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Abstract

The task of Diachronic Word Sense Induc-
tion (DWSI) aims to identify the meaning of
words from their context, taking the tempo-
ral dimension into account. In this paper we
propose an evaluation method based on large-
scale time-stamped annotated biomedical data,
and a range of evaluation measures suited to
the task. The approach is applied to two re-
cent DWSI systems, thus demonstrating its rel-
evance and providing an in-depth analysis of
the models.

1 Introduction

Words naturally evolve through time, their mean-
ing may encounter subtle or radical changes result-
ing in a variety of senses. For example, the word
mouse only had the meaning of animal until it
acquired a brand new sense in 1980 as computer
device. But sense changes are not always so defi-
nite, a word usage may drift progressively from its
original sense or be affected by historical events.
A recent example of this phenomenon is the word
coronavirus, which has seen a dramatic us-
age surge in 2020 because of the emergence of
its SARS-CoV-2 variant. Before 2020, the word
coronavirus was mostly a technical term de-
scribing a family of viruses, but it is now used in the
mainstream media to mean the specific SARS-CoV-
2, the related Covid19 disease or even the general
health crisis and its consequences.

The dynamic behaviour of words contributes to
semantic ambiguity, which is a challenge in many
NLP tasks. The ability to detect such changes
across time could potentially benefit various ap-
plications, such as machine translation and infor-
mation retrieval. In the biomedical domain, it can
improve the quality of the automatic identification
of senses in contexts where no complete terminol-
ogy is available, such as with clinical notes, and to
assist indexers who build terminology resources.

Recent research focused on detecting seman-
tic shifts across time (Kutuzov et al., 2018) but
also Diachronic Word Sense Induction (Emms and
Kumar Jayapal, 2016). The task of Diachronic
Word Sense Induction (DWSI) is similar to Word
Sense Induction (WSI) in identifying the meaning
of words from their context, but also takes the tem-
poral dimension into account.

In §2 we briefly present two Bayesian models
that have been proposed for the DWSI task: Emms
and Kumar Jayapal (2016) proposed a model which
represents the evolution of word senses in order
to detect the emergence year of new senses. A
different model was proposed by Frermann and
Lapata (2016), focusing instead on capturing the
subtle meaning changes within a sense over time.
However evaluating such models is difficult, as
the lack of large scale time-stamped data prevents
direct quantitative evaluation.

In this paper we introduce a method which relies
on annotated biomedical data to evaluate DWSI.1

While the general aim of this article is the evalu-
ation of DWSI systems across domains and gen-
res, the biomedical domain is the only one to date
which offers suitable data for the task. Our ap-
proach leverages the availability of unambiguous
manual annotations (and publication years) in the
Medline citation database in order to build a large
time-stamped dataset, as detailed in §3. In §4 we
introduce a range of evaluation measures which
can be used to directly and quantitatively measure
the performance of a DWSI system on such an
annotated dataset. Finally in §5 we compare the
two aforementioned models using our evaluation
method, which demonstrates the relevance of the
approach and allows a deep analysis of the models.

1The code is available at https://github.com/
AshjanAlsulaimani/DWSI-eval.

https://github.com/AshjanAlsulaimani/DWSI-eval
https://github.com/AshjanAlsulaimani/DWSI-eval


3172

2 State of the Art

2.1 Diachronic Word Sense Induction

Most existing work on diachronic meaning change
has focused on static methods, in the sense that
the learning algorithms are either time-unaware or
applied to independent periods of time (Lau et al.,
2012; Cook et al., 2014; Mitra et al., 2015). For
example, Mitra et al. (2015) split the data into eras
and then apply WSI independently on each era
subset in order to identify new senses of a word.
However, recent approaches have introduced time
aware probabilistic models in order to represent the
changes in word meaning over time.

2.2 The NEO Model

The model introduced by Emms and Kumar Jaya-
pal (2016), called NEO2 herein, is a generative
Bayesian model that chooses a sense s given a time
t (respecting relevant sense-given-time probabili-
ties P (s|t)) then chooses context words w given
the sense s (respecting relevant word-given sense
probabilities P (w|s)). The joint probability distri-
bution over the parameters is defined as in (1).

P (t, s,w;⇡1:N , ✓1:K)

=
Y

t

Dirich(✓t; �⇡)⇥
Y

k

Dirich(✓k; �✓)

⇥ P (t; ⌧1:N )P (s|t;⇡1:N )
Y

wi2w

P (wi|s; ✓1:K)

(1)

The authors’ aim is to capture sense changes in
order to detect the emergence, i.e. origin time, of a
novel sense. In this model the probabilities of the
context words are represented independently from
time, which means that senses can change over time
with respect to each other, but the probabilities
of the words representing a particular sense are
assumed to be constant.

2.3 The SCAN Model

Frermann and Lapata (2016) proposed a generative
Bayesian model inspired from dynamic topic mod-
eling (Blei and Lafferty, 2006), hereafter called
SCAN, which shares similarities with NEO but is
more complex: given a time t, a sense s is chosen
following the distribution of the parameter �t; then
given a sense s and a time t, the context words w
are drawn following the distribution of the param-
eter  s,t. This design allows the representation of
a sense with a different distribution of words at
different times, as opposed to NEO. Thus in the

2This abbreviation is not provided by the authors of the
work. It is used here as a reference for the model.

SCAN model, time-adjacent representations of a
sense are codependent in order to allow capturing
the meaning change in a smooth and gradual way.
This is made possible by defining their prior as
an intrinsic Gaussian Markov Random Field. Fol-
lowing the structural dependencies defined through
iGMRF prior, Frermann (2017) expresses the pos-
terior distribution over the latent variables given
the input w, parameters a, b, and the choices
of the distributions Gamma (Ga), Logistic Normal
distribution (N ):

P (s,�, ,�|w, , a, b)

/Ga(�; a, b)
Y

t

hY

k

⇥
N( t,k| )

⇤Y

d

⇥
�t

s

Y

wi2w

 s,t
wi ]

(2)

where � is drawn from a conjugate Gamma
prior and  is estimated during inference, which
both control the degree of sense-specific word dis-
tributions variations over time. Thus the SCAN
model is meant to capture changes between senses
but also changes of meaning within a sense.

2.4 Existing Evaluation Methods

One way to find the ground truth of sense emer-
gence is by using a dictionary. This approach is
taken by many studies (Rohrdantz et al., 2011; Lau
et al., 2012; Cook et al., 2014; Mitra et al., 2015).

In (Emms and Kumar Jayapal, 2016), the model
is evaluated qualitatively on the Google NGrams
corpus (Michel et al., 2011), using a few manu-
ally selected target words. The ground truth is
obtained by the “tracks-plot” method, which con-
sists in representing a target sense by a few hand-
picked co-occurrences (e.g. “screen”, “click” for
mouse as a computing device), then tracking these
co-occurrences over time and taking the mean of
the separate tracks. An emergence detection al-
gorithm “EmergeTime” is proposed in (Jayapal,
2017) to detect the year of emergence either from
the “tracks-plot” data (ground truth emergence)
or a predicted distribution P (s|t) (predicted emer-
gence). The algorithm checks whether there is a
year in the P (s|t) plot which satisfies the following
constraints:

• The year is followed by a 10 year window of
sufficient increase in probabilities: 85% of the
years show a climb in probabilities of 2-3% of
the maximum value.

• 80% of the preceding years are lower than 0.1
(i.e. close to zero in probability).
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Emms and Kumar Jayapal (2016) evaluate the
quality of the sense clustering qualitatively by in-
specting the top 30 ranked words that are associated
with a specific sense.

Frermann and Lapata (2016) present four indi-
rect evaluation methods, relying on closely related
tasks used as applications of their model:

• “Temporal Dynamic”: qualitative evaluation
of the appearance of a new sense.

• “Novel Sense Detection”: evaluation using
Mitra et al. (2015)’s complex approach based
on WordNet.3

• “Word Meaning Change”: evaluation using
Gulordava and Baroni (2011)’s method and
data for detecting meaning change between
two time slices.

• “Task-based Evaluation”: extrinsic evalua-
tion on the SemEval Diachronic Text Eval-
uation task (Popescu and Strapparava, 2015),
designed for supervised learning.

Despite the authors’s best efforts to compare
their results against others, they state that the
“scores [that they obtain] are not directly compa-
rable due to the differences in training corpora,
focus and reference times, and candidate words”
(Frermann and Lapata, 2016, p.39). Additionally,
models of both Emms and Kumar Jayapal (2016)
and Frermann and Lapata (2016) offer a continu-
ous time representation P (s|t). The sophistication
of their systems would deserve a more suitable
evaluation framework, since they have to simplify
their outcomes in order to compare them against
previous works which rely on models which only
represent independent time slices.

A recent evaluation framework is proposed by
(Schlechtweg et al., 2020) for the task of Unsuper-
vised Lexical Semantic Change Detection (LSC) in
SemEval-2020. However, the benchmark datasets
contain only two independent periods of time. The
subtasks are only designed to capture whether there
is a change (subtask 1) or the extent of a change
(subtask 2). Precisely, as opposed to the DWSI
task, the subtasks do not capture how many distinct
senses exist in the data, what kind of change hap-
pens over time, to which sense, and the emergence
year of a novel sense. Although the annotation
process involves clustering senses and computing
sense frequency distributions for two independent
periods of time, the sense information is neglected.

3https://wordnet.princeton.edu/

Instead, the target values of the subtasks are based
on “change scores” which represent only the exis-
tence or degree of LSC. As a result of this simpli-
fication, the evaluation methods used in the Unsu-
pervised LSC are incompatible with the WSI and
DWSI tasks. The task differs from WSI and DWSI
in the sense that it does not either provide a way to
predict the sense of an instance or the set of senses
of a polysemous target word and their prevalence.

3 A Biomedical Dataset for DWSI

The DWSI task requires not only target words with
several senses, but also time-stamped data for ev-
ery target word. The evaluation of DWSI is chal-
lenging because manual annotation of such a large
amount of instances (since they span over many
years) would be prohibitively costly.4 In this sec-
tion, we propose a method to collect diachronic
data for ambiguous terms in medical terminologies.

3.1 Data Collection Process

Our method relies on the medical literature and
exploits medical terminology resources: Medline5

is a database referencing most of the biomedical
literature (30 millions citations). The citations are
annotated with Mesh descriptors. MeSH6 (Medical
Subject Headings) is “the US National Library of
Medicine (NLM) controlled vocabulary thesaurus
used for indexing articles for PubMed.” The Uni-
fied Medical Language System (UMLS) Metathe-
saurus is “a large biomedical thesaurus that is orga-
nized by concept, or meaning, and it links similar
names for the same concept” (Bodenreider, 2004).7

Each concept in UMLS is identified by a Concept
Unique Id (CUI), and all the terms listed in UMLS
are assigned a CUI. Since UMLS includes MeSH
terms, there is a partial mapping between MeSH
descriptors and UMLS CUIs.

The MSH WSD data (Jimeno-Yepes et al., 2011)
consists of 203 ambiguous medical terms, each
provided with the list of CUIs which identify the
different meanings of the term. This dataset was
created for the Word Sense Disambiguation task,

4 DWSI takes into account the progressive evolution of
senses across time, as opposed to other works which consider
only two specific points in time, e.g. (Schlechtweg et al.,
2020). Thus we chose this biomedical dataset because it
has the unique characteristic to contain a large amount of
ambiguous instances which are (1) carefully annotated with
senses and (2) time-stamped, spanning around 70 years. To
our knowledge, there are other datasets which satisfy either
condition (1) or (2), but none which satisfies both.

5https://www.nlm.nih.gov/bsd/pubmed.html
6https://www.ncbi.nlm.nih.gov/mesh
7https://www.nlm.nih.gov/research/umls

https://wordnet.princeton.edu/
https://www.nlm.nih.gov/bsd/pubmed.html
https://www.ncbi.nlm.nih.gov/mesh
https://www.nlm.nih.gov/research/umls
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so the instances it contains are labelled by CUI
(sense) but they are not time-stamped. We collect a
time-stamped dataset as follows:

1. The MSH WSD data provides us with target
terms and CUIS.

2. For every CUI, the corresponding MeSH de-
scriptor is extracted from UMLS.

3. From Medline, all the citations labeled with a
particular MeSH descriptor are extracted (title,
publication year and abstract if any).

4. When available, the text of the full article is
retrieved from PubMed Central.8

3.2 Data pre-processing

For every target and every sense (CUI), a collec-
tion of documents made of titles, abstracts and full
articles is obtained. Every occurrence of the target
term in a document is assumed to have the sense
given by the CUI.9 In the interest of maximising
the number of instances available for each year, we
also collect the full list of terms associated with the
CUI from UMLS and substitute every occurence
of such a term with the ambiguous target. In both
cases of collecting instances, the longest possible
term is matched in order to capture the most spe-
cific expressions.10

SpaCy11 is used to tokenise the documents into
sentences and words. Using a global stopword list
based on the tokens frequencies, the most frequent
tokens such as non-content words (the, a, however)
and punctuation signs (!, %) are removed from the
context. Every occurrence of the target in a docu-
ment is extracted together with its 10-word context
(5 words on each side). In order to provide the
DWSI systems with sufficient data for every year,
we only include the longest consecutive period with
at least 4 instances every year across senses.

At the end of the process, the dataset contains
188 target (out of 203 initial targets).12 175 targets
have two senses, 12 have 3 and one has 5 senses.

8https://www.ncbi.nlm.nih.gov/pmc/
9This assumption might not be always satisfied, but the

noise is likely to be negligible. There might also be a small
number of MeSH annotations errors in Medline.

10We obtain 3,119,248 instances before substituting the
associated terms and 13,791,570 after, that is roughly 4.5
times more instances (these values are only for abstracts, the
proportion is probably similar with PMC articles).

11https://spacy.io/api/tokenizer
127 targets are not valid anymore due to UMLS updates that

happened since the WSD data was created, 2 are filtered out
due to insufficient data across years, and 5 are removed due to
a technical incompatibility with one of the two systems tested.

There are 61,352 instances by sense in average.13

102 senses out of 391 have emergence according to
the “EmergeTime” method.14

4 Evaluation

As explained in §3, the collected dataset contains
sense labels which can be used to directly evaluate a
DWSI system in a reliable way. Since by definition
the ouput of an unsupervised clustering algorithm
is unlabeled, we propose in §4.1 a method to match
a gold sense with a predicted sense. Thanks to
this matching method, a system can be evaluated
externally, in a way similar to a supervised WSD
system. We propose several evaluation methods,
each meant to capture the performance of a DWSI
system from a different perspective.

4.1 Global Maximum Matching Method

After estimating the model, the posterior probabil-
ity is calculated for every instance, according to Eq.
(3) for NEO and Eq. (4) for SCAN. The sense cor-
responding to the maximum probability is assigned
to the instance.

P (S|td,wd) =
P (S, td,wd)P
S0 P (S0|td,wd)

(3)

P (S|td,wd) / P (Sd|td)P (wd|td, S) (4)

The pairs of gold/predicted senses are matched
iteratively based on their joint frequency. At every
iteration, the pair corresponding to the highest fre-
quency (global maximum) in the table is matched.
Once a gold sense is matched with a predicted
sense, neither the gold nor the predicted sense can
be matched again with another sense. This elimi-
nates the possibility of having two different gold
senses matched with the same predicted sense or
two different predicted senses matched with the
same gold sense, an issue present in the methods
used by (Agirre and Soroa, 2007; Manandhar et al.,
2010).15 Moreover, by matching the largest senses
first, the number of incorrectly matched instances
is minimized. An example is provided in table 1.

4.2 Based on Clusters of Instances

4.2.1 Clustering Classification Measures

Given the true class (i.e. true sense, obtained
as explained in §3) and the assigned predicted

13Minimum 8 and maximum 1.6m instances by sense; min-
imum 778 and maximum 1.7m instances by target.

14Details about the dataset and the EmergeTime algorithm
are provided in Appendix A.2 and A.1 respectively.

15A detailed example is provided in Appendix A.3.

https://www.ncbi.nlm.nih.gov/pmc/
https://spacy.io/api/tokenizer
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C0030131 C0030625 C0078944 C0149576 C0429865

0 608 502 4680 352 5171
1 108 191 1963 466 17345
2 131 220 2139 484 16128
3 153 230 2684 637 26222

4 1313 1623 885 98 569

C0030131 C0030625 C0078944 C0149576 C0429865

0 608 502 4680 352 -
1 108 191 1963 466 -
2 131 220 2139 484 -
3 - - - - -
4 1313 1623 885 98 -

Predicted sense Gold sense

0 C0078944
1 C0030131
2 C0149576
3 C0429865
4 C0030625

Table 1: Global maximum matching example. The top
contingency table shows the number of instances for
every predicted/gold sense pair (the predicted sense is
assigned by calculating the maximum of the posterior
probability). At the first iteration, senses C0429865
and 3 are matched based on the global maximum (in
bold). The second table shows the remaining frequen-
cies at the second iteration. The bottom table shows the
resulting matching at the end of the process.

class (obtained using the matching method pre-
sented in §4.1), every instance can be categorised as
True/False Positive/Negative for any specific sense
s, following the standard classification methodol-
ogy. This way the standard binary classification
measures can be applied at the level of a sense:
precision, recall, F1-score. The micro-average and
macro-average of these measures are calculated to
represent the performance at the level of a target or
across targets.

4.2.2 Clustering Mean Absolute Error

The classification measures do not distinguish
whether the system is confident in its prediction
(e.g. if the posterior probability is 0.99) or not (e.g.
if it is 0.51), this is why we also propose to use the
mean absolute error (MAE). The intuition behind
this measure is that a perfect system should predict
probability one for the gold sense and zero for any
other sense. Therefore, the further the predicted
probability deviates from one, the higher the er-
ror. We use the mean absolute error to measure
how close to one is the posterior probability of the
gold sense in average. The mean absolute error is
defined for every sense as in Eq. (5).

1
|D|

X

d2D

(1� P (ŝg|d)) (5)

where D represents a set of instances, ŝg is the
sense that matches the gold sense, and the poste-
riors are defined as mentioned in Eq. (3) and (4).
Since the individual error value is unique for a
given instance, this measure can be calculated for
any set of instances, in particular at the level of a
single sense, a target or across the whole data. By
contrast to the classification measures which assign
a categorical label to an instance, this measure takes
into account the potential numerical variations of
the probability values. However at the level of a
sense it does not capture any information about the
false positive cases. As a consequence, classifica-
tion measures and MAE are susceptible to show
complementary aspects of performance.

4.3 Based on the Estimated Parameters

4.3.1 Emergence Classification Measures

Generally the task of emergence detection consists
in predicting the year (or period of time) when a
new sense emerges. As explained in §2.4, this task
is performed by applying the emergence detection
algorithm on the inferred P (s|t) parameter. In
theory the true answer is the emergence year, but
in a classification setting it is reasonable to allow
some margin of error. Thus the predictions of an
emergence is counted as correct if it falls within
the bounds of a 5 year window centered on the
true emergence year. Based on this categorisation,
the standard precision, recall and F1-score can be
calculated across all targets.

4.3.2 Emergence Mean Absolute Error

The binary classification measures restrict the pre-
dicted answer to be either inside or outside a win-
dow, thus do not take into account the distance
between the gold and predicted emergence years.
By contrast, a numerical error value can be calcu-
lated as follows:

e =

8
<

:

0 if ¬g ^ ¬p
M if (¬g ^ p) _ (g ^ ¬p)
|y � ȳ| if g ^ p

where:
• g (resp. p) is true if and only if the gold (resp.

predicted) sense has emergence,
• M is the maximum error defined as the num-

ber of years of data for a specific target,
• y is the true year of emergence and ŷ is the

predicted year of emergence.
In order to compare error levels across different

targets, a normalised variant is defined as enorm =
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e

M
. The MAE is defined over a set of senses S as

the mean of their enorm values.
The intuition is that the case where both the gold

and the predicted senses have emergence should
always be assigned a lower error than when only
one of them has emergence, therefore we assign
the maximum error in the latter case. Since all
the targets do not have the same number of years
of data, the maximum individual error is different
among targets, this is why a normalised variant is
used where the individual value is divided by the
total number of years. This allows comparisons of
the error level between senses, targets, as well as
at the system level.

4.3.3 Time Series Distances

The predicted evolution across time of the sense
probability P (s|t) is an essential outcome of the
DWSI task. We use distance measures in order to
evaluate how far the predicted P (s|t) is from the
true probability across time. There are many op-
tions available for measuring the distance between
two time series. We propose two of them:

• The linear Euclidean distance is a simple mea-
sure which assumes that the ith point in one
sequence is aligned with the exact ith point in
the other one.

• The non-linear Dynamic Time Warping
(DTW) distance measure performs an align-
ment of the two sequences (Berndt and Clif-
ford, 1994; Sardá-Espinosa, 2017). This al-
lows a more flexible comparison of the dis-
similarity with respect to the alignment of the
two series across time.

The superiority of DTW over Euclidean measure
is that DTW is tailored to time shifts, scale and
noise and not only defined for series of equal length.
In our task, we will compare both Euclidean and
DTW results and test whether DTW finds local
similarities between sequences which share some
patterns but are not fully aligned.

5 Results and Analysis

In this section, we evaluate the NEO and SCAN
systems using the dataset presented in §3 and the
evaluation methods defined in §4. This allows us
to compare the two systems on the same grounds.
Additionally this rich annotated dataset allows us
to provide an in-depth analysis, thus uncovering
the strengths and weaknesses of the two systems.

The DWSI task is unsupervised, so the whole

data is used both to estimate the parameters and
perform evaluation on the predictions. No param-
eter has been tuned at any point: the experiments
are run using the systems provided by the original
authors with their default parameters, except for
the number of senses (the true number of senses is
used for evey target), one-year time interval, and
the size of the context window (10).16

5.1 Observations of Posterior Distribution

The graphs in Figure 1 show the frequency of
the predicted probabilities that correspond to the
matched gold senses and the frequency of the high-
est predicted probabilities that are assigned for each
instance. The predicted probabilities follow a U-
shaped distribution, which means the system tends
to assign extreme probabilities (close to either zero
or one) to the majority of the data. The graphs also
show the overlap between the predicted gold sense
probabilities and the highest predicted probabili-
ties, which represents the instances where the true
sense was predicted correctly. By contrast, the area
in red on the left half represents cases where the
true sense is predicted with a low probability (false
negative), and the blue area which does not overlap
represents instances where an incorrect sense is
predicted (false positive). In comparison to NEO,
SCAN tends to assign even more extreme proba-
bilities. In particular, SCAN tends to make more
serious errors: in more than 5 millions cases, the
predicted probability is 0 (or close to 0) for the gold
sense instead of 1.

Table 2 compares the deciles of the error distribu-
tion between NEO and SCAN. For NEO, the error
is below 0.1 (near perfect predictions) for more
than 30% of the instances while it is above 0.9
(totally incorrect predictions) for slightly less than
20% of the instances. In contrast, SCAN scores
correctly more than 40% of the instances while the
incorrect predictions are more than 30%.

Overall, NEO performs better than SCAN ac-
cording to the MAE: 0.425 vs. 0.444. This differ-
ence is significant (p-value 0.000024 for Wilcoxon
signed rank test at the level of targets).

5.2 Influence of Data Size

It is often expected that performance improves with
the amount of data provided. This is not verified in
the data, which shows a slight negative correlation
level (between -0.1 and -0.3) between data size and
performance across targets in both systems.

16For details about the parameters, see Appendix A.1.
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Figure 1: Distribution of the probabilities predicted by
NEO and SCAN systems: the red distribution repre-
sents the predicted probability of the gold sense for ev-
ery instance in the data; the blue distribution represents
the highest predicted probability for every instance.

Bottom N % decile (NEO) decile (SCAN)
10% 0.009 0.0000002
20% 0.039 0.00003
30% 0.095 0.001
40% 0.189 0.016
50% 0.331 0.174
60% 0.518 0.774
70% 0.718 0.985
80% 0.880 0.999
90% 0.973 0.999

Table 2: Deciles for error values for the predicted
senses (across all instances) based on the clustering
mean absolute error evaluation measure for NEO and
SCAN systems.

We investigate how the size of each sense (as
opposed to the full target size) contributes to the
performance of the model. In other words, we
observe the difference between targets where the
senses have a similar size and targets where there
is a strong imbalance between the senses. For ev-
ery target, the standard deviation of the sense size
proportions is used as a measure of the imbalance
across senses. Figure 2 shows the relationship be-
tween SD and macro F1-score. There is a clear
pattern where higher imbalance between senses
is associated with lower performance in general,
regardless of the model type.

A detailed analysis shows that SCAN outper-
forms NEO when the imbalance level is not large
between senses within a target, while the two sys-
tems perform similarly otherwise. This effect can
be observed in the global classification results in
table 3. SCAN outperforms NEO at the level of
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Figure 2: Relation between gold sense imbalance and
performance by target.
Pearson correlation: NEO -0.48, SCAN -0.52

Perf. NEO SCAN
P R F1 P R F1

macro 0.548 0.569 0.558 0.562 0.591 0.577
micro 0.595 0.595 0.595 0.558 0.558 0.558

Table 3: Global classification results for NEO and
SCAN systems. P/R/F1: Precision/Recall/F1-score

macro results whereas NEO performs better at the
level of micro results. However, Wilcoxon rank test
shows that the superiority of SCAN at the level of
macro F1-score by target is not significant (p-value:
0.354) whereas the superiority of NEO at the level
of micro F1-score is (p-value: 1.167e-07). Given
that macro scores are based on the average per-
formance across senses independently from their
size, this means that SCAN performs better than
NEO with the minority class (i.e. sense) and con-
versely NEO shows better performance with the
majority class. Table 4 confirms that the superiority
of SCAN for the minority class is not significant
yet the superiority of NEO for the majority class is.

Number of Sense Mean F1-score Wilcoxon test
Senses rank NEO SCAN p-value

- first 0.299 0.321 6.657119e-01
- last 0.732 0.692 3.503092e-10
2 first 0.315 0.335 6.920240e-01
2 second 0.740 0.6995 1.310836e-09
3 first 0.100 0.143 1.000000e+00
3 second 0.253 0.390 1.220703e-02
3 third 0.629 0.597 2.333984e-01

Table 4: Comparison of the performance by senses,
ranked by proportion within a target. The sense rank
is organised by the number of senses. It starts from
the smallest sense (in proportion; rank first) and in-
creases to the largest (rank last). “-” means the rank-
ing is based on the min and the max senses across all
the data. Wilcoxon test is applied on the F1 scores of
the senses in order to assess whether the distribution of
F1 scores is significantly different between NEO and
SCAN by number of senses.
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Figure 3: Relation between size of the gold and pre-
dicted senses for NEO (top) and SCAN (bottom).

System Precision Recall F1-score
NEO 0.306 0.250 0.275
SCAN 0.126 0.090 0.105

Table 5: Results of NEO and SCAN regarding detect-
ing the emergence of a new sense (5 year window).

Having confirmed that the imbalance between
gold senses size has a strong impact on perfor-
mance, we observe how the two systems behave
with respect to the predicted size of the senses.
It can be observed on Figure 3 that both systems
split the data in favour of the senses with a low
proportion, i.e. tend to predict a larger size for
small senses and conversely a smaller size for large
senses.17 This tendency is exacerbated for SCAN
which splits most senses equally regardless of their
true size.
5.3 Evaluation of Emergence

Table 5 shows the global results after applying the
emergence algorithm on the predictions of both
systems. NEO performs much better than SCAN
in predicting the emergence of a new sense, with
an F1-score of 0.275 against 0.106 for SCAN.

Figure 4 shows the gold standard and the pre-
dicted emergence years for every sense which has
emergence in both NEO and SCAN. SCAN tends
to have earlier emergence results compared to the
gold, while NEO tends to take the opposite di-
rection with an average difference of -17.318 and
0.697 respectively across the senses. This tendency

17For the sake of concision, in this analysis we call “small
(resp. large) sense” a sense with a low (resp. high) proportion
of instances within the target.

System Global MAE Normalised Global MAE
NEO 17.076 0.295
SCAN 19.028 0.327

Table 6: Global emergence MAE, based on individual
error by sense.
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Figure 4: Gold and predicted emergence years for NEO
and SCAN, ordered by gold emergence year.

is confimed by the fact that 90% of the amount of
the difference error (predicted -gold) is predicted
earlier for SCAN while NEO has only 45% of early
predictions. The MAE results shown in table 6 are
consistent with the classification results, showing a
better performance by NEO. The emergence results
in both systems are affected by data imbalance: for
instance, both systems have a high number of FN
cases when senses have a lower proportion of data
(< 0.5). Similarly, the FP cases tend to correspond
to senses which have a lower proportion.

5.4 Evaluation on P (s|t)
Table 7 shows that NEO has less errors by senses
across years than SCAN according to the dis-
tance measures over P (s|t). This is confirmed by
Wilcoxon test, which shows that the errors distribu-
tions of the two systems are significantly different.

One would expect that the distance errors have
an impact on emergence. By examining the means
of two categories, TP cases (when the emergence is
predicted within 5 years of the true emergence, see
5.3) as a category and the rest as a second category,
one can observe that the means of the errors is
lower for the former while its higher for the latter,
as shown in table 8.

5.5 Comparing Evaluation Measures

The evaluation measures reflect different types of
errors. The correlation values between clustering-
based classification and regression measures are
-0.71 for NEO and -0.44 for SCAN. This apparent

Distance NEO SCAN Wilcoxon
Global mean Global mean p-value

DTW 0.182 0.222 2.0413e-15
Euclidean 0.124 0.142 5.3543e-06

Table 7: Mean distance errors across senses by DTW
and Euclidean algorithms.
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Predicted DTW Euclidean Error
Emergence mean mean mean

NEO TP 0.078 0.0415 0.009
not TP 0.189 0.130 0.313

SCAN TP 0.193 0.124 0.016
not TP 0.222 0.142 0.334

Table 8: Comparison between mean errors by predicted
emergence status (error values normalised by the num-
ber of years). DTW and Euclidian distance are ob-
tained by comparing the predicted vs. gold P (s|t),
whereas the classification status (TP vs. not TP) and
normalised error mean are calculated based on the
emergence year by sense.

Distance Sense level Target level
Measure F1-score macro F1-score

NEO DTW -0.270 -0.448
Euclidean -0.230 -0.432

SCAN DTW -0.313 -0.419
Euclidean -0.248 -0.374

Table 9: Correlation between distance measures and
classification measures at the level of senses/targets.

discrepancy between the two evaluation measures
is explained by several factors, some related to the
definition of the measures and some due to the data
characteristics. On one hand, the MAE is calcu-
lated as the average error across the instances which
are labeled only with this particular true sense. On
the other hand, in the classification setting, all the
instances of a target are taken into account for a
specific sense. This implies that the instances of
the other senses are also taken into account.

For any given year t, the probability of the pa-
rameter P (s|t) is estimated from the proportion
of a sense among the instances of this year. This
means that the value of the parameter P (s|t) is di-
rectly related to the posterior probability used for
the evaluation at the level of the instances. There-
fore one would expect a quite strong correlation
level between the DTW and/or Euclidean distance
based on the estimated parameter P (s|t) and the
evaluation score based on the instances. How-
ever the correlation values observed at the level
of senses (e.g. F1-score) is weak, although they are
more significant at the level of targets, as shown in
table 9.

The low correlation level is primarily due to
the fact that the majority of the targets have two
senses which are complement of each other, thus
the two P (s|t) series are a mirror of each other (i.e.
P (s1|t) = 1� P (s2|t)), in turn causing the DTW
and Euclidean distance values to be the same for
both senses. On the contrary, the instance-based
evaluation scores tend to be very different for the

two senses, especially in the case of strong size
imbalance (see 5.2). The difference in correlation
between the level of senses and the level of targets
is likely due to the fact that the discrepancies in the
evaluation between senses are balanced out at the
level of targets.

6 Conclusion and Discussion

We have addressed the issue of evaluating DWSI:
we evaluated two models, NEO and SCAN, directly
on the task itself, independently from any extrinsic
related tasks, with a large dataset collected from
biomedical resources. We defined and tested var-
ious external evaluation measures. Overall, NEO
performs significantly better in the tasks of detect-
ing senses and the emergence of new senses, ac-
cording to most of our evaluation measures.

The design differences between the models and
their parameters could potentially have an effect
on the amount of data they require, but it turns out
that the global data size has no important effect on
the accuracy of either system. Both systems are
unable to predict the correct size of the clusters:
they tend to split the data almost equally between
senses irrespective of the true semantic sense rep-
resented by the context words, and this impacts
the correct detection of the emergence. This issue
also explains why the original studies tend to use a
high number of senses in order to capture the true
senses, even though this causes the clusters to be
split and the appearance of “junk senses”. We also
find that NEO performs better with larger senses
while SCAN tends to perform better with smaller
senses. This opens the perspective of combining
the advantages of the two systems. We acknowl-
edge that the data is domain-specific, however the
observed biases of the systems are likely to hold
across domains.
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