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ABSTRACT
In this work, we propose an experimental set-up to measure the thermal conductivity and specific

heat of a single suspended glass fiber, as well as the thermal contact resistance between two glass fibers.
By using optical lithography, wet and dry etching and thin film deposition, we prepared suspended glass
fibers that are coated by niobium nitride thin film (NbN) used as room temperature thermal transducer.
By using the 3ω technique, the thermal conductivity of glass fiber was measured to be 1.1 W.m−1.K−1

and specific heat 0.79 J.g−1.K−1 around 300 K under vacuum conditions. By introducing exchange gas
into the measurement chamber, influence of the gas on the heat transfer was studied, and the convection
coefficient h for all the measurement ranges from a pressure of 0.01 hPa to 1000 hPa, over more than five
orders of magnitude, has been obtained. By adding a bridging glass fiber on top of two other suspended
glass fibers, it was possible to estimate the thermal contact resistance between two glass fibers Rc in the
range of 107 K.W−1 to 108 K.W−1.

1 Introduction
Nowadays, the energy loss is a common problem world wild. As an example, a large part of the energy

consumption goes to heat buildings (≈ 40% in Europe); the heat leaks being due to bad thermal isolation [1, 2].
One of the solutions for this problem is to reduce the heat loss (by the roof, the walls and the windows) by
developing advanced materials, particularly thermal insulation materials for buildings. Most traditional insulation
materials have a thermal conductivity between 30 to 50 mW.m−1.K−1 at 10 ◦C [3,4]. Thanks to recent progress in
this field, there have been advanced insulation materials developed having thermal conductivity lower than that
of traditional insulation material such as aerogel silica showing a thermal conductivity of 18 mW.m−1.K−1, or
Vacuum Insulation Panels (VIP) based on nanostructured silica or glass fiber with a thermal conductivity as low
as 7 mW.m−1.K−1. However, current thermal models of these innovative materials predict much lower thermal
conductivity in relative disagreement with the one that is measured at the macroscale.

∗Corresponding author.



In order to improve the insulating capacity of the composite materials, one must understand all the mechanisms
of the heat transfer through the insulation material including convection, conduction in the solid phases and
through the air as well as by radiation. In general, the thermal conductivity characterization of insulation materials
is based on a macroscopic sample with a size bigger than 10 cm. This characterization technique is enough
to give the effective thermal conductivity of the bulk material. However, to further improve the performance
of the insulation materials, one needs to have information on the contribution of each individual heat transfer
mechanisms at microscopic scale (conduction, convection, radiation) along with each building blocks. In VIP
insulating material, the building block is based on glued single glass fibers.

To characterize the heat conduction in one dimensional systems such as micro/nano fibers, different techniques
are available, including 3ω technique [5–18], optical heating-electrical thermal sensing technique [19], pulsed laser-
assisted thermal relaxation technique [20, 21] and transient electrothermal (TET) technique [22]. Among those
techniques, the longitudinal 3ω method is the most widely used for the measurement of suspended individual
1D samples [6, 9]. To implement the 3ω technique, a transducer deposited on top of the suspended structure
will serve as a heater and as a thermometer at the same time. This transducer is connected to a current source
which supplies an AC current oscillating at an angular frequency 1ω. This heating current will generate a voltage
oscillating with an angular frequency 3ω, which is directly connected to the thermal conductivity and specific heat
of the specimen. So by measuring this 3ω voltage, we will be able to extract the thermal conductivity and specific
heat of the sample.

Besides applications in the study of heat conduction in solid materials, the 3ω technique has been recently
applied to study the heat transfer in liquid and gas media as well as developed as a sensor for gas and liquid
detection [18,23,24]. Most of the previous works are dedicated to the measurement of thermal conductivity of the
liquid or sensing the amount of a specific liquid or gas. Recently in 2018, Gao and coworkers have reported on
the thermal transport around a micro-wire based on a steady-state hot-wire method [25]. They used a platinum
(Pt) wire with a diameter of 25 µm acting as thermometer and heater. By using a DC pulse applied to the Pt
wire and measuring the temperature of the Pt wire as function of gas pressure, they were able to calculate the
heat convection coefficient at different gas pressure.

Unlike the heat conduction in one dimensional system, the thermal transport at the interface between one
dimensional systems is not widely studied yet. In recent years, there have been some experimental works on this
problem, for examples, thermal contact resistance between single carbon nanotubes [26], the heat transfer in array
of aligned TiO2 nanotubes [27] and the thermal contact resistance between Pt wires [28]. Besides that, the T-type
probe technique [29, 30] appears to be interesting due to its practicalities. In this technique, a hot wire, which
is heated by a current, is in contact with one end of a to-be-measured wire, the other end of the to-be-measured
wire is in contact to the heat sink. The properties of the sample can be determined by measuring the temperature
change on the hot wire before and after being in contact with the sample. To the best of our knowledge, there are
no work on the study of the heat convection and conduction at the micro-scale on glass fibers.

In the present work, we propose an experimental set-up to measure thermal conductivity, specific heat of a
single suspended micro glass fiber based on 3ω technique. And by placing a micro glass fiber on top of two other
suspended ones, we can also measure the thermal contact resistance between two glass fibers based on modified
transient electrothermal technique [22] or an ”H-type probe” 1. By introducing to the measurement chamber
an exchange gas, we analyzed the influence of the gas pressure on the heat conduction through the convection
mechanism. With the proposed experiment, we are able to access the thermal information of the most important
building block of the insulation materials in terms of conduction of the solid phase as well as the influence of the
gas due to the convection heat transport.

2 Methods
In order to measure the thermal conductivity of a single glass fiber by the 3ω method, first the glass fiber is

suspended between two electrodes, then a niobium nitride (NbN) thermometric thin film is deposited on the glass
fiber to serve as transducer in the experiment [31]. To fix the fiber on the electrodes, silver paste is used since it
is a good thermal and electrical conductor. To keep the fiber suspended, the substrate underneath in silicon is
etched to make the electrodes look like pillars. Since a thermometric layer is deposited on the fiber, the pillar-like
electrodes have to have a bottleneck shape to ensure that the transducer is electrically isolated from the ground.

2.1 Fabrication process
The fabrication of the sample begins from a Si substrate coated by silicon nitride (SiN) with a size of 1 cm2.

By using sputtering, a layer of WTi/Au (5 nm/100 nm) is deposited on the Si substrate (Fig. 1 a). The WTi/Au

1A glass fiber is put on top of other two glass fibers forming an H shape.



Fig. 1. Micro-fabrication steps for the preparation of suspended glass fibers: a) WTi/Au layer is deposited on the Si substrate, b) Au contacts
are structured after the lithography and wet etching, c) contacts in the shape of pillar are obtained after dry XeF2 etching, d) the glass fiber is
suspended and installed on the contacts by silver paste, e) the sample is completed after deposition by sputtering of the NbN thermometer
on top of the glass fiber.

Fig. 2. a) SEM picture of a suspended glass fiber b) SEM picture of the glass fiber obtained under a tilted angle of 90o showing clearly the
suspension between the two electrodes c) optical image of the H-type probe geometry for the measurement of thermal contact resistances.

contacts are obtained by lithography and wet etching of WTi/Au by KI and H2O2 solutions as shown in Fig. 1 b.
After removing the photoresist by acetone and ethanol, the sample is etched using SF6 to remove the SiN layer,
then loaded immediately into a chamber for vapor etching Si using XeF2 gas. The step of etching Si by XeF2 is
to obtain contacts with bottleneck shape as shown in Fig. 1 c.

The glass fiber 2 is then placed on top of the contacts and fixed by drops of silver paste as shown in Fig. 1
d. Finally, a 140 nm thick film of NbN thermometer/heater is deposited on the fiber by pulsed DC sputtering.
Since the contacts have a shape of bottleneck, the thermometer deposited on the fiber is electrically isolated from
the ground as shown in Fig. 1 e. Figure 2 a shows the suspended glass fiber, visualized by Scanning Electron
Microscopy (SEM). By tilting the sample at an angle of 90o, the fiber is observed under SEM as shown in Fig. 2
b. From this picture, we clearly see that the fiber is well suspended and separated from the Si substrate.

Niobium nitride is selected for heater/thermometer in this experiment because it is a well known Mott-
Anderson insulator with an increasing resistance as the temperature is decreased [31]. NbN has better sensitivity
than other metallic thermometer even at room temperature; indeed the temperature coefficient of resistance (TCR)
of NbN at 300 K is about 6×10−3−7×10−3 K−1 in comparison to 2×10−3 K−1 of Pt thin film thermometer. More-
over, NbN has a much lower electrical conductivity than that of regular metallic thermometers. As a consequence,
by using the Wiedemann-Franz law, we can deduce that its thermal conductivity is really low and so this ther-
mometry is perfectly suitable for thermal measurements of low thermal conductivity materials like glass fiber in
the geometry of longitudinal 3ω method.

2The glass fibers are standard isolation glass supplied by Saint-Gobain Research (SGR).



Fig. 3. The electronic set-up dedicated to the 3ω technique is based on a differential bridge. The voltage signal on the thermometer is
compared to the voltage on the variable resistor Rvar in order to extract their difference. By this operation, the dominating 1ω voltage is
minimized, and hence the 3ω signal can be extracted with the smallest noise when the variable resistor is set to have the same resistance as
the thermometer.

2.2 Experimental protocol of the 3ω measurement techniques
The suspended fiber is heated by an AC current with frequency 1ω, I = I0sin(ωt). Due to Joule heating power

P = Pdc +Paccos(2ωt), the temperature of the transducer increases and oscillates at the angular frequency 2ω, T =
Tdc+Taccos(2ωt+ϕ), leading to the oscillation of the resistance of the thermometer at angular frequency 2ω, Rth =
R0(1+αTCRTdc +αTCRTaccos(2ωt +ϕ)), where αTCR is the TCR of the transducer. Therefore the voltage generated
by the oscillation of the temperature will oscillate at angular frequency 3ω, V = I0R0[Asin(ωt)+αTCRTacsin(3ωt+φ)].
Since the amplitude of the temperature oscillation Tac is sensitive to both the thermal conductivity and the specific
heat of the fiber, by measuring the 3ω voltage, one is able to extract the thermal conductivity and the specific
heat of the suspended fiber.

In the experiment, in order to determine the thermal conductivity k and the specific heat cp of the sample, we
made the measurements of V3ω versus frequency under high vacuum for different samples with different lengths.
In a second step, a similar measurement will be performed with the chamber filled with N2 gas. Under controlled
pressure of the gas, a set of V3ω measurements are made for different pressures. By fitting V3ω with a mathematical
model that will be developed in the following, knowing the value of k and cp from the measurements under vacuum,
the convective heat transfer coefficient between the fiber and the rest of the experimental chamber will be extracted
as a function of gas pressure.

2.3 Electronic set-up and thermometer calibration
The fabricated device dedicated to the 3ω technique (as shown in Fig. 2) is mounted on the sample holder

loaded into the measurement chamber and pumped to a high vacuum (p ∼ 5× 10−4 hPa). In order to have the
best sensitivity on the 3ω signal, the thermometer of the fiber is measured using a differential bridge circuit as
shown in Fig. 3. In this circuit the NbN thermometer (on the fiber) is connected in series to a variable resistor and
connected to a low noise current source. The voltage signals on the NbN thermometer and the variable resistor
are extracted from the circuit by comparators in the pre-amplifier. Then this voltage difference is monitored by
a lock-in amplifier. Before measuring the 3ω signal, effect from 1ω voltage is canceled by setting the value of the
variable resistor to have the minimum 1ω voltage at the output of the pre-amplifier.

For each sample, the resistance of NbN thermometer is first calibrated under high vacuum to obtain the
NbN resistance as a function of temperature. Fig. 4 shows the calibration data of the NbN thermometer on
the suspended glass fiber. The red square shows the resistance of the thermometer measured with a four point
configuration, and the black square shows the data measured with a two point configuration which is easier to
implement. The first important point from this data is that the deposited NbN has the expected behaviour since
the resistance increases as the temperature decreases. The temperature coefficient of resistance is estimated to be
about 6×10−3 K−1 at room temperature. The second point is that the difference between the two measurement
configurations is very small, less than 2% of the absolute value of the resistance. This means that the electrical
contact resistance is small; moreover that resistance is thermally coupled to the heat bath, so we do not expect
any spurious 3ω signal coming from the contact itself. Hence two point or four point configuration will not make
a significant difference. Regarding thermal transport in the thermometer itself, by using the Wiedemann-Franz
law, we can estimate the thermal conductance of the NbN layer to be of the order of 10−10 W.K−1, two orders of



Fig. 4. Calibration of the NbN thermometer deposited on suspended glass fiber. To avoid overheating, an AC current of 100 nA is applied to
the thermometer, the calibration is done by measuring the voltage using a lock-in amplifier at different temperatures.

magnitude less that any thermal conductance of glass fibers measured in this work.

3 Mathematical model describing the temperature variation of the suspended fiber
3.1 Solving the 3D heat diffusion differential equation

In the case of suspended glass fiber, the filament can be approximated by a glass rectangular parallelepiped
coated by a layer of NbN shown in Fig. 5. This glass parallelepiped is placed at a distance d from the thermal bath
at the bottom. The temperature of the thermal bath is set constant at T0. In order to have the same density of
power distributed in the fiber of diameter D1, as the heater is evaporated on a surface LπD1/2, we take 2a = πD1/2
and b = D1/2, then the surface of the normal section of the fiber is the same as in the real cylindrical glass fiber;
here we have investigated glass fibers with a typical diameter D1 = 9µm, which yields a = 7µm and b = 4.5µm.

The temperature along the fiber T (x,y,z, t) is given by the solution to the 3D heat diffusion differential equation
[32]:

∂2T
∂x2 (x,y,z, t)+

∂2T
∂y2 (x,y,z, t)+

∂2T
∂z2 (x,y,z, t) =

1
Ddi f f

∂T
∂t

(x,y,z, t) (1)

with Ddi f f =
k

ρcp
is the diffusivity of the fiber, k is the thermal conductivity, cp is specific heat and ρ is the

mass density of the fiber. In our experimental condition, the radiation heat loss is neglected.
In order to calculate the solution of Eqn. 1, we need initial and boundary conditions. Due to the symmetry

of the problem we only calculate T for x ≥ 0. The initial condition is : t = 0, T (x,y,z,0) = T0 and the boundary
conditions are:



y = 0, T (x,0,z, t) = T0; y = L, T (x,L,z, t) = T0

x = 0, ∂T
∂x (0,y,z, t) = 0; x = a, −k ∂T

∂x (a,y,z, t) = h2r(T (a,y,z, t)−T0)

z = 0,
a∫

0

L∫
0

−k
∂T
∂z

(x,y,0, t) dx dy =
P0

4
(1− cos2ωt)−

a∫
0

L∫
0

h2r[T (x,y,0, t)−T0] dx dy

z = b, −k ∂T
∂z (x,y,b) = h1r(T (x,y,b, t)−T0)

(2)

with the convection heat transport coefficients h1r for the bottom surface of the fiber and h2r for the other
surfaces of the fiber in the rectangular approximation as shown in Fig. 5 where the subscript r stands for rectangular;
in vacuum condition h2r = h1r = 0. The total electrical power through the heater is P(t) = R0I2

0 sin2
ωt or P(t) =

P0
2 (1− cos2ωt) with P0 = R0I2

0 ; R0 the resistance of the heater at T = T0 measured in four probe configuration.
Here, we used P(t)

2 for the heating power, due to the symmetry of the problem. With the small thickness of the
NbN layer, we neglected the mass of the heater in the solution of Eqn. 1.



Our model can account for the fact that the sample is placed closed to the bottom of the vacuum chamber
(10µm ≤ d ≤ 100µm) and the convective coefficients are different for the bottom face at z = b and the other faces
(h1r 6= h2r). The solution for T is then given by:

T (x,y,z, t) = T0 +Tstat(x,y,z)+U(x,y,z, t)+Uh(x,y,z, t) (3)

with Tstat(x,y,z) is the stationary part, U(x,y,z, t) is the transient part and Uh(x,y,z, t) is the periodic part. At the
angular frequency 2ω only the determination of Uh(x,y,z, t) =Uh(x,y,z)e2iωt is of importance. By using the Fourier
method of separation of variables [32], one obtains for Uh(x,y,z):

Uh(x,y,z) =−
∞

∑
n=1

∞

∑
m=0

sin(λma)
P0[(−1)n −1]

aLnπ

sin(γmy) cos(λmx)[cosh(αnmz)−Bnm sinh(αnmz)]

λma[1+ sin(2λma)
2λma ][h2r + kαnmBnm]

(4)

with αnm = (γ2
n +λ2

m + 2iω
Ddi f f

)1/2, where γn =
nπ

L and λm are solution of tan(λma) = h2ra/(λmak) and

Bnm = (1+
αnmk
h1r

tanh(αnmb))/(
αnmk
h1r

+ tanh(αnmb))

.
The mean averaged temperature on x and y at z = 0 is:

Ūh(z = 0) =
∞

∑
n=1

∞

∑
m=0

P0[(−1)n −1]2

aLn2π2
sin2(λma)
(λma)2 × 1

[1+ sin(2λma)
2λma ][h2r + kαnmBnm]

(5)

In the real space, the mean temperature is obtained from the following three equations:

Ur(z = 0) = Re[Ūh(x,y,0)× e2iωt ] = [Treal cos(2ωt)−Tim sin(2ωt)]
P0

aLπ2 (6)

Treal = Re
∞

∑
n=1

∞

∑
m=0

[(−1)n −1]2

n2
sin2(λma)

(λma)2[1+ sin(2λma)
2λma ][h2r + kαnmBnm]

(7)

Tim = Im
∞

∑
n=1

∞

∑
m=0

[(−1)n −1]2

n2
sin2(λma)

(λma)2[1+ sin(2λma)
2λma ][h2r + kαnmBnm]

(8)

Coming back to the 3ω method, the overall voltage is measured at the two extremities of the filament:

V (t) = (R0 +δR)I0 sin(ωt) (9)

where δR =
( dR

dT

)
T=T0

×Ur. At the 3ω angular frequency, the voltage V3ω will be related to the temperature
oscillation by the relation:

V3ω =
1
2

R0I3
0

aLπ2 (Tim cos(3ωt)+Treal sin(3ωt))
(

dR
dT

)
T=T0

(10)



Fig. 5. Model of the glass fiber coated by NbN (of thickness e = 140 nm) as a rectangular parallelepiped placed at a distance d from the
thermal bath at the bottom, with the convective heat transport coefficients h1r for the bottom surface and h2r for the top and side surfaces, L
being the length of the fiber, b the thickness and a the half width of the rectangular parallelepiped.

V3ω =
1
2

R0I3
0

aLπ2

(
dR
dT

)
T=T0

(T 2
real +T 2

im)
1/2 sin(3ωt +φ) (11)

with tanφ = Tim
Treal

.
Experimentally, a root mean square (rms) current is applied and hence the measured modulus of the V3ω will

be given by:

(V3ω)rms =
R0I3

rms

aLπ2

(
dR
dT

)
T=T0

(T 2
real +T 2

im)
1/2 (12)

This is the crucial equation that will be used later on to fit experimental data and extract the thermal
properties of the suspended fiber. Under high vacuum conditions, h2r = h1r = 0, we obtained the same equations
for the phase and the RMS modulus as in Lu’s work [6]. Finally, the value of k and cp will be obtained by fitting
the experimental data of (V3ω)rms as a function of the angular frequency using Eqn. 12.

If exchange gas is introduced in the measurement chamber, then we will need the value of h1r and h2r, keeping
the same k and cp as obtained from vacuum conditions, to fit the (V3ω)rms as a function of the angular frequency
ω. For this, we need to have a very clear estimation of h1r and h2r, if one wants to use Eqn. 12 under gas pressure.

3.2 Evaluation of the convection heat transport coefficients
In the previous section, to solve the differential equation of the heat diffusion, the glass fiber was approximated

as a rectangular parallelepiped, an approximation that eases to find the solution of the V3ω, with h1r and h2r the
coefficients of convection corresponding to different surfaces that need to be calculated precisely.

In the heat transfer theory of rarefied gas at rest, the calculations are made in th symmetric cylindrical
geometry for instance to evaluate the convection between a cylindrical fiber of diameter D1 at a temperature
T1 and an external concentric cylinder of diameter D2 at a temperature T2 (with D2 > D1). However, in our
experimental case, the geometry of the glass fiber inside the measurement chamber as depicted in Fig. 6 is neither
symmetric nor cylindrical. If the glass fiber used in this work is cylindrical, it is however suspended at a distance
d from the flat Si substrate that is connected to the thermal bath with 10 µm≤ d ≤ 100µm. Therefore, we have
neither a total cylindrical symmetry nor a planar symmetry. However, the dimensions of the experimental chamber
(D2 ' 2 cm) is much larger than the sample width justifying that the calculation of h, made in the cylindrical
symmetry, is the most appropriate one [33]. Then in order to calculate h1r and h2r we need in fact to solve three
problems, 1-find the right geometry for the system (fiber and chamber) allowing the use of the calculations of h1c
and h2c in the symmetric cylindrical geometry (the subscript c standing for cylindrical), 2-calculating h1c and h2c
for various pressures, 3-find the correspondence between the two geometry (rectangular and cylindrical), meaning
a relation between h1c,2c and h1r,2r.



Fig. 6. Approximate model for the convection heat transport. a) D1 is the diameter of the fiber (inner cylinder), D2 is the diameter of the
experimental chamber (outer cylinder), ε is the separation between the center of the fiber and the center of the experiment chamber, d is the
distance from the bottom of the fiber to the bottom of the experimental chamber, Φ1 in orange and Φ2 in green are the heat flux respectively
to the bottom or to the top of the chamber. b) schematic showing the assumption of the double cylindrical geometry where the heat flux to
the top of the chamber Φ2 is calculated using the cylinder Dmax and the heat flux to the bottom of the chamber Φ1 is calculated using the
cylinder Dmin.

3.2.1 h1c and h2c in a cylindrical geometry
In a purely conductive regime, where kgas is the thermal conductivity of a gas filling the outer cylinder, the

rate of total heat flow between the two cylinders of length L and diameter D1 and D2, as depicted in Fig. 6 a, can
be exactly calculated without any assumption on the geometry using the following equation [34]:

Φ = πD1L
kgas

D1

2(T2 −T1)

cosh−1[(D2
1 +D2

2 −4ε2)/2D1D2]
= hcS1∆T (13)

where ε is the vertical eccentricity of the inner cylinder and S1 = πD1L/2, the surface of the fiber.
A reasonable approximation can be made where the flux Φ is expressed as a sum of two heat fluxes. In this

approximation, the heat flowing from the fiber to the surrounding chamber is divided in two parts. One part will
be the upper heat flux, Φ2, that is exchanged between half of the surface S1 with the top part of the chamber
(approximated as a cylindrical chamber of diameter Dmax = D2 + 2ε), and the second part, the lower heat flux
Φ1, that is exchanged between half of the surface S1 with the bottom part of the chamber (approximated as a
cylindrical chamber of diameter Dmin = D1 +2d). The schematic describing this approximation is shown in Fig. 6
b. In each situation, the heat flux Φ1,2 will be associated with an exchange coefficient h1c,2c following :

Φ1,2 = h1,2
S1

2
∆T (14)

knowing that the total heat flux is expressed through: Φ = Φ1 +Φ2. We can deduced from Eqn. 14 a mean value
for h:

hc '
h1c +h2c

2
(15)



We can now compare the final value for h that can be calculated using Eqn. 15 to the one calculated using
the approximation made to obtain Eqn. 15; h1c and h2c being calculated using Eqn. 13 replacing D2 by Dmin for
h1c and by Dmax for h2c along with ε = 0 to be in accordance with our approximations.

Considering the typical sample prepared for this experiment, D1 = 9 µm, d = 71 µm, D2 = 2 cm, ε = 1 cm,
kgas = 2.4 W.cm−1.K−1. The coefficient hc obtained from Eqn. 15 are then (h1c +h2c)/2 = 1292 W.m−2.K−1 a very
close value to the hc coefficient calculated from Eqn. 13: hc = 1367 W.m−2.K−1. Within a reasonable accuracy
this calculation shows that our assumption of a double cylindrical geometry for the calculation of h coefficients is
good enough, and justifies its extension to the convection regime.

3.2.2 The h coefficients in the convective regime
To estimate the convection coefficient, one needs also to discuss the different regimes of heat transfer through

the gas since it will affect the limit used for the calculation. In these experiments, since pressure below the
atmosphere is used, the heat transfer from the fiber to the gas will be done in the limit of rarefied gas; indeed,
the case of atmospheric pressure is not the most interesting one for this study. By rarefied gas, we mean that the
molecular mean free path λ 3 is not small as compared to the characteristic dimension D; here D can be, for instance,
the diameter of the filament D1 = 9 µm. Since the studies of Maxwell on this problem [35], numerous analytical
solutions have been given, all of them depending on the Knudsen number Kn = λ

D1
[36]. Four different regimes of

heat transfer can be distinguished: the free molecule regime (Kn ≥ 10), the transition regime (10 ≥ Kn ≥ 0.1), the
slip flow regime (0.1 ≥ Kn ≥ 0.01) and the continuum or hydrodynamic regime (Kn ≤ 0.01) [33].

3.2.3 h1r and h2r calculations in the rectangular geometry
In this part, we will calculate h1r and h2r convection coefficients calculated in rectangular conditions as used

in the final equations describing the temperature oscillation Eqn. 6, Eqn. 7 and Eqn. 8 as a function of h1c and
h2c convection coefficients calculated in cylindrical conditions. In the calculation of the (V3ω)rms we used a model
where the area of the normal section of the sample was 2ab (see Fig. 5), but the real sample is a cylinder with
diameter D1, both of them have the same length L. If we take 2a = πD1/2 and b = D1/2, we have the same density
of power per m3 in cylindrical or rectangular condition, which is necessary in vacuum conditions. But when the
surface of the sample exchanges power with gas, our approximation is working, as we explained, if ab = πD2

1/8
along with πD1Lh2c

2 = 2aLh2c = (2a+2b)Lh2r, then a simple geometrical correspondence gives the relation between
h1r, h2r and h1c, h2c:

h1r = h1c (16)

h2r =
h2c

1+ 2
π

(17)

Now, in the following, h1c and h2c will be calculated for different ranges of pressure. For a diatomic gas in the
free molecule regime and in the transition regime (low pressure) the convection coefficient is given by [33]:

hLP
1,2 =

hFM

1+ 4×45×0.5αrD1
15×38λ

ln(Dmin,max
D1

)
(18)

Dmin,max being defined as in Fig. 6. In Eqn. 18, hFM is the convection coefficient in the free molecule regime given
by:

hFM =
αr(γ+1)
2(γ−1)

√
R0

2πMT2
p (19)

3The mean free path at a pressure P (as compared to the atmospheric pressure Pa) is given by the following equation λ = 5.88×
10−3Pa/P

√
T
T0

where T0 is the room temperature.



Fig. 7. V3ω versus RMS heating current at the frequency of 1.3 Hz. The linearity of the voltage signal measured by the lock-in amplifier with
the cube of the RMS current is showing that no over-heating is present during the measurement.

where αr =
α

1+(1−α)
D1
D2

with α is the accommodation coefficient closed to 0.93 (see Appendix A), γ is the ratio of

the specific heats at constant pressure and constant volume (for N2 γ = 1.4), M is the molecular mass of N2 in kg
per mole, T2 is the temperature of the measurement (T2 = 298 K), p is the pressure of the gas in Pascal and R is
the molar gas constant (R = 8.314 J.mol−1.K−1).

In the slip flow regime, with p ≥ 3 hPa (corresponding to a mean free path λ = 20 µm), we used a calculation
proposed by Hadj-Nacer et al. [37]:

hHP
1,2 =

15λp
4D1

√
2T2R0

M
2(T 1.5

1 −T 1.5
2 )

3T 1.5
2 (T1 −T2)[ln(

Dmin,max
D1

)+A 2λ

D1
(T1

T2
+ D1

Dmin,max
)]

(20)

with A = ( 2−α

α
+ 0.17)

√
π

Pr

γ

γ+1 where Pr is Prandtl number, for N2 at T2 = 298 K Pr = 0.71. For each range of
pressure, h1,2

LP and h1,2
HP have to be calculated for different surfaces of the samples.

As a conclusion for this part, depending of the regime of pressure, h1c and h2c will be equaled to either hLP
1,2 in

the low pressure regime or hHP
1,2 in the high pressure regime as described in Eqn. 18 and Eqn. 20.

4 Results
4.1 Thermal conductivity and specific heat of glass fiber

The first test we have to do in the measurement of thermal conductivity and specific heat of glass fiber is
to measure the dependency of the 3ω signal on the amplitude of the applied RMS current. Fig. 7 represents
the 3ω voltage signal as a function of I3

ac. The data shows a linear behavior meaning that in this measurement
range the fiber is not over-heated. This linear dependency with the cube of the current is the confirmation of the
proper functioning of the method and device. Then to extract the thermal properties (k and cp), the V3ω signal
is measured as a function of the frequency of the heating current as shown in Fig. 8. Red circles represent the
experiment data, black line is the adjustment of the data by using Eqn. 12 with fitting parameters k and cp. One
can noticed that the device has the expected response to the change of frequency as predicted by 3ω technique
modelling through Eqn. 12 giving high confidence in the thermal conductivity and specific heat extracted from
the experiment.

The measurements have been performed on many different fibers having various sizes. For each one, we fit
the experimental data to get the thermal conductivity and specific heat of the glass fiber as the fitting parameters
using Eqn. 12. By doing a statistical analysis on all the devices (more than twenty samples were measured), we
have obtained an average value of the thermal conductivity of glass fiber about 1.08±0.12 W.m−1.K−1 and specific
heat about 0.78±0.17J.g−1.K−1, which are in very good agreement with the values found in literature [38–41]. It
can be noticed that the thermal conductivity is obtained with little scattering, though the specific heat shows a
larger dispersion. This is coming from the fact that in the 3ω technique, thermal conductivity is measured with
lesser experimental error than the specific heat since it is estimated by fitting the high frequency part of the V3ω

measurement [42,43].



Fig. 8. V3ω voltage as a function of the heating current frequency for bias current of I = 3.94µA. The red circles are the experimental data
and the black line is the fitting curve using Eqn. 12 that will give the values of thermal conductivity and specific heat; in the case of this sample,
we find k = 1.05W.m−1.K−1 and cp0.80 J.g−1.K−1.

Fig. 9. V3ω signal versus frequency at different gas pressures. The V3ω is first collected at high vacuum, then the measurement chamber is
filled gradually with N2. At each controlled pressure, V3ω is measured as function of frequency.

Figure 9 shows a set of V3ω voltages as a function of frequency measured for different pressures of N2 from high
vacuum (10−4 hPa to ambient pressure 1000 hPa). These data clearly show a dependence of the V3ω signals to
the pressure of the gas; the V3ω voltages decreasing as the pressure increases due to a decrease of the temperature
oscillation. This is expected since by adding gas an extra thermalization path is provided.

To perform the V3ω data treatment using Eqn. 12, we will set the value of h1r to the one that is calculated
from the model described in the prior section using Eqn. 16, Eqn. 18 and Eqn. 20, keeping h2r as the only free
parameter. For obtaining the convection coefficient h2r at various pressure, the procedure described below has
been used. First, under vacuum condition (h1c = h2c = 0), the fitting of (V3ω)rms will give the intrinsic thermal
properties of the glass fiber k and cp, and second for experiments done under gas pressure, the (V3ω)rms is fitted
using Eqn. 12 with the convection coefficient h2r as free parameter. The comparison of the experimental value of
h2r with the model required to consider two situations. In the low pressure case, when p ≤ 3 hPa, the experimental
value h2r is compared to the calculated value hLP

2 as obtained from Eqn. 17 and Eqn. 18. For the high pressure
limit, when p ≥ 3 hPa the experimental value h2r is compared to the calculated value hHP

2 given by Eqn. 17 and
Eqn. 20.

These results are presented in Fig. 10. There is a very good agreement on all the measurement ranges of
pressure between the value of h2 obtained by fitting the Eqn. 12 to our experimental data, and h2 calculated with
Eqn. 18 or Eqn. 20. As a conclusion, for a wire of about 10 µm, the variation of the convection coefficients with
pressure can be well described by classical analysis of convection processes. At atmospheric pressure, a value
of 300 W.m−2.K−1 is found for the convective coefficient much bigger than for macroscale surface where the h
coefficient is equal to 10 W.m−2.K−1 [4,44]. This value can be compared to several existing values in the literature
of microfabricated structures from 35 W.m−2.K−1 measured on membranes by Jain et al. [45] and the one found



Fig. 10. Convection coefficients obtained by fitting our experimental data in comparison to the calculated values obtained from model detailed
in the present work. The black circles represent the convection coefficient h2r obtained from the fit of the experimental data; the calculated
coefficients h1 and h2 from the model are also presented for comparison: the black line is the convection coefficient h1 in the high pressure
limit, the dark blue line corresponds to h1 in the low pressure limit; the red line is the convection coefficient h2 obtained for high pressure, and
the light blue line for low pressure.

by Gao et al. where a coefficient of 600 W.m−2.K−1 has been measured on suspended platinum wire [25]; values
even much higher have been found in the case of carbon nanotubes [46]. The difference could originate from the
fact that the different micro or nano-structures do not have the same surface roughness and dimensions, but also
because Gao and coworkers, for instance, have used an experiment involving much higher ∆T along with different
data treatment techniques. As a conclusion, this experiment is of interest not only to evaluate h factor in the case
of MEMs and suspended probes for scanning microscopy, but also to show that a suspended glass fiber may serve
as a possible sensitive device for gas sensing for pressure p below 10 hPa.

4.2 Thermal contact resistance between two glass fibers
The last part of this work is dedicated to the estimation of the contact thermal resistance that may exist

between two glass fibers. This thermal resistance is playing a significant role in all the applications for thermal
isolation involving glass fibers, especially in rock-wool materials. The following is then detailing the experiment
and its modelling along with the experimental results.

4.2.1 Thermal contact resistance model
In order to get access to the thermal resistance when two glass fibers are put in contact, few suspended glass

fibers are installed in parallel. Then, we select two suspended fibers one next to the other, and on these two fibers,
we place another fiber at the middle of the two fibers as shown in Fig. 11. This configuration of the three fibers
forms a H-like structure, referred to as H-type probe in the following [47]. In this measurement, one suspended
fiber will be used as heating wire (L1), and the other one acts as sensing wire (L2). By measuring the temperature
of the heating wire and sensing wire at the thermal equilibrium state, we can determine the thermal contact
resistance between the top fiber and the two fibers underneath as depicted in Fig. 11; this means that we will
actually measure the thermal contact between a glass fiber coated with NbN and a bare glass fiber.

In this development, a DC current is first applied to the heating wire (L1). Due to Joule heating, the fiber
L1 will be heated to an equilibrium temperature with T1max = T1 at the center of the fiber L1. Then due to the
heat transfer through the crossing fiber, the fiber L2 is slightly heated to an equilibrium state with the maximum
temperature at the center T2max = T2. By measuring the temperature T1 and T2,the thermal contact resistance can
be extracted.

The thermal model of the contact resistance is detailed below. Based on the thermal resistance circuit presented
in Fig. 12, the heat flux Q̇c from fiber L1 to fiber L2 through the crossing fiber L3 is given by:

Q̇c =
T1 −T2

2Rc +R3
(21)

where Rc and R3 are the thermal contact resistances between glass fibers and thermal resistance of fiber L3



Fig. 11. Scheme of the H-type experiment: L3 is the crossing fiber (of 1.05 mm length) connecting thermally the two other fibers L1 =
0.39 mm and L2 = 0.5 mm ; L1 is heated by a DC current, a voltmeter is used to measure the voltage on the heating fiber and get its
temperature T1; the sensing fiber L2 is excited by an AC current, and a lock-in amplifier is used to measure the voltage on the sensing fiber
and gets its temperature T2. The temperature gradient along the fibers will determine the thermal resistance of the contact between the
fibers.

Fig. 12. Thermal resistance circuit representing the H-type experiment. T0 is the temperature of the thermal bath, T1 is the temperature
at the contact between fiber L1 and fiber L3, T2the temperature at the contact between fiber L2 and fiber L3, Rc is the thermal contact
resistance between two glass fibers which is supposed to be the same for different fiber pairs, R1 and R2 are halves of the thermal resistance
of the fibers L1 and L2, and R3 is the thermal resistance of the fiber L3.

respectively. Then the heat flux through the sensing fiber L2 to thermal bath is given by:

Q̇2 =
2(T2 −T0)

R2
(22)

where R2 is a half of the thermal resistance of the fiber L2. Since the heat flux through L3 is equal to the heat flux
through L2 then:

T1 −T2

2Rc +R3
=

2(T2 −T0)

R2
⇒ Rc =

R2(T1 −T2)

4(T2 −T0)
− R3

2
(23)

Substituting R3 = L3/(k3A3) in to the above equation, the thermal contact resistance is found to be:

Rc =
L2(T1 −T2)

8k2A2(T2 −T0)
− L3

2k3A3
(24)

where k3, A3 and k2, A2 are the thermal conductivities and cross-section of the crossing-fiber L3 and the sensing
fiber L2 respectively. Assuming that the fibers have the same thermal conductivity and diameter (k2 = k3 and
A2 = A3), the thermal contact resistance is written in a simpler form:

Rc =
1

2k3A3

(
L2(T1 −T2)

4(T2 −T0)
−L3

)
(25)



Fig. 13. Temperature on the sensing side versus temperature on the heating side when a fiber is deposited across the two other fibers. The
blue squares represent data after removing the crossing-fiber to serve as a reference, as expected, no heating can be detected. The red
squares represent data after re-mounting the crossing-fiber to show the reproducibility of the experiment.

Since k3, A3, L2, L3 and T0 are known parameters, when T1 and T2 are measured, the thermal contact resistance
can be calculated by using Eqn. 25.

4.2.2 Thermal contact resistance between glass fibers
In the experimental set up to estimate the thermal contact resistance, we sweep the heating current IDC from

1 µA to 70 µA with step of 1 µA and collect the temperature on both heating and sensing sides. The data is
shown in Fig. 13. From this data, we can clearly see heating effect on the sensing fiber with the appearance of the
crossing-fiber (black squares in Fig. 13). This heating effect is confirmed to be due to the heat transfer through
the crossing-fiber, since the sensing fiber is not heated when the fiber bridging the two others is not present (blue
squares in Fig. 13). The reproducibility is confirmed by mounting again the crossing-fiber (red squares in Fig. 13)
and obtaining the same results.

From the data presented in Fig. 13, we applied the Eqn. 25, with the known dimension of the fiber as
well as the thermal conductivity of glass fiber (k = 1.1 W.m−1.K−1) to obtain the thermal contact resistance
Rc ≈ 5× 107 K.W−1. This value is in good agreement with what has been observed in SThM thermal contact
measurements [48,49]. While the crossing cylindrical fibers between which the contact is made in our experiment
have a diameter of 9 µm, their surface exhibits sub-nanometer roughness over micrometer distances due to the
drawing process by which they are produced [50]. It is thus likely that they are in contact only through nanometer-
sized channels in vacuum. Note that the thermal contact resistance measurement that we perform does not
discriminate between the conductive and the near-field radiative channel. However, it is expected that the latter
will contribute very little since experimental measurements of the radiative thermal conductance as a function of
the distance between two objects exhibits a dramatic increase when solid-solid contact is established [51,52].

5 Conclusion
We have developed an experimental method for the measurements of thermal conductivity and specific heat

of a single suspended glass fiber, thermal contact resistance between two glass fibers and convection through
the exchange gas at different gas pressures. The measurements based on the 3ω technique have shown that
thermal conductivity and heat capacity of glass fiber are the same as that of regular glass (k = 1.1 W.m−1.K−1,
cp = 0.79 J.g−1.K−1). The convection heat transfer was analyzed by changing the pressure of the exchange gas
in the measurement chamber. With the same sample, it was possible to perform different measurements and
get the contribution in thermal transport from different heat transfer mechanisms in single glass fiber. The 3ω

experiment allowed to extract the convection coefficient from the fiber to the rest of the experimental chamber at
different pressures in good agreement with the various models of heat transfer through a gas. Finally, by using an
H-type technique, the thermal contact resistance has been measured with a value in the order of 5×107 K.W−1.
These observations will contribute to estimate which heat transfer mechanisms is playing the key role in insulation
material (conduction, convection or contact resistance).
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Appendix A: Coefficient of thermal accommodation
In order to calculate the heat transfer from the heater, it is necessary to know the flux of energy and momentum

carried by the molecules of gas impinging on the surface and then reflected from it. A coefficient of thermal
accommodation is then defined as [33,36]:

α =
Tr −Ti

Ts −Ti
(26)

with Tr and Ti are the temperatures of the reflected and incident gas streams, respectively; Ts is the temperature
the molecular stream leaving the surface would have, if this stream were to carry the same mean energy as a stream
issued from a gas in equilibrium at Ts. As an example, from experimental data obtained for a fiber of W in nitrogen
gas: 0.6 ≤ α ≤ 0.95 at room temperature [33].

Nomenclature
a Half width of the thermometric NbN strip.
b Thickness of the SiO2 fiber in the rectangular approximation.
cp Specific heat.
d Distance from the bottom of the glass fiber to the Si surface.
e Thickness of the NbN strip.
f Frequency of the electrical current.
h Convection coefficients, generic name.
h1 Convection coefficient of the bottom of the fiber.
h2 Convection coefficient of the top and sides of the fiber.
h1c Convection coefficient h1 in cylindrical condition.
h2c Convection coefficient h2 in cylindrical condition.
h1r Convection coefficient h1 in rectangular condition.
h2r Convection coefficient h2 in rectangular condition.
hLP

1,2 Convection coefficient h1,2 in low pressure condition.
hHP

1,2 Convection coefficient h1,2 in high pressure condition.
k Thermal conductivity.
k2 Thermal conductivity of fiber L2.
k3 Thermal conductivity of fiber L3.
p Pressure in the measurement chamber.
x,y,z and t Space and time coordinates.
A2 Cross section of fiber L2.
A3 Cross section of fiber L3.
Ddi f f The diffusivity of the fiber materials.
D1 Diameter of the glass fiber.
D2 Diameter of the measurement chamber.
I Electrical current.
I0 Amlitude of the electrical current.
Irms Root mean square of the electrical current.
Kn Knudsen number.
L Length of the glass fiber.
L1 Length of the glass fiber 1.
L2 Length of the glass fiber 2.



L3 Length of the glass fiber 3.
M The molecular mass.
P Electrical power.
Pa Pressure in the measurement chamber.
Pac The oscillating part of the heating power.
Pdc The constant part of the heating power.
P0 Amplitude of the electrical power.
Q̇2 Heat flux through the fiber L2.
Q̇c Heat flux through the fiber L3.
R The molar gas constant.
R0 Resistance of the transducer at T = T0.
R1 Half of the thermal resistance of the fiber L1.
R2 Half of the thermal resistance of the fiber L2.
R3 Thermal resistance of fiber L3.
Rc Thermal contact resistance.
Rth Resistance of the transducer as function of time.
S1 Surface area of the fiber.
T Temperature.
T0 Temperature of the thermal bath.
T1 Temperature at the contact between fiber L1 and fiber L3.
T1max Maximum of the temperature distribution on the fiber L1 due to Joule heating.
T2max Maximum of the temperature distribution on the fiber L2.
T2 Temperature at the contact between fiber L2 and fiber L3.
Tac The oscillating part of temperature gradient.
Tdc The constant part of the temperature gradient.
Theating the temperature on the heating fiber L1.
Ti Temperatures of the incident gas stream.
Tim The imaginary part of the temperature.
Tr temperatures of the reflected gas stream.
Treal The real part of the temperature.
Ts The temperature of the molecular stream leaving the surface.
Tsensing The temperature on the sensing fiber L2.
Tstat Stationary part of the temperature.
V3ω 3ω voltage signal.
(V3ω)rms Root mean square of the 3ω voltage signal.
U Transient part of the temperature gradient.
Uh Periodic part of the temperature oscillation.
Ūh The complex mean temperature.
Ur The mean temperature in the real space.
αTCR Temperature coefficient of the resistance.
α Coefficient of thermal accomodation.
γ The ratio of the specific heats at constant pressure and constant volume.
λ Molecular mean free path.
ε The separation between the center of the fiber and the center of the experiment chamber/vertical eccentricity
ω Angular frequency of the heating current.
φ Phase lag of the 3ω voltage signal.
ρ Mass density of the fiber.
Φ Total heat flow between the fiber and the chamber.
Φ1 Total heat flow between two concentric cylinders with diameters D1 and Dmin = D1 +2ε.
Φ2 Total heat flow between two concentric cylinders of diameters D1 and Dmax = D1 +2d.
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