynamic tests opens interesting perspectives
to analyze the response of structures and materials to impact.

Keywords Split Hopkinson pressure bar · Bayesian inference · Hierarchical model · Uncertainties

1 Introduction

Many industrial sectors (e.g., nuclear engineering, automotive, aeronautic, rail etc...) require experimen-
tal characterization of a large variety of materials under dynamic conditions. Material parameters that
characterize the behavior are identified under relatively simple and well controlled experimental con-
ditions and then are imported in complex computations related to engineering applications for design
and certification purposes. However, material parameters are imperfectly known because of measurement
uncertainties. In addition, validation and quality assessment of complex simulations usually consist in
comparing measurements performed on the real system of interest and the computations performed on
the basis of the identified material parameters. If significant discrepancies are observed, several ques-
tions arise in the design process. Are simulation choices and assumptions well verified for the complex
system of interest ? Is the material behavior model extrapolated too far from loading conditions (tem-
perature, strain and strain rate levels) actually tested on specimens in the laboratory ? Is the magnitude
of discrepancies compatible with uncertainties on the identified material parameters ? Thus, for en-
gineering applications and probabilistic risk analysis, it is fundamental not only to identify material
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parameters with good quality experiments but also to estimate the overall uncertainty on the identified
material parameters. Following this assertion, the present paper focuses on probabilistic interpretation
of measurements provided by split Hopkinson pressure bar system (SHPB). Thus, this work deals with
uncertainties brought from the experimental setup and diagnostics rather than test design procedure
(interfacial friction, dispersion, etc).

The SHPB system is a well known and very common experimental apparatus for dynamic testing.
Since the early work of [22] a considerable amount of work has been produced to improve measurement
quality and wave analysis [23, 43, 44, 11, 19, 31, 6, 18, 12]. In particular, several corrections have been
proposed, namely: friction at the specimen/bar interfaces [23, 18], punching of the specimen into the bars
[31], wave scattering due to three-dimensional effects [43], deconvolution techniques for long tests or visco-
elastic bars [44]. Despite this considerable effort to improve wave analysis, significant and undetected
errors are sometimes made during material characterization campaigns, which can be critical for the
aimed applications. Indeed, the SHPB system enables to analyze strain gauges measurements on each
bar as inputs and provides displacements and forces at both ends of the specimen as outputs. However,
stress and strain-rate as a function of strain are needed to identify material behavior. Some assumptions
are therefore necessary among which the most significant is that equilibrium is rapidly reached in the
cylindrical specimen (i.e., the compression wave is almost instantaneously propagated from one end of
the specimen to the other end). Thus, discrepancies between the real material behavior and the obtained
stress-strain curve are expected because of these simplifying assumptions and to a lesser extent the
one-dimensional wave propagation model. The equilibrium assumption is sometimes very badly verified
leading to significant and undetected errors. In that case (or when the specimen is not cylindrical),
material parameters should be identified by using inverse methods relying on dynamic Finite Element
modeling of the bar/specimen system (in order to release the equilibrium assumption). Several modeling
strategies have been proposed [8, 40, 4, 30, 20, 17]. However, the computational cost of such approaches
being very significant, most experimental campaigns rely on the classic assumptions in order to directly
determine stress and strain-rate as a function of strain from displacements and forces at both ends of
the specimen. Thus, the quality of the equilibrium assumption should be verified for each test with an
acceptation-rejection criterion.

In addition, uncertainties and tests variability also affect measurements and material parameters
identification. Within this framework, three issues are responsible for the overall uncertainty on the
identified material parameters, namely:

(i) Imperfect knowledge of the experimental setup. The analysis enabling to transform strain gauges
measurements into stress and strain-rate signals involves several experimental parameters (specimen
size, material parameters of bars, strain gauge factors, wave propagating velocity etc.) that are
imperfectly known, which in turn leads to uncertainties on the measured displacements and forces.

(ii) Measurement noise. Even though measurement noise may have deterministic causes, at the scale of
the experimental setup it consists in a purely random signal affecting strain gauge measurements.

(iii) Material variability and repeatability of tests. Fabrication and forming processes have a great in-
fluence on material properties, and are more or less inhomogeneous along pieces whose specimens
are extracted from. In addition, experimental conditions are not perfectly controlled. Two tests are
never identical (e.g., striker speed, lubrication conditions at the specimen/bar interfaces etc...).

Moreover, the behavior model accounts only in a simplified way for real mechanisms responsible for
the overall material behavior. Even, some behavior models are only phenomenological laws with limited
validity. Thus, there are residual discrepancies between the real behavior and the behavior model. This
uncertainty has not been taken into account in this contribution.

Usually material parameters identification is based on deterministic inverse methods. A significant
effort has been done to adapt such methods to SHPB dynamic tests (e.g., among many others [20, 17]). A
review has been recently published by [24]. Such methods are usually based on least-square minimization
between Finite Element computations and measurements. Thus, it is possible to deal with complicated
specimen design with inhomogeneous mechanical state. However, the overall uncertainty on the identified
material parameters cannot be estimated conveniently.

On the contrary, within a probabilistic framework, Bayesian inference can be used to estimate material
parameters involved in a specific behavior model and quantify related uncertainties. This approach is
similar to computer model calibration problems [21]. General descriptions of Bayesian statistics are
presented for instance by [13] and [3]. Identification methods within the context of probabilist framework
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have also been presented by [38]. For instance, [14, 42] identified elastic parameters with a Bayesian
approach. In addition, [26, 27] proposed a methodology to identify elastic-plastic material parameters
accounting for model uncertainties. Bayesian inference has also been used in [2] within the context
of characterization of visco-plastic models by considering that some material parameters depend on
experimental conditions (e.g., temperature) and non-parametric Gaussian Process has been used to
account for this variability. Within the framework of acoustics, a material characterization based on
Bayesian analysis has been proposed in [5]. The well known Preston-Tonks-Wallas (PTW) model [25]
has been characterized in [41] on the basis of Bayesian estimation by analyzing shock waves produced
by flyer plate experiments.

Within the context of mechanical dynamic testing using SHPB system very few attempts to use
Bayesian analysis have been published. A simple Bayesian approach has been developed in [34] to obtain
a single PTW set of parameters bridging compression tests and Rayleigh-Taylor instability, which was
unachievable for beryllium S200F. In addition, a hierarchical Bayesian analysis has been proposed in
[10] to estimate material parameters of a PTW model for various materials. However, these works only
considered measurement noise (centered normal random variable of unknown diagonal covariance matrix).
On the contrary, this paper is an attempt to introduce prior uncertainties due to imperfect knowledge of
the experimental setup. To do so, the experimental settings (e.g., bar stiffness, position of strain gauges,
density etc.) are treated as unknown control inputs to the model enabling to interpret measured signals.
There is an uncertainty associated with determining the value of each of those experimental parameters.
In other contexts, similar calibration problems have been proposed [1], in which the control inputs were
not exactly known, but randomly perturbed from the nominal input. In the present contribution, a
simple methodology is proposed for estimating the additional uncertainty brought by the imperfectly
known experimental settings. Experimental parameters needed to interpret strain gauges measurements
are assumed to be random variables. Normal or rectangular distributions of known mean and variance
are considered depending on measurement techniques. If necessary, a series of measurements is performed
to obtain reliable statistics. As a result, stress and strain-rate are given for each test as random variables.
Thus, the proposed Bayesian estimations do not rely on deterministic stresses and strain-rates affected
by measurement noise but on random variables characterized by means and non-diagonal covariance
matrices. This additional information enables us to quantify more realistically uncertainties related to
the overall material parameters estimation.

The paper is constructed as follows. The classic one-dimensional wave propagation model is briefly
recalled in section 2. Then, a probabilistic framework is introduced in sections 3 and 4 in order to deal
with uncertainties due to imperfect knowledge of the experimental setup. In addition, in section 5, a
series of tests is performed on the aluminum alloy AA7075-O in order to address material variability
and repeatability of tests so that the overall uncertainty is identified. Since controlling temperature
during SPHB tests is uneasy, a few additional tests in the quasi-static regimes are performed at different
temperatures to characterize the temperature dependence of behavior. A simple Steinberg-Cochran-
Guinan model [36] is presented in section 6 and modeling choices are detailed. Then, in section 7, a
standard Bayesian estimation exploiting the data in the quasi-static regime only is proposed to identify
the material parameter associated with temperature dependence. Finally, remaining material parameters
are identified in section 9 by developing a hierarchical Bayesian model exploiting the data in the dynamic
regime (i.e., accounting for the uncertainty due to imperfect knowledge of the experimental setup).
Conclusive remarks are addressed in section 10.

2 Classic wave analysis

In this section, classic results are briefly recalled for the sake of clarity. Indeed, the statistical analysis
proposed in the following relies on the one-dimensional wave analysis enabling to convert strain gauge
measurements into displacement and force signals at the bar/specimen interfaces giving in turn stress and
strain-rate as a function of strain by using simplifying assumptions. More advanced analysis proposed by
[43] (accounting for instance wave dispersion due to 3D effects) can be used instead, but developments
would be more technical. In addition, deconvolution techniques introduced by [44] have not been used
in this contribution as well as the correction due to the punching of the specimen into the Hopkinson
bars as proposed by [31]. The SHPB system and main notations are presented schematically in figure 1.
Notations are listed in table 1.
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Fig. 1: SHPB system

A compression wave is generated into the input bar by throwing a striker against it. The duration
∆t of the compression pulse depends only on the striker length LS and the wave propagating velocity C
in the striker (assumed to be made of the same material as the input and output bars):

∆t =
2LS

C
(1)

Although the strain-rate in the specimen significantly varies during the test, the average strain-rate is
controlled by the striker velocity (measured by laser techniques) that determines the compression pulse
magnitude. The compression wave propagates through the input bar until it reaches the bar/specimen
interface where a part of the wave is reflected (traction wave) and the rest is transmitted into the
specimen. The same reflection/transmission phenomena occurs at the second bar/specimen interface.
Thus, a compression wave is transmitted in the output bar and a traction wave is reflected into the
input bar. Strain gauges are glued to the input and output bars to measure compression/traction waves.
Measured voltage signals are denoted by VI(t) and VO(t) and converted into strains ε̃I(t) and ε̃O(t) by
multiplying by calibration factors KSGI and KSGO. Typical measured signals are presented in figure 2a.
The input bar needs to be long enough so that the reflected traction wave does not overlap with the
incident compression wave in order to avoid advanced deconvolution techniques.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

εI~ Input wave

εO~ Output wave

Time (s)

ε~

Δt Δt

Δt

(a) Measured signals

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

εI Incident wave

εR Reflected wave

Time (s)

ε

εR Transmitted wave

Δt

(b) Incident, reflected and transmitted waves

Fig. 2: Wave measurements
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Basic wave analysis consists in cutting measured signals ε̃I(t) and ε̃O(t) (recorded on t ∈ [tini, tend]
where tend − tini > ∆t) into incident, reflected and transmitted signals t ∈ [0,∆t] 7→ εi(t) (i ∈ {I,R, T}
where I stands for incident, R for reflected and T for transmitted). The time origin of εI(t) is set
manually as shown in figure 2a. Time origins of εR(t) and εT (t) are not determined manually because
of the difficulty to estimate the relatively smooth starting point of the pulse. Thus, the signal cutting
process consists in determining the time origin of εR(t) and εT (t) automatically, by considering strain
gauge positions LSGI and LSGO and computing the time for each wave to reach the strain gauge.

It is therefore necessary to estimate the wave propagating time in the specimen as it introduces a delay.
To do so, the specimen mass m0, diameter d0 and length l0 are measured and the specimen density ρ0
is computed. The wave propagating velocity of the specimen c0 is then estimated based on the specimen
Young modulus. This estimation may be difficult if the Young modulus is strain-rate sensitive. In this
paper, c0 is estimated by assuming that the specimen Young modulus does not depend on strain-rate,
which is consistent with the chosen aluminum alloy. However, for materials with a strain-rate sensitive
Young modulus, further developments would be needed. The wave propagating time in the specimen is
∆t0 = l0/c0, which can be an important parameter to obtain accurate stress-strain response, particularly
for the specimens with very low wave velocities [6]. However, in this contribution, since the specimen
length l0 is very small compared to the distances LSGI and LSGO and since c0 is similar to the wave
propagating velocity in the bars, uncertainty on c0 has a negligible impact on the signal cutting process.
For instance, for the tested experimental conditions, ±5% variation on c0 has no effect on the stress-strain
response, as the variation on the time origin is smaller than the time interval between two successive
measurement points (with a frequency of acquisition set to 1 MHz). It should be noted that only the
uncertainty on c0 is neglected and not the nominal value. Resulting signals are presented in figure 2b.

Forces FI(t) and FO(t) at both ends of the specimen read:
FI(t) =

πD2
I

4
ρC2 (εI(t) + εR(t))

FO(t) =
πD2

O

4
ρC2εT (t)

(2)

The displacement difference between both ends of the specimen reads:

u(t) = C

∫ t

0

(εT (τ)− εI(τ)− εR(τ)) dτ (3)

Assuming that the specimen is at equilibrium, that is to say FI(t) ≈ FO(t) or equivalently εI(t)+εR(t) ≈
εT (t)(DO/DI)

2 and assuming that the stress/strain state is homogenous in the specimen, the nominal
stress σ0(t) and strain ε0(t) can be computed in the specimen:

σ0(t) ≈
4FO(t)

πd20

ε0(t) ≈
u(t)

l0

(4)

Since the equilibrium has been assumed, it is rather arbitrary to choose FO for the computation of σ0 in
(4). However, FI is proportional to εI + εR and is therefore dependent on the synchronization of εI and
εR although FO is proportional to εT that is directly measured. In addition, the strain gauge distance
on the input bar LSGI is large in order to avoid that the incident wave overlaps with the reflected wave,
although the strain gauge at the output bar can be fixed much closer to the specimen. Thus, three-
dimensional effects (geometrical dispersion) affect much less the transmitted signal and FO is often less
affected by oscillations. Furthermore, the specimen itself acts as a low-pass filter (particularly when the
specimen material is soft), which tends to reduce oscillations and less dispersion is usually observed [6].

The true stress σ(t) and true strain ε(t) read:{
σ(t) = σ0(t) (1 + 2νpε0(t))
ε(t) = ln (1 + ε0(t))

(5)

where νp is the coefficient of plastic expansion that is set to 0.5 for metals due to deviatoric plastic flow.
In the following, stress, strain and strain-rate will refer to the true stress, true strain and true strain-

rate according to (5).
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3 Imperfect knowledge of the experimental setup

Two sets of experimental parameters having an influence on measurements can be distinguished. The first
set is composed of the parameters directly used in the wave analysis presented in section 2 (see table 1).
These parameters enable to transform voltage signals VI(t) and VO(t) into a stress-strain response. The
second set is composed of all other parameters having an influence on the measured signals VI(t) and
VO(t) and not used in the wave analysis. For instance, bar alignment1, strain gauge length etc., have
an influence on the measured signals and therefore on results. Indeed, since the analytical wave analysis
presented in section 2 relies on simplifying assumptions (such as that bars are perfectly aligned, straight
and have flat and parallel impact surfaces), experimental imperfections can introduce a bias, that is to say
a systematic error. Similarly, strain gauge dimension, which tends to average strain over the length, has
been neglected. In addition, pulse shaping techniques [9, 6] have not been used in this paper. However,
pulse shapers could be used to filter high frequencies of the compression pulse to limit the effect of wave
dispersion. Pulse shaping techniques do not introduce significant additional uncertainties though, as it
is not necessary to know the pulse shaper characteristics to interpret the test. (No assumption is done
on the shape of the compression pulse).

The uncertainty related to the second set of parameters is more difficult to characterize, as these
parameters do not appear quantitatively in the wave analysis presented in section 2. It is theoretically
possible to introduce the effect of uncertainties related to these parameters, by considering a much more
detailed model for the wave analysis. For instance, a fully three-dimensional mechanical model would
enable to take into account bar alignment issues directly in the wave analysis, so that the effect of
alignment uncertainties is quantified. Similarly a detailed model of the strain gauge would enable to take
into account settings of strain gauges and Wheatstone bridges and the associated uncertainties. However,
such detailed models imply significant computation time, which would slow down the following statistical
approach. A surrogate model that mimic the behavior of the fully three-dimensional simulation of the
SHPB test could be used to reduced the computational cost. This contribution being limited to the
classical analytical interpretation of measured signals, only the first set of parameters listed in table 1 is
considered, that is to say that the bias introduced by neglecting other parameters is not estimated and
corrected.

All experimental parameters used in section 2 and listed in table 1 are imperfectly known. One
could estimate experimental parameters errors at the same time as material parameters (involved in the
behavior model) through the Bayesian analysis. For instance, [10] analyzed the measured voltage signals
in a deterministic way (as in section 2) in order to obtain stress signals. Then, these stress signals have
been assumed to be affected by an unknown overall error, which was determined at the same time as
material parameters through the Bayesian analysis. However, to take into account the uncertainty due to
the imperfectly known experimental setup, this approach would necessitate to introduce many additional
unknown standard deviations in the Bayesian analysis. (There are 15 experimental parameters listed in
table 1). Moreover, this approach would necessitate to introduce the classic signal analysis presented
in section 2 directly in the Bayesian model. This is why, in this paper, uncertainties on experimental
parameters are estimated first and then the overall measurement uncertainties are inferred (see sections 4
and 5). Finally, measurement uncertainties are introduced as known random errors in the Bayesian
analysis to estimate material parameters (see sections 7 and 9).

Thus, each experimental parameter X is considered as a random variable with unknown probability
density function depending on the measurement technique. Empirical estimation of uncertainties for each
measurement technique could be performed by measuring several known standards (e.g., objects with
calibrated weight and dimensions) in order to obtain statistical distributions of measurement errors.
However, an alternative procedure has been preferred in this paper. Rectangular or normal probability
density functions are chosen for each experimental parameter. In most cases, the parameter should have
a positive value because of its physical meaning. As normal distributions allow negative values, the
probability density function is truncated in order to avoid this issue. Experimental parameters have been
measured to estimate the mean of the random variable denoted by X. Then, the standard deviation
denoted by ∆X is set to a fixed value depending on the specific measurement technique. Indeed, classic
standard deviations are usually associated to tape measurements, digital calipers, digital scales etc. on
the basis of manufacturer specifications and good experimental practices (measurements performed by

1 offset of neutral axis, uneven support height, non-parallel impact face, bar straightness, dome or cone impact face shape
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a trained operator with an adapted equipment). Of course, this procedure only enables to give a rough
estimation of measurement uncertainties, as standard deviations are not characterized empirically but
fixed at standard values. Nevertheless, this simplified approach has been chosen in this contribution,
since it is convenient for real laboratory practices.

In addition, some parameters are computed from the others. For instance, mean and standard devi-
ation of the density ρ = MI/((π/4)D

2
ILI) can be computed by simulating pseudo-random draws on the

basis of the random variables MI , DI and LI (estimated by rectangular or normal distributions of mean
and standard deviation denoted by M I ,∆MI etc.). Alternatively one can use approximations such as:


ρ ≈ 4

π

M I

D
2

ILI

∆ρ

ρ
≈

√(
∆MI

M I

)2

+

(
∆LI

LI

)2

+ 4

(
∆DI

DI

)2
(6)

Strain gauges consist in Wheatstone bridges. Two gauges are glued to each side of each bar (one
measuring the strain along the bar axis and the other measuring the strain perpendicularly) in order
to compensate potential bending effects. Resulting signals are amplified and transfer coefficients KSGI

and KSGO are measured by using a calibrated electric resistance simulating a 0.1% strain. Then output
voltages are measured in two different positions (using a switch). This procedure is reliable and the
associated uncertainty is estimated to around 1% by manufacturers at room temperature. This percentage
refers to calibrated value of KSGI and KSGO and not to the measured signals. Since this uncertainty
is provided by the manufacturer it is considered as an indicative value, and the standard deviations
associated to KSGI and KSGO is roughly estimated to a fixed value of 4× 10−6, which is slightly more
than 1% of the nominal values of KSGI and KSGO. This estimation is a crude simplification, however the
overall calibration method for KSGI and KSGO is nevertheless more accurate than alternative methods.

The wave propagating velocity C is usually estimated by performing tests without specimen by
measuring the time ∆tSG between the beginning of the incident wave at the strain gauge of the input
bar and the beginning of the transmitted wave at the gauge of the output bar. Since there is no specimen,
the distance covered by the wave is estimated by LSGI +LSGO and the wave propagating velocity reads:

C =
LSGI + LSGO

∆tSG
(7)

This procedure presented in figure 3a is not very accurate because of the difficulty to determine the
starting point of each compression pulse because of the smooth transition to reach the compression
plateau. Nevertheless, this estimation is used very often in the industry because of its simplicity, even
though more advanced and accurate techniques have been proposed in [7]. The standard procedure
presented in figure 3a is used in this contribution in order to assess uncertainties commonly affecting
SHPB tests. The random variable C is statistically characterized by performing several tests without
specimen. Each measurement is interpreted as a draw of the random variable C. The issue of finding the
starting point of the incident and transmitted pulses is addressed by doing two independent estimations
of the wave propagating velocity for each test without specimen. In this contribution, 15 tests without
specimen have been performed for a total of 30 draws of the wave propagating velocity. The obtained
statistic distribution of C is presented in figure 3b, and a rectangular distribution is chosen for C. All
parameters means and standard deviations are listed in table 1.
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Fig. 3: Wave propagating velocity

Table 1: Standard deviations

Input bar

LI (mm) Length LI 2788 ∆LI 0.5 Tape measure

DI (mm) Diameter DI 19.80 ∆DI 0.02 Digital caliper

MI (kg) Mass MI 6.644 ∆MI 0.025 Digital scale
ρ (kg.m−3) Density ρ 7740 ∆ρ 33 Computations

C (m.s−1) Wave propagating C 5096 ∆C 14.5 Tests without
velocity specimen

LSGI (mm) Distance LSGI 1395 ∆LSGI 0.5 Tape measure

KSGI (V−1) Coefficient KSGI 3.77424×10−4 ∆KSGI 4×10−6 Calibration
Output bar

LO (mm) Length LO 1675 ∆LO 0.5 Tape measure

DO (mm) Diameter DO 19.80 ∆DO 0.02 Digital caliper

LSGO (mm) Distance LSGO 210 ∆LSGO 0.5 Tape measure

KSGO (V−1) Coefficient KSGO 3.63952×10−4 ∆KSGO 4×10−6 Calibration
Specimen AA7075-O

l0 (mm) Length l0 ≈6 ∆l0 0.02 Digital caliper

d0 (mm) Diameter d0 ≈3 ∆d0 0.02 Digital caliper
ρ0 (kg.m−3) Density ρ0 2761 ∆ρ0 61 Computation
c0 (m.s−1) Wave propagating c0 5106 ∆c0 - Computation

velocity

4 Statistical analysis

Consider Θ the set of independent random variables necessary for the analysis of measured signals:

Θ = {LI , DI , LSGI ,KSGI , LO, DO, LSGO,KSGO, ρ, C, l0, d0, c0} (8)

The classic one-dimensional wave analysis presented in section 2 can be seen as a transfer function f
associating both a particular draw θ∗ of the random variable vector θ ∈ Θ and the measured signals
VI(t) and VO(t) to the corresponding draw of true stress, true strain-rate and true strain σ∗(t), ε̇∗(t), ε∗(t)
defined by (5) (where the superscript ∗ is referring to a particular draw of a random variable):

f : (θ∗, VI(t), VO(t)) 7→ (σ∗(t), ε̇∗(t), ε∗(t)) (9)

Since the one-dimensional wave analysis f is analytical, it would be possible to approximate analytically
mean and standard deviation of stress and strain-rate as a function of strain. However, since each call
to the function f has a reduced computational cost, a simple and straightforward sampling technique
is chosen for generating stress and strain-rate statistics as a function of strain. Consider that J loading
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conditions are tested, each of which including Kj specimens. For each loading condition (denoted by j
where 1 ≤ j ≤ J) and each specimen (denoted by k where 1 ≤ k ≤ Kj), recorded signals are denoted

by VI,j,k(t), VO,j,k(t). Then, N independent draws denoted by θ
(n)
j,k (where 1 ≤ n ≤ N) are generated by

pseudo-random numbers giving in turn N output signals σ
(n)
j,k (t), ε̇

(n)
j,k (t), ε

(n)
j,k (t) (where the superscript

(n) replaces *). Then, for each test k, one can construct stress and strain-rate as a function of strain

σ
(n)
j,k (ε

(n)) and ε̇
(n)
j,k (ε

(n)) that can be interpolated with cubic splines. Thus, one defines a strain vector
(of size M) denoted by ε = [ε1, · · · , εM ] common to all draws and the interpolation with cubic splines

reads: σ
(n)
j,k (εm) and ε̇

(n)
j,k (εm) (where 1 ≤ m ≤ M). For each loading condition j and each specimen

k, consider stress and strain-rate vectors (of size M) denoted by σ
(n)
j,k =

[
σ
(n)
j,k (ε1), · · · , σ

(n)
j,k (εM )

]
and

ε̇
(n)
j,k =

[
ε̇
(n)
j,k (ε1), · · · , ε̇

(n)
j,k (εM )

]
. It is assumed that σ

(n)
j,k and ε̇

(n)
j,k are draws of normal random vectors (of

size M) denoted by σj,k and ε̇j,k. There is no reason a priori to assume that stress and strain rate are
normal random variables, as they are computed from a non-linear combination (see section 2) of other
random variables (experimental parameters). Nevertheless, this assumption is strongly supported by the
resulting distributions of stress and strain rate. Thus, the set of draws is used to estimate means (of size
M) and covariance matrices (of size M × M). Classic estimators are used in this section and recalled
in (10). It should be mentioned that one can consider adding artificial noise to the measurements to
improve the characterization of the estimators for bias and other systemic issues.


σj,k =

1

N

N∑
n=1

σ
(n)
j,k

V σ
j,k =

1

N − 1

N∑
n=1

(
σ

(n)
j,k − σj,k

)
.
(
σ

(n)
j,k − σj,k

)T (10)

Similar expressions hold for strain-rates. One can also extract from covariance matrices the diagonal
square root denoted by ∆σj,k (respectively ∆ε̇j,k) and corresponding for each loading condition j and
each specimen k to the point-wise standard deviation of stress as a function of strain (respectively strain-
rate). Typical results are presented in the form of mean stress σj,k as a function of strain (respectively
mean strain-rate ε̇j,k) with an envelop corresponding to ±2∆σj,k (respectively ±2∆ε̇j,k), which corre-
sponds to a probability of 95% to lie in the envelop. Results extracted for one particular test are presented
in figure 4. The choice of normal distribution and N = 10000 is visually confirmed in figure 5. A more
detailed analysis of confidence intervals is given in A.
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Fig. 4: Uncertainties for one test with N = 10000

9



10.96 0.98 1.02 1.040.95 0.97 0.99 1.01 1.03 1.05
0

0.2

0.1

0.3

0.05

0.15

0.25

0.35

σ(ε)/σ(ε)

Frequency

Normal fit

(a) N = 100

10.94 0.96 0.98 1.02 1.04 1.060.95 0.97 0.99 1.01 1.03 1.05
0

0.2

0.1

0.02

0.04

0.06

0.08

0.12

0.14

0.16

0.18

σ(ε)/σ(ε)

Frequency

Normal fit

(b) N = 1000

10.92 0.94 0.96 0.98 1.02 1.04 1.06
0

0.02

0.04

0.06

0.08

0.01

0.03

0.05

0.07

σ(ε)/σ(ε)

Frequency

Normal fit

(c) N = 10000

10.92 0.94 0.96 0.98 1.02 1.04 1.06 1.08
0

0.02

0.04

0.06

0.01

0.03

0.05

0.005

0.015

0.025

0.035

0.045

0.055

σ(ε)/σ(ε)

Frequency

Normal fit

(d) N = 100000

Fig. 5: Histogram plots for ε ≈ 0.09

5 Experimental campaign and overall uncertainty

An experimental campaign on the aluminum alloy AA7075-O has been performed in order to illustrate
the methodology. To avoid technicalities associated with the use of visco-elastic bars, an aluminum alloy
has been chosen, so that steel bars can be used. Experimental results revealed that the sensitivity to
strain-rate is negligible. A series of J = 8 loading conditions have been tested, each of which include Kj

specimens, as listed in table 2. The average striker velocity (measured by laser) is reported for each loading
condition with the associated variation due to the fact that tests are not identical. All tests under dynamic
regime (1 ≤ j ≤ 4) with the SHPB system are performed at room temperature (at least initially because
the specimen undergoes self-heating). It would be very difficult to identify the behavior dependence on
temperature on this basis only. Consequently, these dynamic tests are completed by additional tests on
the same material under quasi-static regime (5 ≤ j ≤ 8) and controlled temperature conditions. The
tested temperature range is 100 K, although the classic analysis based on the Taylor-Quinney coefficient
(see section 6) shows that the temperature increase is around 35 K for the dynamic conditions tested
in this contribution. Thus, the temperature range for quasi-static conditions is sufficient to identify the
behavior dependence on temperature. Despite the fact that the behavior does not significantly depend
on strain-rate, and that the quasi-static tests could be sufficient to identify the material behavior, a large
number of tests in the dynamic regime have been performed as the main purpose of the paper is to show
how uncertainties associated with the SPHB system may be estimated and integrated in model-based
identification. The fact that the material behavior does not significantly depend on strain-rate has no
influence on the proposed method, and the SPHB system is commonly use to identify material behaviors
that are not very sensitive to strain-rate.
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Table 2: Experimental campaign summary

Dynamic regime
j Kj Strain-rate (s−1) Temperature (K) Striker speed (m.s−1)
1 3 600 293 5.73 ± 0.14
2 33 1000 293 6.44 ± 0.24
3 4 2750 293 8.26 ± 0.11
4 2 7500 293 16.82 ± 0.19

Quasi-static regime
j Kj Strain-rate (s−1) Temperature (K)
5 4 10−4 293
6 4 10−4 400
7 2 10−3 293
8 2 10−3 400

All tests have been made on specimens extracted from the same plate2 at different positions3. For
each loading condition j, experimental conditions are maintained as identical as possible. For instance,
a large series of K2 = 33 tests has been performed at 1000 s−1 as a target average strain-rate. Thus,
the measured stress mean (respectively strain-rate) denoted by σj,k (respectively ε̇j,k) and the standard
deviation denoted by ∆σj,k (respectively ∆ε̇j,k) (1 ≤ k ≤ Kj) are computed as detailed in section 4.
One can compute the overall mean considering all Kj tests for each loading condition j:

σj =
1

Kj

Kj∑
k=1

σj,k (11)

And the overall standard deviation is given by:

∆σj =
√
S2

j,1 + S2
j,2 (12)

where: 
S2

j,1 =
1

Kj

Kj∑
k=1

(σj,k − σj)
2

S2
j,2 =

1

Kj

Kj∑
k=1

∆σ2
j,k

(13)

Similar expressions hold for strain-rates.

Since other experimental conditions at 600 s−1, 2750 s−1 and 7500 s−1 include much less specimens,
the overall uncertainty is computed by assuming that the uncertainty due to material variability and
test repeatability (computed as a percentage of stress) is the same as for the series of K2 = 33 tests
at 1000 s−1. Results are presented in figure 6. It is clear that the average measurement uncertainty
Sj,2 increases with the average strain-rate at the beginning of the test (i.e., 0 ≤ ε ≤ 0.07). This part
of the stress-strain curve is more sensitive to measurement uncertainties because the stiffness is much
higher on the one hand and the specimen length is smaller on the other hand (leading to higher absolute
uncertainty).

2 For engineering applications, some materials present significant variability due to fabrication processes and chemical
composition consistency that both depend on the manufacturer. Thus, for design purposes, if the manufacturer is unknown,
one should prefer material parameters that have been identified by using specimens from various manufacturers.

3 Fabrication processes are usually responsible for inhomogeneous material properties along the produced object. Selecting
specimens at different positions of the plate enables to take into account this variability.
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Fig. 6: Dynamic tests with overall uncertainties (N = 10000)

In addition, the behavior of the chosen material does not seem to present sensitivity to strain-rate
as shown in figure 7, as the average stress-strain responses are similar for very different strain-rates.
Considering the overall uncertainty for each strain-rate condition, discrepancies between stress-strain
responses in figure 7 are very likely due to material variability. Indeed, specimens are extracted from
different places of a single plate, which can present inhomogeneous behavior.
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Fig. 7: Material variability and independence on strain-rate

Furthermore, since strain gauge measurements are transformed into stress and strain-rate as a function
of strain with a simple model (see section 2), a bias is introduced because of modeling assumptions. One
of the most significant assumption is that the specimen is at equilibrium, that is to say that forces at
both ends of the specimen are approximately equal (i.e., FI(t) ≈ FO(t)). Thus, for each test, the quality
of the equilibrium assumption is quantified by computing the following ratio:

R(t) =
FO(t)

FI(t)
(14)

The ratio R is statistically determined as a function of strain as detailed in section 4 and presented for
one test in figure 8. Clearly, the equilibrium assumption is not verified during the whole test. Thus, the
usable data is reduced to εmin ≤ ε ≤ εmax where εmin = 0.05 and εmax = 0.38 so that the model bias
does not affect much the results.
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Fig. 8: Equilibrium

Quasi-static conditions (5 ≤ j ≤ 8) have been considered only to identify the behavior dependance
on temperature, which is controlled by one material parameter denoted by G′

T , as detailed in section 6.
Mean stress is presented in figure 9a without the point-wise uncertainty at 95%, as there are only 2 or 4
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tests for each condition. The uncertainty due to imperfect knowledge of the experimental setup has not
been estimated for quasi-static conditions. As a result, data in the quasi-static regimes are only used to
identify G′

T in section 7 with unknown uncertainty.
Moreover, quasi-static tests are also used to estimate the Young modulus E and to provide prior

information on the yield stress, as shown in figure 9b. However, compressive quasi-static tests are less
reliable for very small strains (ε ≤ 0.01), as contact conditions are not well controlled at the interfaces
between the sample and the plates of the testing machine. The prior distribution of the yield stress is
therefore a rough estimation associated with a rather large uncertainty.
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Fig. 9: Quasi-static tests

6 Modeling choices

In the following, a plasticity model is considered as a typical example for material parameter estima-
tion. Thus, the model relates the stress as a function of material parameters (to be determined) and
explanatory variables such as temperature, strain-rate and strain:

Φ : (γ, ε̇, T, ε) 7→ σ (15)

Material parameters to be identified are denoted by a vector γ ∈ Γ . A Steinberg-Cochran-Guinan (SCG)
model is used in this contribution. This choice is consistent with the fact that the chosen aluminum alloy
AA7075-O does not present significant dependency on the strain-rate but more complex models could
have been used instead, such as the Preston-Tonks-Wallace model for instance. A classic Johnson Cook
(JC) model could have also been used, but this model includes a dependance to strain-rate that should
have been discarded in order to avoid difficulties in estimating the model parameter associated to strain-
rate. In addition, since SCG and JC models share very similar mathematical structures, results would have
been comparable. Therefore it is more straightforward to use a SCG model. In general, the mathematical
model should not only be able to reproduce the overall experimental behavior, but should also present
dependencies that correspond to the sensitivity of the experimental data with respect to the tested
quantities (e.g., temperature, strain, strain-rate). Indeed, if the model depends on quantities with respect
to which the experimental data are not sufficiently sensitive, the corresponding coefficients in the model
would be poorly estimated with very large uncertainty that could affect the uncertainty associated to the
other coefficients. Thus, the model is chosen as a compromise between the real behavior and the actual
tests that have been performed.

The SCG model gives the yield stress Y as a function of the hydrostatic pressure P , the relative
volume variation 1/η, the temperature T and the equivalent plastic strain εeq as follows:

Y = Y0 (1 + βεeq)
n

(
1 +

(
G′

p

G0

)
P

η1/3
+

(
G′

T

G0

)
(T − T0)

)
(16)
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with a saturation condition:
Y0 (1 + βεeq)

n ≤ Ymax (17)

where T0 is the reference temperature, Y0 is the initial yield stress before hardening, Ymax is a saturation
stress at ambient pressure and temperature, β and n are dimensionless coefficients, G0 is the reference
shear modulus, G′

p is dimensionless and associated to the dependence on pressure and G′
T has the di-

mension of a stress over a temperature and is associated to the dependence on temperature. By assuming
that the stress tensor is of the form σex × ex (where ex is a unit vector aligned with the bar axis) and
that elastic strain is negligible, it is obtained Y = σ, P = σ/3, εeq = ε and 1/η1/3 = 1.

One can neglect the ratio (G′
p/G0)P in (16) since for the proposed tests P ≈ 100 MPa and fol-

lowing estimations for a similar aluminum alloy 77075-O are found in the work of [37]: G′
p = 1.74 and

G0 = 26700 MPa leading to (G′
p/G0)P ≈ 0.00652 ≪ 1. Moreover, no saturation is noticeable in fig-

ures 6 and 9a and the saturation stress is estimated by [37] to Ymax = 810 MPa that is much higher
than the maximum stress reached in this paper. Thus, it is impossible to determine Ymax on the ba-
sis of the proposed experiments. Although aluminum is considered in both [37] and the present paper,
the experimental testing methods are different. Thus, uncertainties associated to the experimental test
methods are different, and extracting directly the ratio G′

p/G0 from [37] may be questionable. However,
even considering this uncertainty, the estimated value of (G′

p/G0)P is sufficiently close to zero to be
neglected.

In addition, the proposed uni-axial compression tests do not enable us to estimate G0 that is con-
sequently fixed to the estimated value proposed by [37]. Thus, the identification of G′

T is equivalent to
the identification of the ratio (G′

T /G0). The estimation proposed by [37] is G′
T = −16.45 MPa.K−1 and

the ratio (G′
T /G0) is expected to be relatively small that is consistent with the behavior dependence on

temperature shown in figure 9a. Then, the resulting model is:

Φ (γ, T (ε), ε) = Y0 (1 + βε)
n

(
1 +

(
G′

T

G0

)
(T − T0)

)
(18)

Thus, there are d = 4 material parameters to identify: γ = (Y0, β, n,G
′
T ) ∈ Γ , where Y0 is the initial

yield stress before hardening given in MPa, β and n are dimensionless and G′
T is given in MPa.K−1.

The term T −T0 in (18) has to be estimated. Quasi-static tests have been performed at two different
constant temperatures 293 K and 400 K (see table 2). On the contrary, all dynamic tests have been per-
formed at room temperature but plastic dissipation is responsible for self-heating. However, temperature
evolution has not been measured with a specific experimental apparatus. Thus, the temperature evolution
is inferred under dynamic regime from the following equation (discussed for instance by [29] or similar
formulation discussed by [28]) that assumes that the ratio of the thermal dissipation to mechanical work
is known (Taylor-Quinney coefficient):

dT

dε
=

βTQ

ρ0cp
σ(ε) (19)

where βTQ is the Taylor-Quinney coefficient, ρ0 is the specimen density as listed in table 1 and cp is the
specific heat capacity at constant pressure. Thus the equation (19) reads:

T (ε)− T0 =
βTQ

ρ0cp
W (ε) (20)

where the plastic work is:

W (ε) =

∫ ε

0

σ(υ)dυ (21)

For each loading condition j and each specimen k, N draws of the form σ
(n)
j,k , β

(n)
TQ, ρ

(n)
0 and c

(n)
p are simu-

lated as detailed in section 4. As a result, there are N draws of the form: T
(n)
j,k =

[
T

(n)
j,k (ε1), · · · , T (n)

j,k (εM )
]

with mean:

T j,k =
1

N

N∑
n=1

T
(n)
j,k (22)

Thus, for each loading condition j, each specimen k and each material parameter γ ∈ Γ , the model (18)
can be presented as a vector of size M :

Φj,k =
[
Φ
(
γ, T j,k,1, ε1

)
, · · · , Φ

(
γ, T j,k,M , εM

)]
(23)
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As already mentioned, for the studied material the ratio (G′
T /G0) is expected to be relatively small.

Hence, it is not necessary to consider the uncertainty related to temperature. In the following, the mean
temperature is considered as perfectly known for dynamic experimental conditions with the mean values
βTQ = 0.8 and cp = 876 J.kg−1.K−1.

7 Standard Bayesian estimation

In this section, the parameter G′
T , which is involved in the temperature dependence of the model (18),

is determined by analyzing the tests in the quasi-static regime as listed in table 2. Indeed, temperature
variations occurring during the tests in the dynamic regime are not sufficient to accurately identify G′

T .
The parameter G′

T is identified separately from the other material parameters Y0, β, n by using only the
tests in the quasi-static regime. Indeed, the tests in the quasi-static regime have been performed only to
characterize the temperature dependance of behavior. The uncertainty associated to the corresponding
quasi-static experimental setup has not been quantified as for the tests in the dynamic regime (see
section 3). Thus, for each test k of each condition j, the data σj,k obtained in the quasi-static regime
(i.e., j = 5 to 8 in table 2) are divided by the average stress data obtained at T0 = 293 K (i.e., j = 5 and
7) leading to dimensionless data denoted by σ̂j,k = (σ̂j,k,1, · · · , σ̂j,k,M ). It is clear from the SCG model
(18) that the reduced model fitting the dimensionless data σ̂k reads:

Φ̂ (G′
T , T ) = 1 +

(
G′

T

G0

)
(T − T0) (24)

A simple Bayesian analysis is performed to identify G′
T . A normal likelihood is assumed with mean Φ̂

and unknown standard deviation ŝ. Thus, the likelihood reads:

σ̂j,k,m|G′
T , ŝ ∼ N

(
Φ̂(G′

T , Tj), ŝ
2
)

(25)

where 1 ≤ m ≤ M , and Tj = 293 K for j = 5 and j = 7 and Tj = 400 K for j = 6 and j = 8. Prior
distributions for G′

T and ŝ are determined by exploiting available a priori information extracted from the
literature and expertise. In this paper, it consists in the estimation of material parameters for an other
aluminum alloy proposed in [37]: G′

T = −16.45 MPa.K−1. Since the alloy studied in [37] is not identical
to the material studied in this contribution, a flat uniform distribution is considered with rather large
bounds for G′

T . The prior distribution of ŝ is chosen as the conjugate prior distribution for a normal
model as detailed by [13], namely the scaled inverse chi-square law, hence:

{
G′

T ∼ U
(
G′

T,min, G
′
T,max

)
G′

T,min = −50 MPa.K−1 G′
T,max = −5 MPa.K−1

ŝ2 ∼ Inv-χ2
(
Ŝ2, ν̂

)
Ŝ = 0.03 ν̂ = 10

(26)

where U denotes a uniform distribution and Inv-χ2 the scaled inverse chi-square law. The posterior
distribution reads:

p (G′
T , ŝ|σ̂j,k) ∝ p (σ̂j,k|G′

T , ŝ) p(G
′
T )p(ŝ) (27)

Statistics of posterior probability density functions (27) are explored by Markov-Chain Monte Carlo
(MCMC) sampling techniques. In practice, a No U-Turn Sampler (NUTS) developed by [16] is used
within the framework of the PYMC3 package developed by [33] in Python [39]. NUTS is an extension
of the Hamiltonian Monte Carlo algorithm, which avoids sensitivity to correlated parameters, but whose
performance depends on two parameters that need to be specified, namely the step size and the number of
steps. On the contrary, NUTS does not necessitate to hand-tune any parameter with equivalent efficiency.
Results are presented in figure 10 with means and credible intervals at 94%.
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Fig. 10: Posterior densities

8 Sensitivity analysis

In this section, as standard practice in model-based estimation, a sensitivity analysis of the SCG model
(16) to parametric changes is provided. This analysis enables us to better interpret the results presented
in section 9.3. There are numerous different sensitivity analysis methods. In this study, a variance-
based sensitivity analysis (i.e., Sobol method) is proposed [35, 32]. Unlike local methods, which elucidate
the model sensitivity to parametric changes around a specific value of the parameters, variance-based
methods belong to the so-called global methods as the entire parameter set is usually sampled to perform
the analysis.

Within a probabilistic framework, variance-based sensitivity analysis decomposes the variance of the
model outputs into proportions, which can be attributed to variations of model parameters. For each
value of ε the yield stress Y given by (16) is a function of the parameters Y0, β, n,G

′
T . Since the parameter

G′
T has already been identified, the sensitivity analysis is performed only on Y0, β, n. Thus, the output

variance due to variation of Y0, β, n at a fixed ε can be explained by several contributions: (i) the first-
order sensitivity index Si (where 1 ≤ i ≤ 3), which is the main effect of each parameter γi ∈ {Y0, β, n}
varying alone, and (ii) the second-order sensitivity index Sij , which represents the interaction effect of
varying pairs of parameters (γi, γj) together. Of course, the decomposition can be pursued for higher-
order sensitivity, even though first and second-order sensitivity indexes are the most common indicators.
More precisely, the output variance Var(Y ) can be decomposed into several contributions:

Var(Y ) =

3∑
i=1

Vi +

3∑
i<j

Vij + · · · (28)

where Var(Y ) is the variance of Y and:{
Vi = Varγi

(
Eγ∼i

(Y |γi)
)

Vij = Varγi,γj

(
Eγ∼ij

(Y |γi, γj)
)
− Vi − Vj

(29)

where 1 ≤ i ≤ 3, γi ∈ {Y0, β, n}, Varγ , Eγ are respectively the variance and the expected value when
γ is varying, and γ∼i,γ∼ij denote the set of all variables except γi and (γi, γj) respectively. The first
and second-order sensitivity indexes Si, Sij (or Sobol indexes) represent the proportion of the output
variance explained by the variation of the model parameters, therefore:

Si =
Vi

Var(Y )

Sij =
Vij

Var(Y )

(30)

These sensitivity indexes are computed using the SALib package developed by [15] in Python, by using
the following intervals for the parameters variation: (Y0, β, n) ∈ [60, 160]× [1000, 9000]× [0.10, 0.25], and
the analysis is done for ε = 0.4 (i.e., highest plastic strain in the data). Results are listed in table 3 and
same conclusions would be obtained for other values of ε.
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Table 3: Sensitivity indexes in percentage with a confidence level of 95% for ε = 0.4. First order sensitivity
indexes Si are in bold on the diagonal, and second order sensitivity indexes Sij are the non-diagonal
terms.

Y0 β n
Y0 35.4% ± 0.8% 0.4%± 1.3% 3.7%± 1.3%
β 5.4% ± 0.3% 1.5%± 0.6%
n 53.4% ± 1%

The SCG model (16) is less sensitive to β than Y0 and n, even though the considered interval of
variation for β is large. Difficulties to identify β are therefore expected. In addition, there is very little
sensitivity to simultaneous variations of pairs of parameters, especially for the interaction of Y0 and
β. Based on this sensitivity analysis, the posterior distribution for β is expected to spread on a large
interval, which is associated to higher uncertainty. However since the model is still slightly sensitive
to β, the experimental data is expected to make evolve the prior distribution but not in the extent of
other parameters Y0 and n. Thus, posterior distributions of β are expected to be similar for all tests
in section 9.3, although posterior distributions of Y0 and n should be clearly distinct. This is due to
the fact that differences between tests are not sufficiently pronounced considering the higher uncertainty
associated to β.

9 Hierarchical Bayesian estimation

9.1 Hyperprior distribution

This section completes the identification of model parameters involved in the SCG model (18). A hi-
erarchical Bayesian estimation is proposed in order to use in details the information provided by each
test. Since the data obtained in the quasi-static regime (j = 5 to 8 in table 2) have already been used to
identify the parameter G′

T , the following analysis is based on one experimental condition in the dynamic
regime (i.e., j = 2 in table 2). Moreover, among the 33 tests performed at 1000 s−1, only K = 20 tests
are analyzed and the 13 remaining tests are used for a comparison to model predictions.

The prior distribution of G′
T is set as the posterior distribution obtained in section 7, and since the

considered tests (j = 2) are at room temperature, there is very little sensitivity of the tests in the dynamic
regime with respect to G′

T (i.e., self-heating is not sufficient). Therefore, the posterior distribution of
G′

T is extremely similar to its prior distribution. Thus, for the sake of simplicity, G′
T is omitted in the

following developments as the Bayesian inference on the tests in the dynamic regime has no influence on
this model parameter. Thus, there are d = 3 remaining material parameters to identify in this section,
namely Y0, β, n.

As already mentioned, material parameters physically depend on each test k (1 ≤ k ≤ K) because
of material variability. Thus, it is legitimate to propose a hierarchical Bayesian analysis considering each
test k as a group with specific material parameters γk = (Y0,k, βk, nk). In this approach, the tested
specimens constitute a sample of K = 20 draws among all possible specimens. Material parameters γk

are assumed to be independent samples from a common hyper random variable that is parametrized by
a hyperparameter vector φ to which a hyperprior distribution is associated. The prefix hyper is used to
highlight the fact that the sampling process of specimens is at a higher level than the rest of the Bayesian
probabilistic approach. Thus, material variability is captured by the fact that each γk is conditionally
dependent on φ as detailed by [13]. The approach proposed in section 7 relies on a direct empirical
estimation of material variability and repeatability of tests. On the contrary, the hierarchical approach
relies on a hyper random variable determining the dispersion of material parameters from one test to
another.

On the basis of results obtained in section 7, informative normal distributions are assumed for hyper-
prior distributions related to Y0 and n. Thus, the hyper random variable is assumed to be normal with
mean µγ and covariance matrix Σγ . Thus, hyperparameter vector is φ =

(
µγ ,Σγ

)
and:

γ|µγ ,Σγ ∼ Nd

(
µγ ,Σγ

)
(31)
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where Nd denotes a multivariate normal distribution of size d = 3. In addition, µγ = (µY0 , µβ , µn) and
Σγ is a diagonal d × d matrix of diagonal (ΣY0 , Σβ , Σn). The conditional probability density function
(31) accounts for material variability. In addition, since

(
µγ ,Σγ

)
are unknown, an associated hyperprior

distribution is needed and chosen to correspond to the classic conjugate prior distribution for a normal
model as detailed by [13]: 

p(µγ) ∝
d∏

l=1

p(µl)

p(Σγ) ∝
d∏

l=1

p(Σl)

(32)

where: {
Σl ∼ Inv-χ2

(
S2
l,0, νl,0

)
µl ∼ N

(
µl,0, s

2
l,0

) (33)

Where l ∈ {Y0, β, n} and Inv-χ2
(
S2
l,0, νl,0

)
denotes the scaled inverse chi-square law. That is to say

that the prior distribution of Σl is taken to be the distribution of S2
l,0νl,0/Z where Z ∼ χ2

νl,0
. The

fixed parameters that completely determine the hyperprior distribution are
(
S2
l,0, νl,0, µl,0, s

2
l,0

)
with

l ∈ {Y0, β, n}. Normal prior distributions have been considered for the means µl with conjugate prior
distributions (i.e., scaled inverse chi-square law) for variances Σl. This choice of normal prior distributions
seems reasonable. Indeed, the hyperprior distributions characterize a priori information on how material
variability is distributed in the aluminum plate, from which specimens have been extracted. Material
variability is mainly due to heterogeneity of microstructure and residual stresses, which are respectively
related to the temperature distribution during the annealing process, and previous plastic deformations
during forming processes. Thus, some specimens have higher or lower values than the rest of the specimens
depending on their respective location in the plate. However, heat treatments and forming processes are
usually performed so that material parameters are as homogenous as possible. Therefore, most specimens
likely share similar material parameters, which are a priori distributed around a mean value, leading to
consider normal prior distributions.

One can define a global material parameter γ = (Y0, β, n) accounting for material variability and
repeatability of tests (on the basis of the studied sample of specimens) whose prior probability density
function is:

p (γ) ∝
∫
µγ

∫
Σγ

(
K∏

k=1

p
(
γk|µγ ,Σγ

))
p(µγ)p(Σγ)dµγdΣγ (34)

9.2 Multivariate normal model

For each test k, the observations are the mean stress as a function strain σk and the covariance matrix
V σ

k (determined by (10)). The covariance matrices V σ
k only includes random measurement errors and

uncertainties due to the imperfect knowledge of the experimental setup, since material variability is
taken into account through the hierarchical approach. The explanatory variables are the strain ε and
the temperature T k. The likelihood distribution is given as a latent normal model with unknown mean
and known covariance matrix V 0 where:

V 0 =
1

K

K∑
k=1

V σ
k (35)

where V σ
k is given by (10). The average covariance matrix is considered instead of the covariance matrix

of each tests in order to reduce the amount of data to be processed during the Bayesian inference and
because covariance matrices are very similar. Thus the likelihood reads:

σk|γk ∼ NM

(
Φk,V 0

)
(36)

where Φk is given by (23) and where NM is the normal distribution of size M . It should be mentioned
that the normal model (36) relies on the assumption that measurement noise and uncertainties due to
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imperfect knowledge of the experimental setup are perfectly estimated by the statistic analysis proposed
in section 4. Posterior density reads:

p
(
γk,µγ ,Σγ |σk

)
∝ p (σk|γk) p

(
γk|µγ ,Σγ

)
p(µγ)p(Σγ) (37)

where p
(
γk|µγ ,Σγ

)
is given by (31). Marginal posterior distributions are also computed:

p (γk|σk) ∝
∫
µγ

∫
Σγ

p
(
γk,µγ ,Σγ |σk

)
dµγdΣγ

p
(
µγ |σ1, · · · ,σK

)
∝

K∏
k=1

∫
Σγ

∫
γk

p
(
γk,µγ ,Σγ |σk

)
dΣγdγk

p (Σγ |σ1, · · · ,σK) ∝
K∏

k=1

∫
µγ

∫
γk

p
(
γk,µγ ,Σγ |σk

)
dµγdγk

(38)

Statistics of posterior probability density functions (38) are explored by Markov-Chain Monte Carlo
(MCMC) sampling techniques. In practice, a No U-Turn Sampler (NUTS) developed by [16] is used
within the framework of the PYMC3 package developed by [33] in Python ([39]). Finally, the posterior
density of the global material parameters γ reads:

p (γ|σ1, · · · ,σK) ∝
∫
µγ

∫
Σγ

K∏
k=1

p
(
γk|µγ ,Σγ

)
p
(
µγ |σ1, · · · ,σK

)
p (Σγ |σ1, · · · ,σK) dµγdΣγ (39)

It should be noted that the hierarchical approach relies on hyperprior distributions instead of prior
distributions. Therefore, resulting hyperprior parameters listed in table 4 cannot be directly reduced to
prior distributions on Y0, β, n. Parameters µl,0 control the average values of material parameters and
parameters sl,0 control the uncertainty on the estimation of µl,0. Parameters Sl,0 control the range of
possible values of material parameters and parameters νl,0 control the uncertainty on Sl,0. Parameters
(Sl,0, νl,0, µl,0, sl,0) with l ∈ {Y0, β, n} are listed in table 4. These parameters have been set by using prior
information. For instance, quasi-static tests enable us to roughly estimate Y0 directly by determining an
inflexion point on the stress-strain curve for small strains (see figure 9). In addition, n is roughly estimated
from stress-strain curves. However, there is no a priori information on β, therefore a significant uncertainty
is associated to the corresponding hyperprior distributions.

Table 4: Parameters for hyperprior distribution

l Sl,0 νl,0 µl,0 sl,0
Y0 16 10 100 15
β 500 10 3000 1000
n 0.03 10 0.2 0.02

9.3 Results

Among the K2 = 33 tests performed at 1000 s−1, only K = 20 tests are analyzed to sample poste-
rior marginal distributions and the 13 remaining tests are used for a comparison to model predictions.
Marginal posterior distributions of Y0, β, n,G

′
T are presented for all tests in figure 11. As already men-

tioned, the posterior distribution of G′
T is extremely similar to its prior distribution, which was identified

with standard Bayesian inference using data in quasi-static regime (see section 7). This is due to the
fact that there is very little sensitivity of the tests in dynamic regime with respect to G′

T . These results
clearly show the uncertainty of each test on the one hand and dispersion of distributions due to material
variability and repeatability on the other hand. For the β parameter, all tests have almost the same
posterior distribution. This behavior was expected from the sensitivity analysis proposed in section 8.
Indeed, it has been shown that the SCG model (18) is mainly sensitive to variations of Y0 and n although
β explains only 5.4% of the variance. Thus, differences between tests are hidden by the large uncertainty
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associated to β. Global marginal posterior distributions are inferred from (39) and are presented in fig-
ure 12. A comparison of mean and standard deviation between prior and posterior distributions is given
in table 5 in order to summary how the experimental data make evolve prior information.

Table 5: Comparison between prior and posterior distributions

Mean Standard deviation
Prior Posterior Prior Posterior

µY0
99.8 105.5 15.0 3.6

ΣY0 17.4 10.3 4.5 1.4
µβ 2966.6 4502.9 980.1 692.4
Σβ 548.3 509.9 155.3 115.6
µn 0.2 0.17 0.02 0.0041
Σn 0.03 0.019 0.008 0.0026
Y0 99.9 105.7 23.4 5.1
β 2966.5 4523.9 1134.2 851.7
n 0.200 0.173 0.0388 0.0047

Scatter-plots of marginal and pairwise joint densities are presented in figure 13 for test k = 1 (and
similar results are obtained for the other tests). Probability density functions take place on the diagonal
and scatter plots show the draws (produced by MCMC sampling) as a function of parameters pairs. A
significant correlation between Y0 and β is observed. This correlation is due to the fact that the prior
distribution of β spreads on a very wide range, and the model is only slightly sensitive to β as shown in
section 8. Thus, large relative variations of β can be compensated by rather small relative variations of Y0.
Therefore, the significant uncertainty associated to β has a negative influence on the posterior uncertainty
associated to Y0. Of course, using a more informative prior distribution with less dispersion for β would
significantly reduce this correlation. However, there is no a priori information that would justify such a
choice. An other option to reduce the uncertainty associated to β and therefore the correlation between
β and Y0 would be to analyze the tests without the equilibrium assumption. Indeed, as shown in figure 8,
the equilibrium assumption implies to consider ε > 0.05. Since the model is almost only sensitive to Y0

for low values of ε, using the data for ε < 0.05 would enable to estimate Y0 almost independently on β.
However, releasing the equilibrium assumption is uneasy and would require complex treatments of the
experimental signals.

In addition, no significant correlation is observed between n and other material parameters in figure 13.
This is due to the fact that n controls the overall “curvature” of the stress-strain curve. Even though
the experimental data have been considered for ε > 0.05 , the range of strain variation is sufficient to
identify n almost independently on the other material parameters. Indeed, for n values not in the range
presented in figure 12, it is possible to adjust Y0 and β so that a part of the corresponding stress-strain
curve fits the experimental data, but not on the entire range 0.05 ≤ ε ≤ 0.38.
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Fig. 11: Material parameter posterior distributions
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Fig. 12: Marginal posterior densities for global parameters
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Fig. 13: Scatter-plots of marginal and pairwise joint densities

Maximum a posteriori (MAP) estimates are computed and listed in table 6 to compute the calibrated
model. The overall model uncertainty is directly computed as the interval defined by the quantiles at
2.5% and 97.5% obtained from the draws of the model Φ, which are generated at the same time as the
posterior distributions of material parameters Y0, β, n,G

′
T . Good agreement is observed as shown for

instance in figure 14 for different tests (k = 1, 5, 10, 15). The model uncertainty has been computed for
ε ∈ [0.05, 0.38] as for the experimental data, but the MAP estimates have been used to compute the
model also for ε < 0.05 to show how the model behaves for small deformations. In addition, the mean
of individual MAP estimates gives a global material parameter estimate that enables us to compute
global model predictions. Posterior predictive checks sampling techniques are also used to simulate future
experimental tests on the basis of the calibrated model accounting for experimental uncertainties. A
comparison with the 13 remaining tests at 1000 s−1 (not used for the identification) is proposed. A good
agreement is observed, as shown in figure 15 that is to say that the global average MAP predicts correctly
the behavior of future tests.
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Table 6: Maximum a posteriori estimates

β ≈ 3000, G′
T ≈ −36.2 MPa.K−1

k Y0 (MPa) n k Y0 (MPa) n
1 114.53 0.171 11 110.83 0.176
2 114.15 0.173 12 111.86 0.171
3 117.33 0.168 13 110.34 0.176
4 117.81 0.168 14 111.86 0.175
5 111.11 0.174 15 112.29 0.175
6 114.46 0.172 16 109.77 0.176
7 118.07 0.166 17 111.16 0.174
8 117.40 0.166 18 112.70 0.174
9 105.54 0.178 19 110.50 0.177
10 113.72 0.172 20 110.60 0.177
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Fig. 14: Experimental data of each and calibrated models for k = 1, 5, 10, 15
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Fig. 15: Remaining experimental data, global model and predictive checks

10 Conclusion

This paper is an attempt to quantify uncertainties within the context of dynamic tests relying on a split
Hopkinson pressure bar system. A classic one-dimensional wave propagation model is used to transform
strain gauge measurements into force and displacement at both ends of the specimen. The approach
necessitates to determine uncertainties due to imperfect knowledge of the experimental setup. Each mea-
sured parameter is modeled as a random variable. Then, a simple statistical analysis simulates draws
of stress and strain-rate as a function of strain in order to determine this uncertainty. Addressing such
uncertainties is a good experimental practice insofar as it leads to regularly and carefully measure com-
ponents of the experimental setup with adapted measurement devices. An experimental campaign has
been performed on the aluminum alloy AA7075-O in order to estimate material variability and repeata-
bility of tests. Several tests have been performed for each experimental condition. For each condition, the
mean stress as a function of strain has been determined as well as the overall uncertainty (accounting
for random measurement errors, imperfect knowledge of the experimental setup, material variability and
repeatability of tests). A simple Steinberg-Cochran-Guinan (SCG) behavior model has been calibrated
because the studied material does not present significant dependance on strain-rate. Bayesian estimation
has been performed to identify material parameters. Results are given as posterior probability density
functions and the resulting overall uncertainty on material parameters is therefore clearly quantified.
The fitted model agrees well with the measurements and model uncertainties are reasonable even though
it has been shown that there is very little sensitivity of the SCG model with respect to one parameter,
leading to significant uncertainty on this parameter. Thus, alternative models for which the sensitivity
is similar for all parameters would reduce the overall uncertainty exhibited in this study.

The systematic quantification of uncertainties in dynamic tests opens interesting perspectives to an-
alyze the response of structures and materials to impact, as calibrated models are generally extrapolated
to conditions that have not been tested experimentally. Of course, this extrapolation should be limited to
conditions involving the same physical phenomena as those actually tested. In addition, the probabilist
framework considered in this paper enables to simply introduce uncertainties in the definition of design
criteria to accommodate high-rate loading.
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A Confidence intervals

For each strain εm (1 ≤ m ≤ M), confidence intervals can be defined for the estimations (10) in order to determine a
reasonable number of draws N that can be considered. The confidence intervals for estimating the mean and standard
deviation are respectively denoted by IN and JN and defined by:

IN (εm) =

[
σj,k,m − t1−α/2(N)

∆σj,k,m√
N

, σj,k,m + t1−α/2(N)
∆σj,k,m√

N

]
JN (εm) =

[
(N − 1)∆σ2

j,k,m

v1−α/2(N)
,
(N − 1)∆σ2

j,k,m

vα/2(N)

]
(40)

where v1−α/2 and vα/2 are quantiles of the Chi-square density function χ2
(N−1)

of order 1 − α/2 and α/2 respectively

and t1−α/2 the quantile of the Student density function T(N−1) of order 1 − α/2. Confidence intervals at 95% are listed
in table 7 for ε ≈ 0.09 (similar results are obtained for different values of strain). It is clear that N = 10000 is a good
compromise between computation time and accuracy.

Table 7: Confidence intervals at 95% for ε ≈ 0.09

Mean
N min(IN ) σ max(IN )
100 295.77 296.63 297.49
1 000 297.11 297.39 297.68
10 000 297.43 297.53 297.62
100 000 301.58 301.61 301.64

Variance
N min(JN ) ∆σ2 max(JN )
100 14.45 18.74 25.29
1 000 19.97 21.76 23.80
10 000 23.39 24.04 24.72
100 000 23.71 23.92 24.13

References

1. Bayarri M, Berger J, Cafeo J, Garcia-Donato G, Liu F, Palomo J, Parthasarathy R, Paulo R, Sacks J, Walsh D, et al.
(2007) Computer model validation with functional output. The Annals of Statistics 35(5):1874–1906

2. Brown DA, Atamturktur S (2016) Nonparametric functional calibration of computer models. arXiv preprint
arXiv:160206202

3. Carlin BP, Louis TA (2010) Bayes and empirical Bayes methods for data analysis. Chapman and Hall/CRC
4. Challita G, Othman R, Casari P, Khalil K (2011) Experimental investigation of the shear dynamic behavior of double-

lap adhesively bonded joints on a wide range of strain rates. International Journal of Adhesion and Adhesives 31(3):146–
153

5. Chazot JD, Zhang E, Antoni J (2012) Acoustical and mechanical characterization of poroelastic materials using a
bayesian approach. The Journal of the Acoustical Society of America 131(6):4584–4595

6. Chen WW, Song B (2010) Split Hopkinson (Kolsky) bar: design, testing and applications. Springer Science & Business
Media

7. Collet P, Gary G, Lundberg B (2013) Noise-corrected estimation of complex modulus in accord with causality and
thermodynamics: Application to an impact test. Journal of Applied Mechanics 80(1):011018

8. Dong S, Wang Y, Xia Y (2006) A finite element analysis for using brazilian disk in split hopkinson pressure bar to
investigate dynamic fracture behavior of brittle polymer materials. Polymer testing 25(7):943–952

9. Frew D, Forrestal M, Chen W (2005) Pulse shaping techniques for testing elastic-plastic materials with a split hopkinson
pressure bar. Experimental mechanics 45(2):186

10. Fugate M, Williams B, Higdon D, Hanson KM, Gattiker J, Chen SR, Unal C (2005) Hierarchical bayesian analysis
and the preston-tonks-wallace model. Los Alamos National Laboratory Technical Report LA-UR-05-3935
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