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Abstract

In linguistics and cognitive science, Logical
metonymies are defined as type clashes be-
tween an event-selecting verb and an entity-
denoting noun (e.g. The editor finished the ar-
ticle), which are typically interpreted by infer-
ring a hidden event (e.g. reading) on the basis
of contextual cues.

This paper tackles the problem of logical
metonymy interpretation, that is, the retrieval
of the covert event via computational methods.
We compare different types of models, includ-
ing the probabilistic and the distributional ones
previously introduced in the literature on the
topic. For the first time, we also tested on
this task some of the recent Transformer-based
models, such as BERT, RoBERTa, XLNet, and
GPT-2.

Our results show a complex scenario, in which
the best Transformer-based models and some
traditional distributional models perform very
similarly. However, the low performance
on some of the testing datasets suggests that
logical metonymy is still a challenging phe-
nomenon for computational modeling.

1 Introduction

The phenomenon of logical metonymy is defined as
a type clash between an event-selecting metonymic
verb (e.g., begin) and an entity-denoting nominal
object (e.g., the book), which triggers the recov-
ery of a hidden event (e.g., reading). Logical
metonymies have been widely studied, on the one
hand, in theoretical linguistics as they represent a
challenge to traditional theories of compositionality
(Asher, 2015; Pustejovsky and Batiukova, 2019).
On the other hand, they received extensive atten-
tion in cognitive research on human sentence pro-
cessing as they determine extra processing costs
during online sentence comprehension (McElree
et al., 2001; Traxler et al., 2002), apparently related

to “the deployment of operations to construct a se-
mantic representation of the event” (Frisson and
McElree, 2008).1

Logical metonymy has also been explained in
terms of the words-as-cues hypothesis proposed
by Jeffrey Elman (Elman, 2009, 2014). This hy-
pothesis relies on the experimental evidence that
human semantic memory stores knowledge about
events and their typical participants (see McRae
and Matsuki (2009) for an overview) and claims
that words act like cues to access event knowledge,
incrementally modulating sentence comprehension.
The results obtained in a probe recognition exper-
iment by Zarcone et al. (2014), in line with this
explanation, suggest that speakers interpret logical
metonymies by inferring the most likely event the
sentences could refer to, given the contextual cues.
Previous research in NLP on logical metonymy has
often been influenced by such theoretical explana-
tion (Zarcone and Padó, 2011; Zarcone et al., 2012;
Chersoni et al., 2017).

In our contribution, we propose a general com-
parison of different classes of computational mod-
els for logical metonymy. To begin with, we tested
two approaches that have been previously intro-
duced in the literature on the topic: probabilistic
and distributional models (Zarcone et al., 2012).
We also examined the Structured Distributional
Model (SDM) by Chersoni et al. (2019), which
represents sentence meaning with a combination of
formal structures and distributional embeddings to
dynamically integrate knowledge about events and
their typical participants, as they are activated by
lexical items. Finally, to the best of our knowledge,
we are the first ones to include the recent Trans-
former language models into a contrastive study on

1Notice however that the evidence is not uncontroversial:
Delogu et al. (2017) report that coercion costs largely reflect
word surprisal, without any specific effect of type shift in the
early processing measures.
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logical metonymy. Transformers (Vaswani et al.,
2017; Devlin et al., 2019) are the dominant class
of NLP systems in the last few years, since they
are able to generate “dynamic” representations for
a target word depending on the sentence context.
As the interpretation of logical metonymy is highly
sensitive to context, we deem that the contextual
representations built by Transformers might be able
to integrate the covert event that is missing in the
surface form of the sentence.

All models are evaluated on their capability
of assigning the correct interpretation to a
metonymic sentence, that is, recovering the verb
that refers to the correct interpretation. This
task is hard for computational models, as they must
exploit contextual cues to distinguish covert events
with a high typicality (e.g., The pianist begins the
symphony→ playing) from plausible but less typi-
cal ones (→ composing).

2 Related Work

2.1 Computational Models of Logical
Metonymy

According to Zarcone et al. (2013), the phe-
nomenon of logical metonymy can be explained
in terms of the thematic fit, that is, the degree of
compatibility between the verb and one of its argu-
ments (the direct object, in this case). On the one
hand, a low thematic fit between an event-selecting
verb and an entity-denoting argument triggers the
recovery of a covert event, while on the other hand,
the recovered event is often the best fitting one,
given the information available in the sentence.

Research in NLP on logical metonymy ini-
tially focused on the problem of covert event re-
trieval, which was tackled by means of probabilis-
tic models (Lapata and Lascarides, 2003; Shutova,
2009), or by using Distributional Semantic Mod-
els (DSMs) that identify the candidate covert event
with the one that has the highest thematic fit with
the arguments in the sentence (Zarcone et al., 2012).
Following the psycholinguistic works by McEl-
ree et al. (2001) and Traxler et al. (2002), which
reported increased reading times and longer fixa-
tions in eye-tracking for the metonymic sentences,
Zarcone et al. (2013) proposed a distributional
model of the thematic fit between verb and ob-
ject, and showed that it accurately reproduces the
differences between the experimental conditions in
the data from the two original studies.

A general distributional model for sentence com-

prehension was used by Chersoni et al. (2017) to
simultaneously tackle both these two aspects of
logical metonymy (covert event retrieval and in-
creased processing times), although at the cost of
a highly-elaborated compositional model. The au-
thors recently introduced a more up-to-date and
refined version of their sentence comprehension
model (Chersoni et al., 2019), but it has not been
tested on the logical metonymy task so far.

2.2 Transformer Models in NLP

The traditional approach in Distributional Seman-
tics has been the building of a single, stable vector
representation for each word type in the corpus
(Turney and Pantel, 2010; Lenci, 2018). Lately,
a new generation of embeddings has emerged, in
which each occurrence of a word in a specific sen-
tence context gets a unique representation (Peters
et al., 2018). The most recent systems typically
rely on an LSTM or a Transformer architecture for
getting word representations: they are trained on
large amounts of textual data and the word vec-
tors are learned as a function of the internal states
of the encoder, such that a word in different sen-
tence contexts determines different activation states
and is represented by a different vector. Thus,
embeddings generated by these new models are
said to be contextualized, as opposed to the static
vectors generated by the earlier frameworks, and
they aim at modeling the specific sense assumed
by the word in context. One of the most popular
and successful contextualized model is probably
BERT (Devlin et al., 2019), whose key technical
innovation is applying the bidirectional training
of Transformer, a popular attention model, to lan-
guage modelling. This is in contrast to previous
efforts which looked at a text sequence either from
left to right or combined left-to-right and right-to-
left training. The results of the paper show that
a language model with bidirectional training can
have a deeper sense of language context and struc-
ture than single-direction language models.

An interesting aspect of Transformer models like
BERT is that they are trained via masked language
modeling, that is, they have to retrieve a word that
has been masked in a given input sentence. Since
interpreting logical metonymy implies the retrieval
of an event that is not overtly expressed and that
humans retrieve integrating the lexical cues in the
sentence, these models are potentially a very good
fit for this task. To draw an analogy, we could
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imagine that the covert event is a verb that has been
’masked’ in the linguistic input and that we ask
BERT-like models to make a guess.

It is important to point out that not all Transform-
ers are used for masked language modeling: among
those tested for this study, BERT and RoBERTa
are directly trained with this objective, XLNet is
trained with permutation language modeling, but
can still retrieve a hidden word given a bidirectional
context, and GPT-2 works similarly to a traditional,
unidirectional language model.

3 Experimental Settings

3.1 Task

Our research question focuses on how computa-
tional models can interpret metonymic sentences.
To explore this issue, we define the task of logical
metonymy interpretation as a covert event recov-
ery task. More specifically, given a sentence like
The architect finished the house, the computational
model has to return the most likely hidden verb for
the sentence, i.e. the covert event representing its
interpretation. Despite the architectural differences,
all tested models compute a plausibility score of
a verb as expressing the covert event associated
with a <subject, metonymic verb, object> triple.
We evaluate the scores returned by a model against
human judgments using the standard measures of
accuracy and correlation depending if the dataset
contains categorical or continuous variables.

3.2 Datasets

In our experiments, we use three datasets designed
for previous psycholinguistic studies, and a newly
created one by means of an elicitation task.

The McElree dataset (MC) comprises the stim-
uli from the sentences of the self-paced reading
experiment of McElree et al. (2001) and includes
30 pairs of tuples. Each pair has the same subject,
metonymic verb, object, just the covert verb varies.
As in the conditions of the original experiment,
the hidden verb could be either highly plausible,
or plausible but less typical, given the subject and
the object of the tuple. The Traxler dataset (TR)
results from the sentences of the eye-tracking ex-
periment of Traxler et al. (2002) and includes 36
pairs of tuples. The format is the same as the McEl-
ree dataset. On these two datasets, the models have
to perform a binary classification task, with the
goal of assigning a higher score to the covert event
in the typical condition.

The Lapata-Lascarides dataset (L&L) (Lapata
and Lascarides, 2003) includes 174 tuples, each
composed by a metonymic verb, an object and a
potential covert verb. The authors collected plau-
sibility ratings for each metonymy by turning the
tuples into sentences and used the Magnitude Es-
timation Paradigm (Stevens, 1957) to ask human
subjects to rate the plausibility of the interpretation
of the metonymic verb. Finally, the mean ratings
have been normalized and log-transformed.

A further dataset of recovered covert events
(CE) was collected by the authors. The metonymic
sentences used in the McElree and Traxler experi-
ments were turned into 69 templates with an empty
slot corresponding to the covert event (e.g., The
student began the book late in the semester).
Thirty subjects recruited with crowdsourcing were
asked to produce two verbs that provided the most
likely fillers for the event slot. Out of the 4, 084
collected verbs, we selected those with a produc-
tion frequency ≥ 3 for a given stimulus. The fi-
nal dataset comprises 285 items each consisting
of a subject – metonymic verb – object tuple t
and a covert event e associated with a salience
score corresponding to the event conditional prob-
ability given the tuple P (e|t) (i.e., the production
frequency of e normalized by the total events pro-
duced for t). In the case of the latter two datasets,
for each model we compute the Spearman’s corre-
lation between the probabilities generated by the
model and the human judgements. Examples from
these datasets are provided in Table 1.

While collecting the data for CE, we also run
a statistical comparison between the production
frequencies of the verbs in the typical and in the
atypical condition that appear in the binary clas-
sification datasets, to ensure that humans gen-
uinely agree on the higher typicality of the for-
mer. The result confirmed this assumption: ac-
cording to the Wilcoxon signed rank test with con-
tinuity correction, the frequencies of production
of the typical verbs for the MC dataset were sig-
nificantly higher (W = 424, p < 0.001), and the
same holds for the typical verbs in the TR dataset
(W = 526.5, p < 0.001).

3.3 Models

In the following section, we describe the general
aspects of the computational models that we tested
on logical metonymy interpretation.
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Dataset Subject-verb-object Covert event Condition/Score Size

MC chef start dinner
prepare HIGH TYP

30 (pairs)
eat LOW TYP

TR dieter resist cake
eat HIGH TYP

36 (pairs)
taste LOW TYP

L&L — start experiment
implement 0.1744

174
study 0.0184

CE architect start house
draw 0.348

258
build 0.087

Table 1: Examples of stimuli from each dataset.

3.3.1 Probabilistic Model
As a baseline model, we adopt the simple prob-
abilistic approach proposed by Lapata and Las-
carides (2003) and replicated by Zarcone et al.
(2012) as the SOp model, which was reported as
the best performing probabilistic model on the task.
The interpretation of a logical metonymy (e.g., The
pianist began the symphony) is modelled as the
joint distribution P(s, v, o, e) of the variables s (the
subject, pianist), v (the metonymic verb, began), o
(the object, symphony), and the covert event e (e.g.,
play). We compute that probability considering the
metonymic verb constant:

P (s, v, o, e) ≈ P (e)P (o|e)P (s|e)

The verb E representing the preferred interpreta-
tion of the metonymy is the verb e maximizing the
following equation:

E = argmaxeP (e)P (o|e)P (s|e)

We computed the statistics from a 2018 dump of
the English Wikipedia, parsed with the Stanford
CoreNLP toolkit (Manning et al., 2014).

Dataset Coverage
MC 19/30 (pairs)
TR 21/36 (pairs)
L&L 151/174 (items)
CE 195/285 (items)

Table 2: Coverage for the probabilistic model.

3.3.2 Logical Metonymy as Thematic Fit
Distributional models of logical metonymy assume
that the event recovery task can be seen as a the-
matic fit task: recovering the covert event means
identifying the verb with the highest thematic fit
with the metonymic sentence. We reimplement the

distributional model by Zarcone et al. (2012) with
the following procedure:

• we retrieve the n (= 500)2 most strongly as-
sociated verbs for the subject and the object
respectively, and we take the intersection of
the two lists;

• we update their association scores using either
the sum (add) or the product (prod) function;

• we select the embeddings corresponding to
the first m (= 20) verbs in this list and we add
them together to create the prototype vector
of the verb given the subject and the object;

• the thematic fit of the covert event e with re-
spect to the nominal entities is computed as
the similarity score of its corresponding lex-
ical vector ~e with the prototype vector. As
we did the probabilistic model, we discard the
metonymic verb from this computation. 3

We test two variations of this model, TF-add
and TF-prod, which differ for the filler selection
update function. Statistics were extracted from
Wikipedia 2018, and the vectors were the publicly-
available Wikipedia embeddings 4 trained with the
FastText model (Bojanowski et al., 2017). The
verb-filler association score is the Local Mutual
Information (Evert, 2008). Similarly, the scores for
the subject fillers are defined as:

LMI(s, e) = f(e
sbj←−− s)log2

p(s|e)
p(s)p(e)

2We set a high value for this parameter in order to maxi-
mize the coverage.

3Zarcone et al. (2012) show that, for both the probabilistic
and the distributional model, including the metonymic verb
does not help too much in terms of performance and leads to
coverage issues.

4https://fasttext.cc/docs/en/
english-vectors.html

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
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where s is the subject, e the covert event, and

f(e
sbj←−− s) indicates the frequency of e with the

subject. The scores for the object position are com-
puted with the following formula:

LMI(o, e) = f(e
obj←−− o)log2

p(o|e)
p(o)p(e)

where o is the object and f(e
obj←−− o) represents the

joint frequency of e with the object.

3.3.3 Structured Distributional Model
The Structured Distributional Model (SDM)
proposed by Chersoni et al. (2019) consists of two
components: a Distributional Event Graph (hence-
forth, DEG), and a meaning composition function.
DEG represents event knowledge as a graph au-
tomatically built from parsed corpora, where the
nodes are words associated to a numeric vector, and
the edges are labeled with syntactic relations and
weighted using statistic association measures. Each
event is represented as a path in DEG, that is, a se-
quence of edges (relations) which joins a sequence
of vertices (words). Thus, given a lexical cue w,
it is possible to identify the associated events and
to generate expectations about incoming inputs on
both the paradigmatic and the syntagmatic axis.

The composition function makes use of two
semantic structures (inspired by DRT (Kamp,
2013)): the linguistic condition (LC), a context-
independent tier of meaning, and the active context
(AC), which accumulates contextual information
available during sentence processing or activated
by lexical items. The crucial aspect is that the
model associates a vectorial representation to these
formal structures: ~LC is the sum of the embeddings
of the lexical items of a sentence; ~AC, for each syn-
tactic slot, is represented as the centroid vector built
out of the role vectors ~r1, ..., ~rn available in AC,
i.e. the syntactic associates of the lexical items that
have been already processed.

In our implementation of SDM, the DEG is con-
structed by extracting syntactic relations from the
same dump of Wikipedia adopted in the previous
models, and we chose as lexical embeddings the
same FastText Wikipedia vectors. Following the
same assumption of the previous experiment, we
model the covert event recovery task as a thematic
fit task: the goal is to predict the hidden verb on
the basis of the subject and the object, treating the
metonymic verb as a constant. Specifically, the
model builds a semantic representation for each

Model settings Data
sizeL H A P

BERT
large-cased

24 1024 16 340M 16GB

RoBERTa
large

24 1024 16 355M 160GB

XLNet
large-cased

24 1024 16 340M 113GB

GPT-2
extra-large

48 1600 25 1542M 40 GB

Table 3: Comparison between transformer models.
Model details: L: number of layers, H: dimension of
hidden states, A: attention head numbers, and P: total
parameter size.

tuple in the dataset. The linguistic condition vector
~LC contains the sum of the subject and object em-

beddings. At the same time, the event knowledge
vector ~AC contains the prototypical embedding for
the main verb, using DEG to retrieve the most as-
sociated verbs for the subject and the object, as in
Chersoni et al. (2019). The scoring function has
been adapted to the event recovery task as follows:

cos(~e, ~LC(sent)) + cos(~e, ~AC(sent))

where sent refers to the metonymic test tuple. In
other words, we quantify the typicality of a verb for
a tuple subject-object as the sum of i.) the cosine
similarity between the event embedding and the
additive combination of the other argument vectors
( ~LC) and ii.) the cosine similarity between the
event embedding and the prototype vector repre-
senting the active context ( ~AC).

3.3.4 Transformer-based Models
We experiment with four Transformer models
which have been shown to obtain state-of-the-art
performances on several NLP benchmarks.

The popular BERT model (Devlin et al., 2019)
was the first to adopt the bidirectional training of
Transformer for a language modeling task. To
make this kind of training possible, BERT intro-
duced a masked language modeling objective func-
tion: random words in the input sentences are re-
placed by a [MASK] token and the model attempts
to predict the masked token based on the surround-
ing context. Simultaneously, BERT is optimized
on a next sentence prediction task, as the model
receives sentence pairs in input and has to predict
whether the second sentence is subsequent to the
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first one in the training data.5 BERT has been
trained on a concatenation of the BookCorpus and
the English Wikipedia, for a total of 3300M to-
kens ca. In our experiments, we used the larger
pre-trained version, called BERT-large-cased.

RoBERTa (Liu et al., 2019) has the same archi-
tecture as BERT, but it introduces several parame-
ter optimization choices: it makes use of dynamic
masking (compared to the static masking of the
original model), of a larger batch-size and a larger
vocabulary size. Moreover, the input consists of
complete sentences randomly extracted from one or
multiple documents, and the next sentence predic-
tion objective is removed. Besides the optimized
design choice, another key difference of RoBERTa
with the other models is the larger training cor-
pus, which consists of a concatenation of the Book-
Corpus, CCNEWS, OpenWebText, and STORIES.
With a total 160GB of text, RoBERTa has access
to more potential knowledge than the other models.
For our tests, we used the large pre-trained model.

XLNet (Yang et al., 2019) is a generalized au-
toregressive (AR) pretraining method which uses
the context words to predict the next word. The
AR architecture is constrained to a single direc-
tion (either forward or backwards), that is, con-
text representation takes in consideration only the
tokens to the left or to the right of the i-th posi-
tion, while BERT representation has access to the
contextual information on both sides. To capture
bidirectional contexts, XLNet is trained with a per-
mutation method as language modeling objective,
where all tokens are predicted but in random order.
XLNet’s training corpora were the same as BERT
plus Giga5, ClueWeb 2012-B and Common Crawl,
for a total of 32.89B subword piece. Also in this
case, we used the large pre-trained model.

GPT-2 (Radford et al., 2019), a variation of
GPT, is a uni-directional transformer language
model, which means that the training objective is
to predict the next word, given all of the previous
words. Compared with GPT, GPT-2 optimizes the
layer normalization, expands the vocabulary size to
50,257, increases the context size from 512 to 1024
tokens, and optimizes with a larger batch size of
512. In addition, GPT-2 is pre-trained on WebText,
which was created by scraping web pages, for a
total of 8 million documents of data (40 GB). We

5Notice that the usefulness of this secondary objective
function was questioned, and it was indeed removed in more
recent models (Yang et al., 2019; Liu et al., 2019; Joshi et al.,
2020).

used the XL version of GPT-2 for our experiments.
The parameters of the Transformer models are

reported in Table 3. BERT, RoBERTa and XLNet
are used to perform a word prediction task: given
a sentence and a masked word in position k, they
compute the probability of a word wk given the
contextk: P (wi|contextk). For our experiments,
the context is the entire sentence S with the k-th
word (the covert event) being replaced by a spe-
cial token ‘[MASK]’. Therefore, we turned the test
tuples into full sentences, masking the verb as in
the example below: The architect finishes [MASK]
house. 6 We then compute the probability of a
hidden verb to occur in that position, and we ex-
pect the preferred verb to get a high value. We
performed this task using the packages of the Hap-
pyTransformer library.7

As GPT-2 works as a traditional language model,
we adopted this model to calculate the probability
of the entire sentence (instead of the probability of
the hidden verb given the context). In this case, we
expect that sentences evoking more typical events
get higher values. We adopted the lm-scorer pack-
age to compute sentence probabilities.8

4 Evaluation Results

Table 5 and 4 report the final evaluation scores.
The performance of the probabilistic model is in
line with previous studies, and it outperforms dis-
tributional models in some cases, proving that it is
indeed a hard baseline to beat. However, accuracy
and correlation are computed only on a subgroup
of the test items: actually, the model covers about
60% of the datasets’ tuples (86.8% for L&L), as
we reported in Table 2. Coverage is the main issue
probabilistic models have to face (Zarcone et al.,
2013), while distributional models do not experi-
ence such limitation.

Regarding the thematic fit models, we observe
that there is no difference between the TF-add
and TF-prod models, as they obtain similar scores.

6One of the anonymous reviewers argues that the perfor-
mance of the Transformer-based models might be influenced
by the prompt sentence and suggest more variations of the
input sentences. We indeed tested several manipulations of
the inputs before feeding them to the transformers, changing
1) the tense of the metonymic verb (using the past tense) and
2) the number of the direct object (we used the plurals of
the dataset nouns). However, the results did not show any
consistent trend.

7https://github.com/EricFillion/
happy-transformer

8https://pypi.org/project/lm-scorer/

https://github.com/EricFillion/happy-transformer
https://github.com/EricFillion/happy-transformer
https://pypi.org/project/lm-scorer/
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Probabilistic Distributional Transformer-based
SOp TF-add TF-prod SDM BERT RoBERTa XLNet GPT-2

MC 0.68 0.70 0.73 0.77 0.70 0.80 0.40 0.87
TR 0.48 0.53 0.53 0.72 0.47 0.72 0.39 0.69
O. P. 0.58 0.62 0.63 0.75 0.59 0.76 0.40 0.78

Table 4: Results for binary classification task.

Probabilistic Distributional Transformer-based
SOp TF-add TF-prod SDM BERT RoBERTa XLNet GPT-2

L&L 0.53 0.41 0.41 0.53 0.61 0.73 0.04 0.43
CE 0.36 0.26 0.22 0.40 0.27 0.39 0.18 0.31
O. P. 0.45 0.34 0.32 0.47 0.44 0.56 0.11 0.37

Table 5: Results for correlation task.

However, we need to point out that, when the sys-
tem computes the intersection of the two lists of
the top verbs for subjects and objects, sometimes
the number of retrieved items is less than 20 (the
model parameter for the verb embedding selection,
cf. Section 3.3.2). Therefore, independently of the
selected function, the verbs used to compute the
prototypical vector are eventually all those belong-
ing to the intersection. Moreover, TF-models are
often close to, and never significantly outperform
the probabilistic baseline.

Among the distributional models, SDM is the
one that obtains a considerable performance across
all the datasets. This model performs close to
RoBERTa both in the Traxler and in the CE dataset.
This result is surprising, considering that SDM
is trained just on a dump of Wikipedia, while
RoBERTa is trained on 160 GB of text and imple-
ments advanced deep learning techniques. This out-
come confirms that SDM, which has been designed
to represent event knowledge and the dynamic con-
struction of sentence meaning, is able to adequately
model the typicality of events. This aspect has been
suggested to be one of the core components of the
language processing system (Baggio and Hagoort,
2011; Baggio et al., 2012; Chersoni et al., 2019).

On the other hand, Transformers also provided
interesting results. RoBERTa achieves the best
score for the L&L dataset, reaching a statisti-
cal significance of the improvement over SDM
(p < 0.01).9 More importantly, it is the only
Transformer that consistently obtains good results
across all datasets, while the scores from other

9The p-value is computed with Fisher’s r-to-z transforma-
tion, one-tailed test.

Transformer models are highly fluctuating. We be-
lieve that the gigantic size of the training corpus is
a factor that positively affects its performance. At
the same time, GPT-2 achieves the highest score
for MC dataset (0.87) (but the improvement over
RoBERTa and SDM does not reach statistical sig-
nificance), although it performs significantly lower
on the other benchmarks10.

For the sake of completeness, we also report the
overall performance of each model over the two
tasks. Results identify RoBERTa and GPT-2 as
the best models for the correlation and classifica-
tion tasks, respectively. However, we wonder if
the average score is a valid measure to identify
the best model. These two models tend to have
a wavering behavior, which results in large differ-
ences between the two datasets scores. Specifically,
Roberta achieves 0.75 for the L&L dataset, but only
0.39 for the CE one, with 0.36 points of difference.
Similarly, GPT-2 reaches 0.89 scores for the MC
dataset, but its performance goes down by 0.16. On
the contrary, SDM behavior is more stable, with a
smaller gap between the two datasets’ scores (0.13
point difference for the correlation task and just
0.05 for the accuracy task).

4.1 Error analysis

Binary classification task For the MC and
TR datasets, we evaluate the models for their capa-
bility of assigning a higher probability to the verb
in the typical condition. It is important to empha-

10We determine the significance of differences between
models for MC and TR datasets with a McNemar’s Chi-Square
Test, applied to a 2x2 contingency matrix containing the num-
ber of correct and incorrect answers (replicating the approach
of Zarcone et al. (2012)).
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size that both verbs are plausible in the context,
but one describes a more likely event given the
subject and the object. This remark is essential,
because it explains the performance of all models,
distributional and Transformer ones.

To identify which tuples are the most difficult
ones, we built a heat map visualizing the correctly-
predicted ones in blue, and the wrong ones in yel-
low (see Figures 1 and 2). We do not consider
the accuracy values obtained by the probabilistic
model for its partial coverage.

Figure 1: Heat map for error analysis over MC dataset.

Figure 2: Heat map for error analysis over TR dataset.

This visualization technique reveals that some
pairs are never predicted correctly, corresponding
to the fully vertical yellow lines in the figures. In
what follow we report the tuples that are consis-
tently mistaken for MC (1) and TR (2) datasets.

(1) a. The teenager starts the novel.
b. The worker begins the memo.

(2) a. The editor finishes the newspaper.
b. The director starts the script.
c. The teenager begins the novel.

In all the above cases, a model must discrimi-
nate between the verb read (HIGH TYP) and write
(LOW TYP).11 It is interesting to notice that, for
many of the read-write pairs in the binary classifica-
tion data, the production frequencies of typical and
atypical verb are much closer than on average, sug-
gesting that the interpretation requires understand-
ing of subtle nuances of context-sensitive typicality,
which might not be trivial even for humans.

Furthermore, in Figure 2 we observe that for two
TR’s pairs, SDM is the only one picking the right
choice: The stylist starts the braid and The auditor
begins the taxes. It seems that models regularly
tend to prefer a verb with a more generic and un-
determined meaning (make and do, respectively),
while only SDM correctly assigns the HIGH TYP
class to the verbs that indicate more precisely the
manner of doing something (braid and audit).

On the other hand, GPT-2 and RoBERTa man-
aged to pick the right choice for a few of the read-
write items on which SDM is mistaken.

Correlation task Correlation is a more com-
plex task compared to classification, as the lower
scores also reveal. To better understand our results,
we select the best model for the CE (i.e., SDM)
and L&L (i.e., RoBERTa) datasets, and we plot the
linear relationship between the human ratings and
the model-derived probabilities.12 For CE, Figure
3 reveals 1) a small positive correlation between
the two variables, 2) a large amount of variance,
and 3) a few outliers.

As for L&L in Figure 4, the majority of the
points follow a roughly linear relationship, and
there is a small variation around the trend. Never-
theless, this result could be influenced by the form
of the input sentences. For all the other datasets, we
masked the token between the verb and the object,
and the corresponding hidden verb had to be in the
progressive form (The chef starts [cooking] dinner).
For L&L, instead, we chose to insert the preposi-
tion to after the verb since lots of the metonymic
verbs (want, try, etc.) require to be followed by
the infinitive verb. Thus, the context gives a higher

11Except for the sentence in 2.a, where the typical verb is
edit.

12We apply the logarithmic transformation of data for visu-
alization purposes.
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probability to verbs as masked tokens, while differ-
ent parts of speech could be equally plausible for
the other conditions.

Figure 3: SDM correlation for CE.

Figure 4: RoBERTa correlation for L&L.

5 Discussion and Conclusions

In this paper, we have presented a comparative
evaluation of several computational models on the
task of logical metonymy interpretation. We frame
this problem as the retrieval of an event that is not
overtly expressed in the surface form of the sen-
tence. According to Elman’s Words-as-Cues frame-
work, human subjects can infer the covert event in
logical metonymy thanks to the generalized knowl-
edge about events and participants stored in their
semantic memory. Hence, during sentence pro-
cessing, words in the sentence create a network
of mutual expectations that triggers the retrieval of
typical events associated with lexical items and gen-

erates expectations about the upcoming words (El-
man, 2014). To tackle the task of logical metonymy
interpretation, computational models must be able
to recover unexpressed relationships between the
words, using a context-sensitive representation of
meaning that captures this event knowledge.

The most compelling outcome of the reported
experiments is probably the performance of SDM,
which achieves the best score for the TR and the CE
datasets. These results demonstrate the significance
of encoding event structures outside the embed-
dings (which are treated as nodes in a distributional
graph), and the ability of the SDM compositional
function to dynamically update the semantic repre-
sentation for a sentence. However, the evaluation
scores are not very high, especially in the corre-
lation task. Results reveal that the contextualized
information used by computational models is use-
ful to recall plausible events connected to the argu-
ments, but this is still not sufficient. Even Trans-
former models, which currently report state-of-the-
art performances on several NLP benchmarks, are
not performing significantly better than the SDM
model, which is trained on a smaller corpus and
without any advanced deep learning technique. Er-
ror analysis highlights that they are able to identify
the plausible scenarios in which the participants
could occur, but they still struggle in perceiving
different nuances of typicality. Our experiments
show how the logical metonymy task can be seen
as a testing ground to check whether computational
models encode common-sense event knowledge.

Future work might follow two directions. On
the one hand, expanding the coverage of the graph
could favourably increase the performance of SDM.
On the other hand, Transformer models could be
tested with new experimental settings, such as the
fine-tuning of the pre-trained weights on thematic
fit-related (Lenci, 2011; Sayeed et al., 2016; Santus
et al., 2017) or semantic role classification tasks
(Collobert et al., 2011; Zapirain et al., 2013; Roth
and Lapata, 2015).
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Francesca Delogu, Matthew W Crocker, and Heiner
Drenhaus. 2017. Teasing Apart Coercion and Sur-
prisal: Evidence from Eye-Movements and ERPs.
Cognition, 161:46–59.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL-HLT 2019,
Minneapolis, MN.

Jeffrey L Elman. 2009. On the Meaning of Words and
Dinosaur Bones: Lexical Knowledge without a Lex-
icon. Cognitive Science, 33(4):547–582.

Jeffrey L Elman. 2014. Systematicity in the Lexicon:
On Having your Cake and Eating It Too. In Paco
Calvo and John Symons, editors, The Architecture of
Cognition: Rethinking Fodor and Pylyshyn’s System-
aticity Challenge. The MIT Press, Cambridge, MA.

Stefan Evert. 2008. Corpora and collocations. Cor-
pus linguistics. An international handbook, 2:1212–
1248.

Steven Frisson and Brian McElree. 2008. Complement
Coercion is not Modulated by Competition: Evi-
dence from Eye Movements. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition,
34(1):1–11.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving Pre-training by Representing and Predict-
ing Spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Hans Kamp. 2013. Meaning and the Dynamics of In-
terpretation: Selected Papers by Hans Kamp. Brill,
Leiden-Boston.

Mirella Lapata and Alex Lascarides. 2003. A Proba-
bilistic Account of Logical Metonymy. Computa-
tional Linguistics, 29(2):261–315.

Alessandro Lenci. 2011. Composing and Updating
Verb Argument Expectations: A Distributional Se-
mantic Model. In Proceedings of the ACL Workshop
on Cognitive Modeling and Computational Linguis-
tics.

Alessandro Lenci. 2018. Distributional Models of
Word Meaning. Annual Review of Linguistics,
4:151–171.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A Robustly Optimized BERT Pretraining
Approach. arXiv preprint arXiv:1907.11692.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Brian McElree, Matthew J Traxler, Martin J Pickering,
Rachel E Seely, and Ray Jackendoff. 2001. Reading
Time Evidence for Enriched Composition. Cogni-
tion, 78:B17–B25.

Ken McRae and Kazunaga Matsuki. 2009. People Use
their Knowledge of Common Events to Understand
Language, and Do So as Quickly as Possible. Lan-
guage and Linguistics Compass, 3(6):1417–1429.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of NAACL.

James Pustejovsky and Olga Batiukova. 2019. The Lex-
icon. Cambridge University Press.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models Are Unsupervised Multitask Learners. Ope-
nAI Blog, 1(8):9.

Michael Roth and Mirella Lapata. 2015. Context-
Aware Frame-Semantic Role Labeling. Transac-
tions of the Association for Computational Linguis-
tics, 3:449–460.

https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010


234

Enrico Santus, Emmanuele Chersoni, Alessandro
Lenci, and Philippe Blache. 2017. Measuring The-
matic Fit with Distributional Feature Overlap. In
Proceedings of EMNLP.

Asad Sayeed, Clayton Greenberg, and Vera Demberg.
2016. Thematic Fit Evaluation: An Aspect of Se-
lectional Preferences. In Proceedings of the ACL
Workshop on Evaluating Vector Space Representa-
tions for NLP.

Ekaterina Shutova. 2009. Sense-Based Interpretation
of Logical Metonymy Using a Statistical Method. In
Proceedings of the ACL-IJCNLP 2009 Student Re-
search Workshop, pages 1–9.

Stanley S Stevens. 1957. On the Psychophysical Law.
Psychological review, 64(3):153.

Matthew J Traxler, Martin J Pickering, and Brian McEl-
ree. 2002. Coercion in Sentence Processing: Evi-
dence from Eye-Movements and Self-Paced Read-
ing. Journal of Memory and Language, 47(4):530–
547.

Peter D Turney and Patrick Pantel. 2010. From Fre-
quency to Meaning: Vector Space Models of Se-
mantics. Journal of Artificial Intelligence Research,
37:141–188.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. XLNet: Generalized Autoregressive Pretrain-
ing for Language Understanding. arXiv preprint
arXiv:1906.08237.

Benat Zapirain, Eneko Agirre, Lluis Marquez, and Mi-
hai Surdeanu. 2013. Selectional Preferences for Se-
mantic Role Classification. Computational Linguis-
tics, 39(3):631–663.

Alessandra Zarcone, Alessandro Lenci, Sebastian
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