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Abstract

Since many years, the pioneering work of Hu and Tonder is used to generate rough surfaces with prescribed statistical

moments (skewness and kurtosis) along with spatial properties (correlation lengths). The present work enlightens the

drawbacks of this method and it proposes an original approach based on a hybrid analytical/numerical method.

Simulations are conducted on very different  surface specimens and the method is validated over a  wide range of

statistical  moments.  The results  are  obtained  with high accuracy  (beyond what  is  usually  needed)  and  very  short

computing times (the order of a second)
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1. Introduction

Every engineering surface exhibits irregularities  when

they are examined at an enough small scale: peaks and

valleys  appear,  revealing  its  roughness.  Engineering

surfaces  are  prepared  with  progressive  finishing

processes. Each machining process (or wear) leaves its

own signature, with more or less alternating peaks and

valleys. Hence, the superposition of all of the signatures

leads to the final roughness, characterized by the surface

height distribution and the asperities spacing.

As  recalled  by  Bhushan  [1],  the  properties  of  solid

surfaces  are  crucial  to  surface  interaction  because

surface  properties  affect  real  area  of  contact,  friction,

wear,  and  lubrication.  Depending  on  the  desired

mechanical  application  and  operating  conditions,

roughness  can  have  significant  effects  on  the

mechanism  behavior:  shortened  durability,  higher

friction coefficients, higher load capacity, …

In  the  particular  case  of  lubricated  contacts,  if  the

surfaces  are  kept  well  separated  –  high  Sommerfeld

number – a safe full-film regime is established, and the

roughness  plays  no  significant  role  in  the  contact

behavior.  However  engineers  are  brought  to  extend

these  operating conditions towards  lower  Sommerfeld

numbers,  hence  approaching  critical  lubrication

conditions,  and  creating  contact  between  opposing

asperities.  Many  reasons  may  motivate  this  choice.

First,  the  better  understanding  and  control  of  mixed

lubrication – compared to decades ago – and second, for

enhanced functioning purposes. As an example, because

of  lower  viscosity  and/or  higher  temperatures,

automotive  conrod  big  end  bearings  partly  operate

under mixed lubrication conditions, but the mechanism

integrity  is  still  guaranteed.  In  the  field  of  sealing,

mechanical seals can not prevent fluid leak, if the two

components are not kept very close to each other.

To  gain  knowledge  on  surface  roughness  influence,

experiments  are  obviously  needed,  but  modeling  is

unavoidable: it is a fast and cheap means to carry out

parametric  studies.  Thus,  since  almost  four  decades,

rough surface generation is being studied, for which a

state of the art can be found in Minet et al. [2].

A difficult problem arises: there are as many different

roughness  types  as  surfaces.  However  its  has  been

proved  that  the  surfaces  exhibiting  the  same  well-

chosen  “global  characteristics”  are  equivalent  from  a

tribological  point  of  view [3].  Furthermore,  it  is  well

known that both spatial and spectral characteristics are

needed  as  “global  characteristics”.  The  spatial

characteristics  are  well  described  by  the  four  first

statistical moments: mean µ, variance Va (square of the

standard deviation σ), skewness Sk and kurtosis Ku. As

for  the  spacing  characteristics,  the  AutoCorrelation

Function (acf) is widely used.

As  described  by  Whitehouse  [4],  most  of  the

conventional  machining  processes  produce  non-

Gaussian  surfaces  Fig.1,  ref.  [4],  and,  thanks  to  its

versatility, the beta-distribution can be used to model the

height distribution, Fig.2.
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However, modeling the surface height distribution is not

self-sufficient:  additional  information  is  needed

regarding  the  height  spacing.  Having  both  controlled,

has lead to an abundant literature since the pioneering

work of Patir [5] and since then, the researchers have

perfected  the  rough  surface  generation  for  contact,

lubrication, …, purposes.

Non-Gaussian  rough  surfaces  were  numerically

generated for elastic/plastic contact analysis by Kim et

al.  [6] and Chilamakuri and Bhushan [7], with the Hu

and Tonder procedure [8]. Both papers [6,7] recall that

most  of  the  common  machining  processes  produce

surfaces  with non-Gaussian distribution,  but  only low

skewness  were  used  (|Sk|  ≤  1)  with  short  correlation

lengths β (β ≤ surface_width/20).

Figure 1: (Sk, Ku) for the most common machining
processes, [4]

Figure 2: (a, b) beta function parameters for the most
common processes, [4]

Wu [9] has improved the Hu and Tonder procedure, but

his  new  method  cannot  generate  surfaces  with  every

skewness  and  kurtosis,  especially  when  the  skewness

and  kurtosis  are  large.  The  author  argues  that  such

surfaces do not exist, or maybe the limitation of the FFT

use is reached. Using Wu's procedure, Reizer [10] has

observed  high  divergence  between  the  modeled  and

measured  surface  parameters,  when  the  correlation

length was larger than 0.15 of the evaluation length.

Luo  et al. [11] have developed a roughness generation

procedure,  using  Johnson  or  Pearson  translators,

regarding the desired final  parameters.  The chosen  Sk

range  [-2,+2]  and  Ku range  [0,  10]  were  justified

regarding most common engineered surfaces, and more

specifically,  regarding  Kim  et  al. work  [6]  on  rough

contact analysis. However as measured by Minet  et al.

[2] on mechanical seal faces, values of (Sk, Ku) up to (-

6,  100)  should  be  taken  into  account.  Furthermore,

Sedlacek  et  al. [12]  have  proved  that  the  pair   of

parameters |Sk| and Ku not only influences the wear in

dry  conditions,  but  tends  to  lower  friction  when

increasing, in mixed lubrication conditions.
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Up to now, moderate ranges of (Sk,  Ku) were used but,

as  confirmed  by  Minet  et  al. [2],  larger  ranges  are

sometimes needed. However, a more general numerical

surface  generation  faces  difficulties  that  make

conventional procedures fail:

• large Sk and Ku, (some honed surfaces),

• Ku below 3, (some turned or milled surfaces),

• and, large autocorrelation lengths.

In the present work, an original and efficient method is

proposed to deal with the aforementioned situations. In

addition, it can be used to reproduce existing surfaces:

instead  of  working  with  theoretical  skewness  and

kurtosis values,  one can get  the heights from the real

surface.

2. Surface global characteristics

The  surface  topography  can  be  seen  as  a  random

process  for  which  peaks  randomly  alternate  with

valleys.  As  for  any  random  sequence,  the  peak  and

valley relative number and height is quantified by four

statistics – the vertical roughness properties. The spatial

distribution of  the  roughness  can  be  described  as  the

superposition of waves of different lengths, leading to

smooth  surfaces  (predominant  long  wavelengths)  or

sharp surfaces (predominant short wavelengths).

2.1. Statistical properties

Let  η=(ηi)i=1,...,n be  a  set  of  n independent  identically

distributed  (iid)  random  variables.  Under  the

assumption  that  it  is  fully  characterized  by  its  four

statistical  moments (μn,  n=1,2,3,4),  Eq.(1),  (ηi)i=1,...,n is  said

statistically equivalent to (zi)i=1,...,n if both share the same

moments.

μ1=μ=
1
n
∑
i=1

n

ηi ; μ2=Va= 1
n
∑
i=1

n

(ηi−μ)2 σ=√Va

μ3=Sk=
1
n∑i=1

n

(
ηi−μ
σ )

3

; μ 4=Ku=
1
n∑i=1

n

(
ηi−μ
σ )

4 (1)

(µ,  Va,  Sk,  Ku)  are  known as,  resp.,  mean,  variance,

skewness and kurtosis but Va is seldom used in the field

of tribology, the standard deviation σ is preferred.

Fig.3 presents four surfaces measured with a white light

interferometer device.

• Fig.3(1) 'Ech03' is a turned surface, which kurtosis is

below 3: it is an uncommon case which is difficult to

reproduce.

• Fig.3(2) 'Ech14' has been roughly milled; its statistics

are  quite  common  but  the  pattern  is  trouble  for

numerical generation.

• Fig.3(3) 'Fluorin' has been highly polished; it  is  an

easy surface to generate because it is nearly Gaussian

• Fig.3(4)  'Rotor'  is  a  worn  rotor  surface  which

statistics make the numerical generation difficult.

The specimen are less than 1mm x 1mm, along x and y

axes (horizontal and vertical  resp.) In order to compare

the  surface  statistical  properties,  each  surface  height

distribution  is  normalized  with  regard  to  its  standard

deviation. Fig.4 presents the resulting curves, and some

remarks arise:

• A  surface  distribution  can  appear  to  be  bimodal

'Ech03',  because  of  the  superposition  of  two

distributions (often due to two machining processes).

• The  skewness  is  non-zero  when  the  roughness
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distribution  is  asymmetric.  When  positive,  the

skewed distribution illustrates cases where the peaks

are statistically greater than the valleys. Conversely, a

negative skewed surface, 'Rotor', has deeper valleys,

as  if  the  heights  of  a  peaked  surface  have  been

reversed.

• The 'Fluorin' height distribution is nearly Gaussian,

• 'Ech14'  has  a  smooth  slightly  skewed  distribution

despite a highly patterned appearance.

The  kurtosis  –  to  be  distinguished  from  excess  of

kurtosis –  is  a  positive  statistics  and  measures  the

“peakedness” of the height distribution; for a Gaussian

distribution Ku =3. For a symmetric peaked distribution

–  Sk =0,  Ku >3 – there are more middle heights,  but

some positive and negative heights are greater.

Figure 3: Real worn surfaces – (0,0) coordinate is top left

(1) Ech03, 0.9mmx0.9mm, (Sk, Ku) = (-0.13, 1.87)

(2) Ech14, 0.9mmx0.9mm, (Sk, Ku) = (-0.86, 3.94)

(3) Fluorin, 0.37mmx0.37mm, (Sk, Ku) = (0.09, 2.77)

(4) Rotor, 0.37mmx0.37mm, (Sk, Ku) = (-4.45, 29.01)

Figure 4: Height probability density of the four surfaces
and Gaussian curve (circles) 

It is to be reminded for further developments that there

exists a relationship between  Sk and  Ku, Ku⩾Sk 2
+1 .

which  is  sometimes  referred  as  Pearson's  inequality

[13]. As suggested in ref.14, it can be proved as follows:

• E [(η
2
−aη−1)2

]⩾0 ,  because  the  distribution

(η
2
−aη−1)2  is  positive;  E stands  for  the

mathematical expectancy,

• if  E(η)=0 and  σ(η)=1 then, the previous relationship

writes  a2
−2 Sk a+(Ku−1)⩾0 , where Sk=E(η3) and

Ku=E(η4)

• and, the condition is verified for  Sk 2
−(Ku−1)⩽0

(negative discriminant to ensure that the second order

polynomial remains positive with regard to a)

The strict equality holds for binary distributions. 

2.2. Spatial properties

2.2.a. Generality

The statistical parameters are related to how the heights

are  vertically  distributed.  The  spatial  properties

represent  how the  heights  η(x,y)  are  organized  in  the

2D-space.  A  practical  means  to  quantify  the  spatial

properties is to compare the surface to a copy shifted of
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the quantity  Δx,Δy; the more similar, the smoother the

surface. The comparison is usually performed thanks to

the normalized autocorrelation ηη, Eq.(2).

η⊗η=acf (Δ x ,Δ y)

=
1
σ

2∬η(x , y)η(x+Δ x , y+Δ y)dxdy
 (2)

As  information  is  given  on  a  grid  n=p²,  involving

(ηij)i,j=1,...,p , Eq.(2) is rewritten in discrete way, Eq.(3)

η⊗η=acf (k ,l )= 1
σ2 ∑

i=1

p

∑
j=1

p

η(i , j )η( i+k , j+ l )  (3)

Fast Fourier Transforms, FFT, will be used to compute

the acfs, so the input signal is supposed to be periodic.

Hence  the  above  cross-correlations  are  in  fact  cyclic

cross-correlations: i+k=i+k [p] and j+l=j+l [p]. As will

be shown in the results,  this assumption proves to be

valid for the great majority of the treated cases.

The  acf reveals the relative importance of randomness

regarding periodicity of a profile. It is widely admitted

that the acf of a pure random profile is well fitted by a

declining exponential. By extension it is considered that

most of engineering surfaces have an exponential acf, as

expressed in Eq.(4), where βX and βY are decay factors

relative to α direction. Then,  on the  α-rotated  ellipse,

which  major  and  minor  axes  are  βX,  βY resp.,

acf(x,y)=acf(0,0)/10

acf =exp[−2.3 √( cosα . x+sinα . y
βX )

2

+(−sinα . x+cosα . y
βY )

2] (4)

However, if a periodic component is introduced by the

machining  process,  the  resulting  acf will  be  a

combination  of  two  functions,  as  illustrated  by

Petropoulos  et  al. [15],  for  shaping,  turning,  grinding

and supergrinding: the acf shape will quickly differ from

an exponential when moving away the origin. Thus the

acf initial  slope  and  its  decrease  rate  will  be  kept  as

surface smoothness indicators: the greater, the sharper.

2.2.b. acf curves of the reference surfaces

Along  the  turning  tool  displacement  axis,  vibrations

make  the  surface  less  smooth  than  in  the  orthogonal

direction. As it can be seen in Fig.3(1) long wavelengths

are  predominant  along  x direction,  which  is

corroborated by the  acf,  Fig.5: the surface heights are

normalized with respect to  σ, then, if wavelengths are

more pronounced in a  direction, the  acf will  decrease

slowly in the orthogonal direction.

Figure 5: Normalized acf of the worn surfaces

Ech03, βX=1.9, βY=0.3, α=-4.0°

Ech14, βX=0.18, βY=0.05, α=7.0°

Fluorin, βX=0.10, βY=0.06, α=-16.0°

Rotor, βX=0.06, βY=0.03, α=-23°

2.2.c. Computational aspects

The computational cost is proportional to  n2, which is

prohibitive with grids above n=512x512. However it is

reminded that a convolution is faster computed thanks

to a FFT, which only needs nlog(n) operations.
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z⊗z=FFT−1
[Z 2

]=FFT−1
[FFT(z)∗FFT(z)]  (5)

The FFT efficiency  is  due  to  the  assumption that  the

surface is periodic in both direction. As it will be seen in

the part dedicated to the results, this computational trick

can induce side effects – artifacts – in the generation of

numerical surfaces.

3. Conventional method for the surface 
numerical generation

The  well-known  Hu  and  Tonder  [8]  procedure  is

reminded hereafter, with a slight improvement proposed

by Bakolas [3].

Step 1

[Determination  of  the  desired  spatial  characteristics

(acf),  and  the  four  statistical  moments  μi (mean  μ,

variance σ², skewness Sk and kurtosis Ku)]

Unlike  Skz and  Kuz which  are  chosen  by  the  user  in

order to be representative of the desired worn surface,

the  prescribed  mean  μ  is  set  to  0  and  the  standard

deviation σ  to  1.  However,  at  the  end  of  the surface

generation process, these two moments can be changed

with  no  effect  on  the  third  and  fourth  moments,  by

scaling and shifting the final surface heights.

Step 2

[Determination of the digital filter H.]

The use of a digital filter writes:

z=h⊗η  (6)

where  z is the final  surface height,  η a random white

noise and h the digital filter.

In  the  frequency  space  it  becomes  Z=H.A, then,

Z Z̄=H H̄ A Ā  which is simply written as Z 2
=H 2 A2 .

As  Z 2
=FFT(acf z) ,  and  because  h is  symmetric

regarding x and y, H=√(|FFT(acf z)|)/|A| .

If η is white noise, |A|  becomes a constant and can be

ignored, Eq.(7)

h=FFT−1 [ √(|FFT(acf z)|) ]  (7)

Step 3

[Determination  of  the  starting  values  Skη and  Kuη,

derived from the desired values Skz and Kuz]

A starting random set η is generated. η is considered as

nearly white noise, centered and scaled: μη=0 , ση=1. If a

digital filter  h is applied to  η, the  z resulting statistical

moments are modified, Eq.(8), except for the mean.

μz=0

σ z
2
≈∑

k=1

n

hk
2

Sk z≈

∑
k=1

n

hk
3

[∑k=1

n

hk
2]

3
2

Sk η

Ku z−3≈
∑
k=1

n

hk
4

[∑
k =1

n

hk
2 ]

2
(Kuη−3)

 (8)

In  this  work,  the  authors  propose  the  use  of  an

alternative  set  of  equations  Eq.(9),  rather  than  the

classical  one  Eq.(8).  It  is  simpler  and  uses  the  zero-

mean property of η. Indeed h can be written h=h̄+μ h

where h̄  is zero-mean, then z=( h̄+μ h)⊗η=h̄⊗η .
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μz=0

σ z
2≈nσh

2

Sk z≈
1
√n

Sk h Skη

Ku z−3≈
1
n
(Kuh−3)(Kuη−3)

 (9)

The detailed transformations are provided in Appendix

2.

Step 4

[Johnson's transformation of η to match Skη and Kuη ]

The Johnson’s translation system is usually utilized to

transform  non-Gaussian  data  sets  into  Gaussian  data

sets. In the present case, the system is reversed in order

to obtain data sets  η  with prescribed moments, starting

from  Gaussian  noise  φ.  The  translator  system  is

composed of three functions reminded in Eq.(10)

SU :ηi ,i=1,... , n = ξ+λ sinh {
ϕ i−γ

δ }
S L :ηi , i=1,. .. , n = ξ+λexp {ϕ i−γ

δ }
S B :ηi , i=1,. .. , n = ξ+λ /{1+exp(−

ϕi−γ

δ )}

 (10)

The  kind  of  transformation  used  (Unbounded,  Log-

normal or Bounded) and the ξ, λ, γ, δ parameters depend

on  the  prescribed  moments.  Hill  et  al. [16]  have

provided an algorithm which automatically choose the

right transformation with the associated parameters.

Step 5

[z is obtained by digital filtering of η]

The digital  filter  H is  used  to  average  η,  and  finally

z=FFT-1(Z=HA).

At the end of the process,  z is supposed to exhibit the

right  autocorrelation  function  acf and  the  right  four

statistics, μ, σ, Sk and Ku.

4. Analysis of the conventional method 
and first improvements

4.1. About Hill's determination of the 
transformation parameters – limitation 1.

The  aforementioned  process  is  limited  by  Hill's

algorithm. Fig.6 shows the kind of transformation used

regarding (Sk, Ku) value: “U” stands for “Unbounded”,

“B” stands for “Bounded”, “failure” indicates that Hill's

algorithm has not converged, and “unreachable” is used

below Pearson's limit Ku<Sk2+1. Fig.6(2) highlights the

importance  of  the  area  for  which  no  solution  is

provided.  As  a  consequence  numerous  (Skη,  Kuη)

required by Step3 can not be reached, and the process

stops.

Figure 6: transformation type for Sk = 0...5 (left) and
Sk=0...100 (right)

4.2. About Johnson's translation system – 
limitation 2.

Hill's  algorithm  only  provides  transformation

parameters.  Several  Gaussian  series  have  to  be

generated  until  the  transformed  data  set  matches  the

required statistical parameters. Then, if a high precision

is  required  on  the  results,  a  lot  of  series  will  be

necessary. It is explained by the fact that the series are

supposed to be uncorrelated infinite series. Besides, as
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the  process  lays  on  numerically  generated  random

series, there is no “formula” to reproduce a data set; if a

particular  random  serie,  among  all  generated  series,

gives satisfactory results, there is no savable parameter

in order to reproduce it.

The  following  table,  Tab.1,  shows  the  mean  and

standard deviation of 20 Johnson's generated series, for

(Sk,Ku) = (-2, 20) and n=5122 : despite the quality of the

Gaussian  starting  random  series,  the  generation  of  η

leads to very variable kurtosis results.

φ η

Sk Ku Sk Ku

μ 7.10-4 3.+7.10-4 -2.+4.10-3 19.8

σ 6.10-3 1.10-2 1.4 10-1 5.6
Table 1. Variability in the process of generating η with

Johnson's translator system

4.3. About the relationships Eqs.(6,8) or Eqs.
(6,9) – limitation 3.

On the quality of the resulting acf(z)

When  η  is  generated  with  prescribed  statistical

moments, it is no more white noise. Therefore  ∣A∣  is

not  constant  and  z does  not  exhibit  the  prescribed

autocorrelation  function  acf(z).  Furthermore  when  the

decay factors (βX, βY) increase (long wavelengths), the

resulting  acf(z) worsens.  An  immediate  correction

consists in applying the formula in Eq.(11).

z=FFT−1(H A
|A|)  (11)

Doing  so,  acf(z) is  exactly  the  same  as  the  one

prescribed but η is altered: it is white noise (FFT(η)=A/|

A|) but its statistical moments are no longer the same. As

the statistical moments need anyway to be corrected, as

explained  below,  Eq.(11)  is  kept  so  that  acf(z) will

perfectly match the prescribed acf.

On the quality of the resulting statistical moments 
(Skzc, Kuzc), theoretical background

The  skewness  and  kurtosis  belong  to  higher-order

statistics.  These  scalar  values  are  particular  cases  of

higher-order  statistical  functions  that  are  sensitive  to

phase  relationships  between  multiple  frequencies.  To

explain  the  origin  of  Eq.(8)  a  short  piece  of  Higher-

Order  Statistics  (HOS)  follows,  without  the  proofs,

[17,18].

The  pth-order  moment  function  of  a  real  stationary

random process η is defined as 

m p
η(τ1 , τ2 ,… ,τ p−1)≝E [ηk ,ηk+ τ1

,… ,ηk+ τp−1
]

=
1
n∑k=1

n

ηk ηk+ τ1
…ηk+ τp−1

which only depends on the lags {τ1 , τ2 ,…, τ p−1 }=τ p−1 .

Therefore  the  2nd-order  moment  function  m2
η(τ 1)  is

the  η  autocorrelation function and then the zeroth-lag

moment m2
η(0) , the mean square value.

The pth-order cumulant is defined as the pth-moment,

with correction terms from lower moments, so chosen

as to make the result additive under convolution of the

probability  density  functions,  pdf ([19]  Appendix  C,

« Convolutions  and  Cumulants »).  The  following

relationships between moment and cumulant sequences

of zero-mean are – for orders p=1, 2, 3, 4:

• c1
η
=m1

η
=E[ηk]=0 , mean value

• c2
η
(τ1)=m2

η
(τ1)−(m1

η
)
2
=m2

η
(τ1) , autocorrelation 

sequence
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• c3
η(τ1 , τ2)=m3

η(τ 1, τ2)−m1
η(…)=m3

η(τ1 ,τ2) ,

skewness function

•
c4
η(τ1 , τ2 ,τ3)=m4

η(τ1 ,τ2 , τ3)−m2
η(τ1)m2

η(τ3−τ2)

-m2
η
(τ2)m2

η
(τ 3−τ1)−m2

η
(τ3)m2

η
(τ2−τ1)

,

kurtosis function

By putting τ1=τ2=τ3=0 in the previous relationships,

the following constants appear:

• γ2
η
=E[ηk

2
]=c2

η
(0)  (variance),

• γ3
η
=E[ηk

3
]=c3

η
(0,0) (skewness γ3

η
/ [γ2

η
]
3 /2 ),

•  γ4
η
=E[ηk

4
]−3 [ γ2

η
]

2
=c4

η
(0,0,0)  (normalized excess 

of kurtosis γ4
η
/ [γ2

η
]
2 )

A first result to be noticed is that, 1/ if η is assumed to

be iid, e.g. white noise, Eq.(12) is verified:

{cp
η
(τ p−1)=γ p

η  , if τ p−1=0
cp
η
(τ p−1)=0    , otherwise

 (12)

A  second  point  is  that  2/ the  pth-order  cumulant

function of a non-Gaussian stationary random signal  η

can be written as (for p=3, 4 only)

cp
η
(τ p−1)=mp

η
(τ p−1)−m p

G
(τp−1)  where  m p

G
(τ p−1)  is

the  pth-order  moment  function  of  an  equivalent

Gaussian  signal  that  has  the  same  mean  value  and

autocorrelation  sequence  as  η.  Hence  for  a  Gaussian

process  c3
η(τ1 , τ2)=c4

η(τ1 , τ2 ,τ3)=0 .  Anyway, if  η is

Gaussian  cp
η(τ p−1)=0  for all  p, be it colored or white

process.  So  it  can  be  said  that  cumulants  not  only

display the amount of higher-order correlation, but also

provide a measure of the distance of the random process

from gaussianity.

When applied to a linear filter, zk=∑
i=1

n

hiηi+k  the pth-

order cumulant writes:

cp
z
(τ p−1)=∑

i0

..∑
ip−1

hl−i0
hl−i 1+ τ1

…hl−ip−1+τ p−1

×cp
η
(i1−i 0,… i p−1−i0)

and its zeroth-lag value, Eq.(13):

cp
z
(0)=∑

i 0

∑
i1

…∑
ip−1

hl−i0
hl−i1

…hl−ip−1

×c p
η
(i1−i0 ,i2−i0,…i p−1−i0)

(13)

The third point is that  3/ if η is assumed to be iid,  Eq.

(13) becomes:

cp
z (0)=γ p

η∑
k=1

n

hk
p (14)

Eq.(14) finally yields the Eq.(8) relationships for p=2, 3,

4.

To sum up the important points:

1/-3/ white noise cumulants are identically zero, except

zero lag cumulants, then there exist simple relationships

between the noise statistics and the filtered signal, Eq.

(14) and more particularly Eq.(8).

2/ Gaussian  noise  cumulants  are  identically  zero:

filtered Gaussian noise remains Gaussian.

To conclude  on this  piece  of  theory, if  η  can  not  be

considered as white  noise,  Eq.(8) relationships are no

longer  satisfied  because  of  cross-correlations  that  not

vanish in Eq.(13). For instance, for extremely skewed

distributions  regarding  the  number  of  points  n,  the

cross-products  of  η  autocorrelation  do  not  reduce  to

zero.  As  illustrated  on  Fig.7,  the  problem  can  be
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overcome by increasing the number of points; the cross-

product  mean  obviously  decreases  but  the  standard

deviation also.

Figure 7: standard deviation of a data set normalized
autocorrelation (Sk=-2, Ku=8)

If it is not possible to increase the number of points –

what  usually  happens,  because  n is  a  prescribed

parameter  –  Eq.(8) induces  errors  on  (Sk ,  Ku )  as

proved by the following case:

• prescribed  parameters  :  n=512x512,  (Skz,  Kuz)=(-3,

30)  ;  βX/512=βY/512=τ=0.3  then  (Skη,  Kuη)=(-99.4,

9940.3)

• generated η(Skηc, Kuηc)=(-98.3, 9940.4)

• After  linear  filtering:  (Skzc,  Kuzc)=(-3.5,  39.1),  and

acf(z) is presented on Fig.8.

Figure 8: comparison of the generated acf and the
prescribed one

To conclude, as the final moments need anyway to be

corrected, the use of Eqs.(9,11) is fully justified because

it at least ensures the right acf(z).

On the quality of the resulting statistical moments 
(Skzc, Kuzc), parametric study

In order to assess the error introduced with Eqs.(9,11), a

small parametric study is carried out:

• βX/512=βY/512=τ={0.01, 0.02, … , 0.64}

• (Skz,  Kuz)={(0,3)  ,  (0,6)  ,  (-2,  12)}  ie a  Gaussian

signal, a non -Gaussian symmetric  pdf signal and a

skewed signal resp.

• n=512x512

For each case 5 calculations are performed because of

the stochastic nature of the process. errKu is the relative

difference between the prescribed kurtosis  Kuz   and the

calculated  kurtosis  Kuzc values,  errSk is  the  absolute

difference between the prescribed skewness Skz  and the

calculated  skewness  Skzc values  (because  of  the  zero

value, relative difference is not possible). For the (Skh,

Kuh)  cases  that  violate  Pearson's  inequality, a  star  (*)

replaces the result in Tab. 2.

(0,3) (0,6) (-2,12)

τ errSk
errKu
(%)

errSk
errKu
(%)

errSk
errKu
(%)

0.01 0.01 0.23 0.02 18.93 0.63 29.00

0.02 0.00 0.72 0.00 18.73 0.59 28.63

0.04 0.02 1.92 0.01 19.50 0.57 27.78

0.08 0.01 1.50 0.04 19.75 0.64 28.80

0.16 0.08 3.18 0.03 21.80 * *

0.32 0.09 2.06 0.06 21.17 * *

0.64 0.01 10.04 0.17 25.54 * *

Table 2. Errors induced by the use of (Sk, Ku) moment
relationships

It can be concluded that the errors become large for high

values  of  τ (very  long  wavelengths)  and  increasing
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values  of  (Skz,  Kuz).  So  the  question  is,  is  there  any

relationship between (Skz , Kuz) and (Skzc , Kuzc) ?

• Because τ has evidently an influence on the results, it

is set to a moderate value (τ=0.08).

• (Skh ,  Kuh)  value  is  taken  in  the  range

[0,−50] x[10,8000] ,  then  (Skz,  Kuz) is  calculated

according  Eq.(9)  and  (Skzc,  Kuzc)  is  the  computed

value after digital filtering Eq.(11)

• (Skh ,  Kuh) = (49.2, 5453.3) is a constant because it

only depends on τ, according to Eq.(4).

On Fig.9 it can be seen that for a given  Skz , different

Skzc are obtained: one can conclude that the kurtosis has

an effect on the skewness prediction, which is due to the

η whitening  process.  On  the  contrary,  a  rather  good

correlation  exists  between  Kuz and  Kuzc whatever  the

skewness.

Figure 9: Skewness obtained after filtering (Skzc) vs
predicted skewness (Skz) with Eq.(9), (left) and kurtosis
obtained after filtering (Kuzc) vs predicted kurtosis (Kuz)

with Eq.(9), (right)

Hence, for a given τ, the relationships can be corrected

in order to gain accuracy; in the present case  (τ=0.08)

that leads to Eq.(15).

Sk z=
1

1.40√n
Sk h Skη

Kuz−3=
1

1.57n
(Kuh−3)(Kuη−3)

(15)

It  has  to  be  recalled  that  Gaussian  noise  must  be

transformed into a Gaussian signal, therefore the fitting

functions have been corrected accordingly.

Tabs. 3,4 detail the error on skewness and kurtosis after

correction.

Skη Skzc Skz errSk

-50 -3.4 -3.4 -0.01

-40 -2.7 -2.7 -0.04

-30 -2.1 -2.1 0.02

-10 -0.7 -0.6 -0.04

0 0.0 0.0 0.01
Table 3. Errors induced on the skewness

Kuη Kuzc Kuz
errKu

%
Kuη Kuzc Kuz

errKu
%

10 3.1 3.0 1.4 2500 36.1 35.1 3.1
100 4.3 4.2 1.4 2800 40.1 38.8 3.4
200 5.6 5.4 3.7 3000 42.8 41.9 2.0
500 9.6 9.3 3.6 3500 49.4 49.4 0.6
600 10.9 10.6 3.3 4000 56.0 54.9 2.3
800 13.6 13.0 4.3 5000 69.3 69.2 0.2
1000 16.2 15.9 2.3 6000 82.6 85.1 2.9
1500 22.9 22.7 0.8 7000 95.8 94.7 1.2
2000 29.5 28.9 2.1 8000 109.1 108.4 0.6

Table 4. Errors induced on the kurtosis

To  summarize  the  preceding  analysis,  the  corrected

(Sk,Ku) formulas  Eq.(15)  improve the accuracy of the

results,  but  they  strongly  depend  on  τ.  So  the  last

analysis to be performed quantifies the effect of τ on Eq.

(9).

τ  values  are  taken  in  the  range  [0.01,  0.64],  h is

generated  according  to  Eq.(7)  and  (Skh,  Kuh)  is

calculated;  Fig.10 shows a strong correlation between

(Skh, Kuh) and τ.
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Figure 10: (Skh, Kuh) as a function of τ, in other words the
digital filter statistics regarding the decay factor of the acf

Then if  (Skh,  Kuh)  are  calculated thanks to  the fitting

function found, Eq.(16), the error on Skh remains below

6% and the error on Kuh below 12%, which is accurate

enough to pursue the analysis.

Sk h=
6.02

τ
0.83  and Kuh=

144

τ
1.43 (16)

It  must  be  said  that  the   (Skh,Kuh)  fit  can  not  be

extrapolated to lower values of τ because as proved in

Appendix  3,  lim
τ→0

Skh≈√n−3 and lim
τ→0

Kuh≈n−2 ,

which is quite different from  Eq.(16).  However such

cases should not happen: if τ <<0.01 then h≈δ1 (h=1 if

i=1,  h=0  otherwise),  hence  z≈η  which  presents  no

interest.

With prescribed (Skz,  Kuz), (Sk,  Ku) formulas of Eq.(9),

are used to deduce (Skη, Kuη) with respect to τ, thanks to

(Skh,  Kuh) fit . Pearson's limit is reached whenever Ku-

Sk2-1<0,  so  the  non-dimensional  parameter

PM=(Kuη−Sk η
2
−1)/Kuη  is plotted against τ and when

PM becomes negative it means that (Skη, Kuη) can not be

generated.  Fig.11 represents  the  evolution  of  the

aforementioned criterion with (Skz,  Kuz)=(-2, 12) as an

example. As it clearly appears if τ is greater than 0.08,

(Skη,  Kuη)  violates  Pearson's  limit  and  can  not  be

generated:  the  classical  Hu  and  Tonder's  procedure

stops.

Figure 11: “Pearson's criterion” as a function of the decay
factor τ

Fig.12 represents  the decay factor  τ  maximum usable

value as a function of Kuz for the most common values

of Skz (-1, -2, -3, -4, -5).

Figure 12: maximum of the decay factor τ as a function of
Kuz for common values of Skz

It illustrates the fact that, despite quite common values

of (Skz, Kuz) and τ, some cases are nonsolvable because

of impossible values of (Skη, Kuη).

A  similar  case  is  encountered  when  the  prescribed

kurtosis is  below 3 associated to high  τ values of the

acf: the kurtosis  Kuη will even turn negative, which is

impossible.
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Conclusion on the conventional method

Limitation  1:  Numerous  (Sk,Ku)  values  are  not

reachable with Hill's algorithm.

Limitation  2:  Among  the  reachable  (Sk,Ku)  values,

some need a lot of tries to generate an accurate (Sk,Ku)

serie.

Limitation 3: Assuming that the final  acf matches the

prescribed one, using the proposed correction Eq.(11), z

statistics do not match the prescribed ones.

5. New hybrid method

To get rid of the aforementioned limitations, three major

improvements should be proposed:

a) Any  (Skη,  Kuη)  value  must  be  reachable,

provided  the  fact  that  Pearson's  inequality

remains satisfied – limitation 1.

b) A  more  robust  method  must  be  used  to

generate  η; ideally  speaking,  a  deterministic

algorithm should be defined – limitation 2.

c) The final surface heights must be corrected if

necessary,  to  better  match  the  prescribed

moments – limitation 3.

5.1. Use of an analytical function instead of a 
data set transformation, improvements 
(a) and (b)

Instead  of  generating  random  numbers,  an  analytical

function  can  be  used  to  generate  the  heights  ηi=η(xi)

along  a  well-chosen  axis.  The  advantage  is  that  the

height  distribution  will  be  directly  provided  with  the

desired statistical moments in a deterministic way. For

reasons  that  will  be  explained  later,  three  cases  are

considered:

{
1.10 Skz

2
+1>Ku z⩾1.00 Skz

2
+1   (a)

1.34 Skz
2
+1>Ku z⩾1.10Sk z

2
+1   (b)

Kuz⩾1.34 Sk z
2
+1   (c)

(17)

Most of encountered engineering surfaces belong to the

latter  situation,  Eq.(17.c).  Some  cases  Eq.(17.b)  are

called  binary-like  height  distributions  and  are  rarely

observed. Almost no real surface is highly binary, Eq.

(17.a). However,  step 3 of Hu and Tonder's algorithm

can require Ku in the three ranges.

5.1.a. Usefulness and relevance of an analytical 
height function

Most of unimodal surfaces are fitted with a tangent 
function

As  presented  above,  Figs.3,1-4  exhibit  very  different

morphologies. The very first operation performed on the

surfaces  is  the  normalization,  with  respect  to  their

standard deviation. Then, for each surface a vector filled

with 2048 representative heights is built and ordered.

Figure 13: tangent fit on real profiles

Ech03, xa=0.96, xb=1.37, xc=4.08, xd=0.86

Ech14, xa=0.20, xb=0.43, xc=0.74, xd=0.25

Fluorin, xa=0.38, xb=0.35, xc=0.92, xd=-0.07

Rotor, xa=0.03, xb=0.20, xc=0.27, xd=0.20

Fig.13 illustrates the surface profiles (circle curve). The

curves exhibit a straight central part (except Fig.13 (1))
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along  with  starting/ending  smaller  portions  of  more

pronounced  slopes.  Despite  the  similarity,  the  well-

known Abott-Firestone's curve is not used because of its

inherent  averaging  method  of  construction.  The  trick

consists  then in  finding an analytical  function able to

well  fit  the  aforementioned  vector  of  data.  Two

candidates  have  been  selected,  the inverse  hyperbolic

tangent function (atanh) and the tangent function (tan).

When  regularly  discretized,  both  functions  offer  the

essential ability to reach high values (when tan is close

to  ±π/2  and  atanh close  to  ±1)  along with  lot  of

moderate  values,  besides  which,  only  two parameters

are needed to control the function shapes.

It should be nonetheless noticed that the atanh function

can not easily reach high kurtosis values, as proved by

the following parametric study. Let us consider the  tan

function  regularly  discretized  over  the  interval  I1

(Eq.18). A set of 2562 values is generated, and the third

and fourth statistical moments calculated.

I1=[−π
2
(1−a) , π

2
(1−b)] (a,b) ∈ [10−10, 1] (18)

The map Ku vs Sk is plotted on Fig.14. It can be a priori

deduced that a large range of (Sk, Ku) is covered.

Let us now consider the atanh function and its varying

interval  I2.  In  the  same  manner,  the  (Sk,Ku)  map  is

plotted (Fig.15) and it appears that the range of (Sk,Ku)

values is much more limited.

I2=[−(1−a) ,+(1−b)] (a ,b) ∈ [10−14 ,1] (19)

Figure 15: (Sk,Ku) values reached by the atanh function
over the interval I2

Fig.16 gives a rather simple explanation of that matter

of  fact.  The  atanh  function converges  very  quickly

towards its  asymptote unlike the  tan function, as also

proved by the equalities of Eq.(20).
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Figure 16: comparison between the tan
function and the atanh function behaviors

 

∫0

1
atanh(x)dx=ln (2);∫0

π/2
tan (x)dx=∞ (20)

Lot of other analytical functions are suitable to fit the

kind of studied profiles but, to the authors' knowledge,

none of them is as close to the profiles as the tangent

function, with only two parameters.

Thus, the height-ordered surface distribution should be

close to a tangent function with well-chosen limits, as

expressed in Eq.(21).

tan (x i)=tan [−π
2
(1−a)+

i−1
n−1

π
2
[2−(a+b)]]  i∈{i , ...n }

and x i∈[−
π
2
(1−a) ,π

2
(1−b)]

(21)

Prior any analytical development, the tangent function

fitting capacity – tan(x).xc+xd –  has been checked on a

large  variety  of  surfaces,  including  Figs.3,1-4,  on  a

classical spreadsheet. As a result, it is found that, despite

high  skewness  and  kurtosis  levels  to  be  fitted,  the

tangent  function  remains  a  good candidate  for  height

generation. Fig.13 illustrates the tangent  fitting ability

with xa,  xb,  xc and xd ( xa=
π
2

a  and x b=
π
2

b ) which are

determined with the spreadsheet solver.

Comments

• The  lack  of  fit  that  appears  on  Fig.13(1)  was

foreseeable:  Ech03  is  a  “strong”  bimodal  surface

(Fig.4), its profile exhibits a central curvature change

that  the  tangent  function  can  not  fit.  That  is  the

reason why the present study is limited to unimodal

or  weakly  bimodal  surfaces.  However  bimodal

profiles  can  be  handled  by  mixing  two  unimodal

profiles.

• Some (Sk, Ku) values are hardly reached with the tan

function,  as  appears  in  Fig.14 between  the  black

curves.

• As expected, for large kurtosis values and negative

skewness,  Fig.13(4),  xa becomes  small:  the  -π/2

asymptote of the tangent function appears.

5.1.b. Transformation of a data set sum into an 
integral

The use of an analytical representation of the heights is

of limited interest if the sums, as expressed in Eq.(1),

can not be avoided because it becomes time consuming

for  large  n.  So,  how  will  be  the  statistical  moments

calculated in a discrete problem? Considering the mean

and  recalling  that  Simpson's  method  involves  such  a

sum  and  that  it  links  it  to  the  function  integral,  the

relationship Eq.(22) is deduced, with n=2p the number

of points, and h=(β-α)/(n-1) the interval length.
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Figure 17: Relationship between the integral I1,n, and the
integrals starting from odd and even points.

I1,n=0.5*(I2,n+I1,2+I1,n-1+In-1,n)

The goal being to establish a relationship between  I1,n

(analytical) and  S η=
1
n
∑i=1

n
ηi ,  I1,n is decomposed, as

shown in Fig.17, where I1,2 and In-1,n are approximated in

Eq.(23), yielding Eq.(24).

I1, n=∫
α

β

η(x)dx

≈h
3 [η( x1)+4∑

i=1

p

η(x2 i)+2∑
i=1

p−1

η(x2 i+1)+η(x2 p+1)]
≈

h
3 [η1+4∑

i=1

p

η2 i+2∑
i=1

p−1

η2i+1+η2 p+1]
=

1
2
[ I1,2+I 2,n+I 1,n−1+I n−1,n]

(22)

I 1,2≈
h
6

(η1+4η1+ 0.5+η2 )

I n−1,n≈
h
6

(ηn−1+4ηn−0.5+ηn )
(23)

S η=
1
n ∑i=1

n

ηi≈
n−1

n(β−α)
I 1,n

+
1

12 n
[9(η1+ηn )+(η2+ηn−1)−4(η1+0.5+ηn−0.5) ]

(24)

Based  on  this  principle,  the  computation  of  the  four

moments becomes therefore instantaneous and does not

depend on the data set length n. The following integrals,

Eq.(25),  can  therefore  be  analytically  determined  by

hand (but  can  turn  to  be  tedious),  or  calculated on  a

symbolic calculation software.

Int 1=∫α

β

η(x)dx

Int 2=∫α

β

(η(x)−μ)
2dx

Int 3=∫α

β (η(x)−μ
σ )

3

dx

Int 4=∫α

β (η(x )−μ
σ )

4

dx

 (25)

As a result, μ is determined as a function of Int1, then, σ

as  a  function  of  Int2 then,  Sk(a,b) and  Ku(a,b) as  a

function  of  Int3 and Int4 resp., with  α=-π/2(1-a) and

β=+π/2(1-b).

5.1.c. Data set with prescribed moments

The remaining task is to control the shape of the tangent

function, so that the discrete form will match the desired

statistical moments.

Modifying  a  function  shape  can  be  achieved  by

parameterizing its limits. As an example, for the tangent

function,  the  closer  to  ±π/2  the  larger  the  tangent

values and the higher the kurtosis. Eq.(26) defines the

domain limits, using two parameters a and b.

x∈[−π
2
(1−a) ,π

2
(1−b)]  {a ,b}∈]0,1 ]  (26)

An optimization  algorithm is  finally  used  to  find  the

right values of  a and  b, such that the functional  f, Eq.

(27), is minimized, with imposed Sk and Ku.

f (a , b)=[ Sk2
−Sk2

(a ,b)]+|Ku−Ku(a ,b)|  (27)

Once a and b give satisfactory results regarding Sk and

Ku,  the  set  of  points  (ηi)i=1,n is  shifted  and  scaled  to

match prescribed values of μ and σ with no subsequent

effect on Sk and Ku.

Therefore to this point, a data set η has been generated
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and  it  matches  the  prescribed  four  first  statistical

moments.

5.1.d. Limitations and solutions

Near Pearson's limit (Ku ≈ Sk2+1) the height distribution

becomes  binary  and,  the  numerical  generation  is  no

longer satisfactory, as illustrated in Fig.18.

Figure 18: height ordered binary distribution
with its tangent fit

 

Binary-like  distributions are  often  needed  during  the

conventional  Step  3, for  long  correlation  lengths.

Because the relations in Eq.(8) are very approximate, it

can lead to non reachable values of (Skη, Kuη) such that

Kuη⩽Skη
2
+1 .  Instead  of  giving  up,  or arbitrarily

modifying the input (Skz, Kuz), it is better to  threshold

Kuη using a binary distribution and complete the process

with the approximate value of Skη and its corresponding

Kuη, KuηSkη
2+1. The resulting generated surface will be

anyway corrected thanks to improvement (c), as shall be

seen later.

To solve this problem of weak fitting, another function,

Eq.(28),  is  introduced.  It  is  built  so that  it  exhibits  a

starting and an ending plateau; therefore, if the domain

extends  from  low  values  to  large  values  of  x,  the

discrete representation will be binary-like, Fig.19.

e (x i)=sign(x i)[1−exp(−|x i|)]

x i=−
1
a
(1−a)+

i−1
n−1 (1a +

1
b
−2)

x i∈[−1
a
(1−a) ,

1
b
(1−b)]  {a ,b}∈]0,1 ]

 (28)

Figure 19: exponential function over the domain [-7,15]
(Sk,Ku)=(-0.7, 1.6)

 

To assess the exponential function ability to fit  binary

distributions,  the  same  parametric  study  as  for  the

tangent function is carried out, and the (Sk,  Ku) map is

plotted over the interval I3, Eq.(29), Fig.20

I3=[−
1
a
(1−a), 1

b
(1−b)] (a, b) ∈ [10−14 ,1] (29)

Figure 20: (Sk,Ku) values reached by the exp function over
the interval I3

Large values of Ku are reached but they are bounded by

two  limits:  the  Pearson's  limit  and  Ku=1.1Sk2+1.  In

addition,  the  generation  of  a  tangent  distribution

revealed  to  be  more  accurate  when  Ku⩾1.34 sk2
+1 ,

Fig.14.  Therefore,  there  exists  a  transitional  region

where the  tan and exp functions give moderate quality

results:  it  has  been  approximatively  identified  for  Ku

between 1.1Sk2+1 and 1.34Sk2+1, Fig.21.
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Figure 21: functions used regarding the targeted (Sk,Ku) 

In  this  intermediate  region,  a  linear  combination  of

tangent  and  exponential  distributions  with  the  same

kurtosis Ku is used. Let (ti)i=1,...,n be a tan distribution and

(ei)i=1,...,n an  exp distribution.  A  bimodal  distribution

composed  of  both  distributions  with  the  same

probability can be expressed as:

(hi)i=1...2n={ σ t(t i)+μt  i=1... n
 σe(e i)+μ e  i=n+1. ..2n

 (30)

Then, using the equations in Appendix 4,

μh=0→μe=−μ t  , μ t∈[ 0,1[

σh
2
=1→σ t

2
+σe

2
=2(1−μ t

2
) then

{σ t=√2(1−μt
2
)cosγ

σe=√2(1−μt
2
)sinγ , γ∈[0,π

2 ]

 (31)

Hence,

2 Sk h=Sk t σ t
3
+Sk eσe

3
+3μt (σ t

2
−σe

2
)

2 Kuh=Ku(σ t
4
+σe

4
)+4μt(Sk t σt

3
−Sk eσe

3
)+

6μ t
2
(σ t

2
+σe

2
)+2μt

4

 (32)

An optimization routine is used to determinate the two

unknowns μt and γ, which is quite instantaneous. If one

wishes a final set of only  n terms instead of 2n terms,

Skh and  Kuh must  be  doubled,  and  half  terms  of  the

bimodal distribution dropped.

To conclude  on  this  part,  whatever  the  profile  being

fitted,  the  tangent  function  can  be  used  for  most  of

cases,  and  a  complementary  exponential  function  is

introduced for limit cases.

5.2. Efficiency, accuracy

The new approach proposed by the authors can thus be

modeled as follows:

(Sk, Ku) → (Ska,b, Kua,b) → (Skη, Kuη)

It  means  that  once  prescribed  (Sk,  Ku),  (a,b)  are

determined leading to  (Ska,b,  Kua,b). Eq.(33) is obtained

thanks  to  Eq.(24)  with  α=−π
2
(1−a)  and

β=π
2
(1−b)  for  the tangent function. The integral  is

determined formally as a function of a and b.

μa , b=
1
n
∑
i=1

n

tan (x i)≈
n−1

n π
2
(2−a−b)[ ∫

−π
2
(1−a)

π
2
(1−b)

tan (x)dx ]
+

1
12n

[9( tan (x1)+ tan ( xn))+( tan (x2)+ tan (xn−1))

−4( tan (x1+0.5)+ tan ( xn−0.5)) ]

 (33)

Knowing μa ,b  the standard deviation is also determined

as a function of a and b, Eq.(34)

σa ,b
2
=

1
n∑i=1

n

(tan (x i)−μa , b)
2

≈
n−1

n π
2
(2−a−b) [ ∫

−π
2
(1−a)

π
2
(1−b)

(tan ( x)−μa ,b )
2 dx]+ ...

 (34)

Then Ska,b, Kua,b follows, Eq.(35).
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Sk a ,b=
1
n ∑i=1

n

(tan (x i)−μ a ,b
σa , b

)
3

≈
n−1

n π
2
(2−a−b) [ ∫

−π
2
(1−a)

π
2
(1−b)

(tan ( x)−μ a ,b

σa, b
)

3

dx]+...

Kua , b=
1
n ∑i=1

n

(tan (x i)−μ a , b

σa , b
)

4

≈
n−1

n π
2
(2−a−b) [ ∫

−π
2
(1−a)

π
2
(1−b)

(tan ( x)−μ a ,b

σa, b
)

4

dx ]+.. .

 (35)

Finally, the minimization problem Eq.(27) is solved and

(a,  b)  determined.  Then,  a  data  set  is  generated  with

(a,b) resulting in (Skη, Kuη).

So, the first validation to be carried out is the ability of

the method to analytically reach any (Sk,Ku) value and

being close to its value.

(Sk, Ku) → (Ska,b, Kua,b)

Fig.22 shows  the  validation  domain  (Sk,Ku)  

[0,100]x[1,10001];  for  a  given  (Sk,Ku),  an  analytical

function is automatically chosen (tangent, exponential,

or intermediate), and (a,b) is determined. The domain is

covered with 512x512 validation points.

Figure 22: error map (%) of the hybrid method. (Sk,Ku) in
[0,100]x[1,10001]. Error on Sk (1), and Ku (2)

The errors  (%) on  Sk  (1) and  Ku  (2)  remain at  small

values. The error maxima are located in the transitional

region because it accumulates the errors of both tangent

and exponential  distributions, as previously explained.

However, this intermediate region is not representative

of  real  surfaces:  it  is  only  needed  as  calculus

intermediate at the end of Step 3.

Because (a,b) ensures an analytical (Ska,b, Kua,b) close to

the desired value, the quality of the transformation into

a data η set must now be assessed.

(Ska,b, Kua,b) → (Skη, Kuη)

This  validation  part  is  more  time  consuming,  so  the

domain is not covered with so many points: the points

are scattered across the domain as shown on Fig.23. The

differences (Ska,b- Skη),  and  (Kua,b-  Kuη) are negligible:

the errors don't exceed 1.9% on Ska,b and 0.8% on Kua,b.

One can conclude that  the hybrid analytical/numerical

method  is  very  accurate.  It  is  furthermore  efficient

because  the  results  are  obtained  in  no  time,  which

makes it possible to carry out large parametric studies.

It can be finally concluded that the hybrid approach is

able to generate any (Skη, Kuη) data set, in a range of use

much larger than Hill's.

After  that  the  data  set  is  generated,  with  the  desired

statistical  moments,  it  is  randomly shuffled and ready

for digital filtering of Step 5.
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5.3. Use of an ordering operator, 
improvements (c)

At the end of  Step 5,  the spatial  characteristic  of  the

generated  surface  are  rigorously  the  same  as  the

prescribed one. However, the statistical  properties can

have turned to be far from those wanted because of the

approximations of Step 3.

Let  Oz be  the  height  ordering  operator  of  the  above

surface.  By  applying  Oz
-1 on  the  ordered  data,  the

starting  surface  would  be  obviously  retrieved.  So,  an

ordered  data  set  with  the  right  statistical  moments  is

generated,  thanks  to  the  hybrid  method  and,  Oz
-1 is

applied.  As  a  result,  the  final  statistical  moments  are

rigorously  the  same  as  those  prescribed,  and  the

autocorrelation  function  remains  very  close  to  the

prescribed one.

To illustrate  the aforementioned operation, let  us start

with an initial profile, continuous line, Fig.24.

Figure 24: initial profile and corrected
profile

 

The initial profile is ordered and the associated reverse

operator is applied to a smoother ordered profile, dashed

line, Fig.25.

Figure 25: ordered profiles

 

As  a  result,  a  slightly  different,  corrected  profile  is

obtained, dashed line Fig.24.

Fig.26 is a recap of the overall  generating process;  it

enlightens  the  principal  differences  with  the  classical

algorithm  along  the  gray  boxes.  The  operator

“transform” is used to stack matrix data on vectors and

vice versa.
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Figure 26: overall generating process



As the data set η is randomly shuffled, after the filtering,

the resulting  Sk can be more or less close to the final

desired value. The authors propose to carry out a few

tries, three or four are enough, and keep the one which

yields the best results. This way,  z'  will be closer to  z

and its autocorrelation function closer to the prescribed

one.

5.4. Results

The  hybrid  method  is  used  to  generate  surfaces  that

share exactly the same statistic and spatial parameters as

the  reference  surfaces,  Figs.27,28.  The  final  heights

{z'}, step 5.2 Fig.26, are not numerically generated but

recover from the original surfaces.

It can be noticed that:

• the height scales are not the same as those of Fig.3: it

is  just  because  the  heights  are  normalized  with

respect to their standard deviation.

• The  generated  Ech03,  Fig.27(1)  exhibits  vertical

lines and Ech14, Fig.27(2) shows artifacts (like pin

holes). Because of the use of FFTs, it is assumed that

the  surfaces  are  periodic.  This  assumption  remains

valid for short (βX, βY) even if the roughness has a

clear  orientation,  Fig.27(3).  However  if  a  long

wavelength  pattern  is  present  with  an  orientation

different from 0 [π/2], the non-periodicity gap makes

artifacts appear.

Figure 27: Generated surfaces matching the reference
surfaces of Fig.3 – (1) Ech03, (2) Ech14, (3) Fluorin, (4)

Rotor

Figure 28: Generated and reference surface acf
comparison

An important limitation seems to be brought out from

the use of FFTs but:

• it only deals with existing surfaces which have long

wavelength patterns,

• in  addition,  one  only  needs  to  rotate  the  original

surface so that the pattern orientation is  0 [π/2], as

done below.

Ech03 is  rotated  to  ensure  that  its  principal  axes  are

parallel  to  x and  y (α=0).  As  a  consequence  the
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statistical moments change, but it remains the very same

surface Fig.29(1). It is a very challenging case because

Kuz<3,  along  with  long  wavelengths,  Fig.30;  Eq.(9)

yields  a  Kuη value  much  below  1,  which  is

mathematically impossible. So, the hybrid method keeps

the Skη value given by Eq.(9), with a modified Kuη, Kuη

=Skη
2+1. At the end of the process,  z exhibits the right

spatial  characteristics  but  its  statistical  parameters  do

not exactly match the prescribed ones. However, as z is

replaced by z', having the right (Sk,Ku), the final surface

is very close to the original surface from both statistical

and spatial points of view, as shown on Figs.29,30.

Figure 29: rotated Ech03 (1), generated surface (2);

Sk=0.37, Ku=2.03

Some  marked  peaks  can  appear  on  the  generated

surface, then to be utilizable in a realistic context, the

surface has to be manually cleared of the higher peaks.

It will affect a little its characteristics but the result will

be a good compromise between the original surface look

and the original surface characteristics.

Figure 30:normalized autocorrelation function along x

and y axes for the case of Fig.29

Anyway, this kind of surface should not be generated as

is; the sinus-like wave should be subtracted before any

numerical  treatment,  to  work  on shorter  wavelengths.

However  it  proves  that  the  hybrid  method  can  also

handle very tricky cases.

As  concerns  theoretical  surfaces,  Fig.31 is  an

illustration of the hybrid method accuracy. Four surfaces

are  generated,  with  n=512x512,  μ=0,  σ=1,  Sk=-3 and

Ku=15.  The  spatial  characteristics  are  as  follows:  (1)

βX/512=βY/512=0.02; (2) βX/512=0.04, βY/512=0.02; (3)

βX/512=0.12,  βY/512=0.08;  (4)  βX/512=0.48,

βY/512=0.32

The  statistical  moments  of  the  generated  surface  are

obtained with an error lower than 0.5% The computing

time  is  higher  compared  to  Hill's  algorithm  but  it

remains  of  the  order  of  a  second,  on  a  common

computer. The case (4) is the most severe one but it can

be  seen  on  Fig.32 that  the  autocorrelation  functions

along x and y axes are perfectly matched.
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Figure 31: from top left to bottom right, Sk=-3, Ku=15 (1)

βX/512=βY/512=0.02 (2) βX/512=0.04,βY/512=0.02 (3)

βX/512=0.12,βY/512=0.08 (4) βX/512=0.48,βY/512=0.32

Figure 32: normalized autocorrelation function along x

and y axes for the most severe case (long acf lengths).

 

6. Conclusion

From a general point of view, the gap in accuracy and

efficiency  of  the  conventional  method,  in  the  task  of

generating rough surfaces, is filled.

First,  the  traditional  technique  fails  for  numerous

prescribed  (Sk,  Ku)  cases.  Many  more  become

unsolvable  if  the  surface  to  be  modeled  has  long

wavelengths. Second, the conventional method is based

on the assumption of infinite series, which worsens the

results  of  small  series:  a  lot  of  tries  are  required  to

match the desired results.

An original and solid approach is then proposed. It is

able :

• to  handle  any  (Sk,  Ku)  case,  even  for  small

series  (provided  that  Ku<n,  as  explained  in

Appendix 3)

• to  generate  rough  surfaces  with  high

correlation lengths without any accuracy loss.

The accuracy is proved to be highly satisfactory as well

as  the  efficiency,  because  of  very  short  computing

times.
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8. Appendix 1

Notation

a, b integration parameters

acfz acf(z), z autocorrelation function

cp
η  η pth-order cumulant

E mathematical expectancy

h bimodal  distribution  of  the  intermediate  zone  ;

interval length of the discretized interval Ii i=1, 2, 3

h, H digital filter, H=FFT(h)

I1,2 , I1,n-1 , I1,n , I2,n, In-1,n decomposition of the interval  Ii

i=1, 2, 3
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I1, I2, I3 tan, atanh and exp function resp. intervals

Inti, i=1, 2, 3, 4 analytically calculated integrals

mp
η η pth-order moment function

m p
G pth-order  moment  function  of  an  η  equivalent

Gaussian signal

n number of points of the distributions

Oz height-ordering operator

p number of rows/columns of a surface

Sk, Ku skewness and kurtosis

(Ska,b, Kua,b) theoretical skewness and kurtosis

(Skzc, Kuzc) calculated z skewness and kurtosis

(Skηc, Kuηc) calculated η skewness and kurtosis

t, e tangent and exponential distributions resp.

Va variance, Va= σ²

x, y image directions, horizontal and vertical resp.

xa, xb, xc, xd tangent fitting parameters.

z, Z final random distribution, Z=FFT(z)

z' corrected final random distribution

α principal direction of the heights

α, β integration bounds

βX , βY decay factors along x and y resp.

γ parameter that links (ei)i=1,…,n and (ti)i=1,…,n

γp
η  η pth-order centred statistical moment

η, A starting random distribution, A=FFT(η)

ξ, λ, γ, δ Johnson's transformation parameters

φ Gaussian noise

μ mean

μi ith statistical moment

σ standard deviation

τ decay factor (τ=βX=βY)

τp−1= τ1 , τ2 , ... , τp−1 HOS set of lags

Δx, Δy shifting quantities along x and y resp.

Acronyms

acf autocorrelation function

FFT Fast Fourier Transform

HOS Higher-Order Statistics

iid independent  identically  distributed  random

variables

pdf probability density function

9. Appendix 2

Relationships between cross-products and 
non-centred moments

Let  us  first  define  the  four  non-centred  moments  of

(xi)i=1, ...n  :

μ x=Ε( x); V x=Ε( x2
); S x=Ε(x3

); K x=Ε(x4
)  (36)

Developing (μx )
2 , the following relationship holds

1
n
∑
i=1

n

∑
j=1, j≠i

n

xi x j=nμx
2−V x  (37)

Developing V xμx , the following relationship holds
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1
n
∑
i=1

n

∑
j=1, j≠i

n

xi
2 x j=nμ x V x−S x  (38)

Developing (μx )
3 , the following relationship holds

1
n
∑
i=1

n

∑
j=1, j≠i

n

∑
k=1, k≠i≠ j

n

x i x j x k=n2μ x
3−3 nμ x V x+2S x (39)

Developing (V x)
2 , the following relationship holds

1
n
∑
i=1

n

∑
j=1, j≠i

n

xi
2 x j

2=nV x
2−K x  (40)

Developing S xμ x , the following relationship holds

1
n
∑
i=1

n

∑
j=1, j≠i

n

xi
3 x j=nμ x S x−K x  (41)

Developing V xμx
2 , the following relationship holds

1
n
∑
i=1

n

∑
j=1, j≠i

n

∑
k=1, k≠i≠ j

n

x i
2 x j xk=n2μ x

2 V x

−n(2μx S x+V x
2)+2 K x

 (42)

Developing μ x
4 , the following relationship holds

1
n
∑
i=1

n

∑
j=1, j≠i

n

∑
k=1, k≠i≠ j

n

∑
l=1, l≠k ≠i≠ j

n

xi x j xk x l =

n3μ x
4−6n2μ x

2V x+n(8μ x S x+3V x
2)−6 K x

 (43)

Relationships between non-centred moments 
and central statistical moments

Vax=V x−μ x
2

Sk x=
S x−3μ x V x+2μ x

3

(V x−μ x
2
)
3/2

Kux=
K x−4μ x S x+6μ x

2 V x−3μ4

(V x−μ x
2)2

 (44)

Relationships between z and η statistical 
moments

Mean

Linking  μz and  μη is  an  easy  task,  because  of  the

summation over i of ηk+i in Eq.(45).

1
n
∑
i=1

n

z i=∑
k=1

n

hk
1
n
∑
i=1

n

ηk+i=∑
k =1

n

h k×
1
n
∑
i=1

n

ηi

⇒μ z=∑
k=1

n

hk×μη=0

 (45)

Standard deviation

Remarking that

1
n
∑
i=1

n

η j+iηk+i=
1
n
∑
i=1

n

ηiηp+ i , with p=k− j≠0

and with the assumption that, 

1
n∑i=1

n

ηi ηp+i≈[ 1
n∑i=1

n

∑
j=1, j≠ i

n

ηiη j] /(n−1)  with j=p+i

and  using  Eq.(37),  the  relationship  between  the

variances  of  the  input  signal  η,  the  filter  h and  the

output z is as follows:

z i=∑
j=1

n

h j η j+i

z i
2
=∑

j=1

n

h jη j+i .∑
k=1

n

hk ηk +i

=∑
j=1

n

∑
k=1

n

h j hk η j+iηk+i

1
n ∑i=1

n

z i
2
=∑

j=1

n

∑
k=1

n

h j hk (1n ∑i=1

n

η j+iηk +i)
=∑

j=1

n

h j
2(1n∑i=1

n

η j+i
2 )

+∑
j=1

n

∑
k=1, k≠ j

n

h j hk ( 1
n
∑
i=1

n

η j+i ηk+i)
≈nV h V η+n(nμ h

2
−V h)(−V η

n−1 )
≈nVahV η=nVah=Vaz

 (46)

remembering that η has zero mean and unit variance.

Skewness

With Eqs.(38,39) relationships, owing to the following

assumption:

28/31



1
n ∑i=1

n

ηi ηp+iηq+i≈
1

(n−1)(n−2) [1n ∑
i , p , q=1,i≠p≠q

n

ηiηpηq]
≈

1
n2 [1n ∑

i , p , q=1, i≠ p≠q

n

ηiηpηq]
the z third non-centred moment

1
n ∑i=1

n

z i
3= ∑

j , k , l=1

n

h j hk hl (1n ∑i=1

n

η j+iηk+iηl+i)
=∑

j=1

n

h j
3( 1

n
∑
i=1

n

η j+i
3 )

+3 ∑
j , k=1 j≠k

n

h j
2 hk ( 1

n ∑i=1

n

η j+i
2

ηk+i)
+ ∑

j , k , l=1 j≠k ≠l

n

h j hk hl (1
n ∑i=1

n

η j+ iηk +iηl+i)

 (47)

results in,

Sk z≈n
−

1
2 Sk h Sk η  (48)

Kurtosis

With Eqs.(40-43) relationships, owing to the following

assumption:

1
n
∑
i=1

n

ηiη j+iηp+iηq+i≈

1
(n−1)(n−2)(n−3) [1n ∑

i , j , p ,q=1,i≠ j≠ p≠q

n

ηiη jηpηq]
≈

1

n3 (1+6
n )[1n ∑

i , p ,q=1, i≠p≠q

n

ηiη jηpηq]
the z fourth non central moment

1
n ∑i=1

n

z i
4= ∑

j , k , p , q=1

n

h j hk h p hq( 1
n ∑i=1

n

η j+iηk+iηp+iηq+i)
=∑

j=1

n

h j
4(1

n
∑
i=1

n

η j+ i
4 )

+4 ∑
j , k=1, k≠ j

n

h j
3 hk ( 1

n ∑i=1

n

η j+i
3

ηk +i)
+3 ∑

j , k=1, k≠ j

n

h j
2 hk

2(1
n ∑i=1

n

η j+i
2

ηk+i
2 )

+6 ∑
j , k , p=1, p≠k≠ j

n

h j
2 hk h p(1n ∑i=1

n

η j+i
2 ηk+i ηp+i)

+ ∑
j , k , p ,q=1,q≠ j≠k≠ p

n

h j hk h p hq( 1
n
∑
i=1

n

η j+i ηk+i ηp+i ηq+i)

(49)

results in,

Kuz−3≈n−1
(Kuh−3)(Kuη−3)  (50)

As  expected,  Gaussian  noise  (Sk=0,  Ku=3)  is

transformed into a Gaussian data set, because its third

and  fourth  moments  remain  unchanged  by  digital

filtering.

10. Appendix 3

Maximum of kurtosis

As the kurtosis increases when the distribution becomes

“taller  and skinnier”,  its  maximum is reached when a

single point as a different value from all other points:

ηi= {−k  , i=1, k∈ℝ+
*

0  , i=2...n
 (51)

then

μ=
−k

n

σ=
k
n
√n−1

Ku=
1

n−1
(n2

−3n+3)≈n−2

Sk≈√n−3 (binary distribution)

(52)

11. Appendix 4

Bimodal distribution

Let the subscripts  t and  e be related to a tangent and

exponential distribution respectively. Then, mixing the

two  distributions  with  the  probability  p and  (1-p)

respectively  will  rise  the  following  relationships

between the statistical moments, [20].
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μh= pμ t+(1− p)μe

σh
2= p(σt

2+δt
2)+(1− p)(σe

2+δe
2)

Sk h= p(Sk tσ t
3
+3δtσ t

2
+δt

3
)+

(1− p)(Sk e σe
3
+3δeσe

2
+δe

3
)

Kuh= p(Kut σt
4+4 Sk tδtσ t

3+6 δt
2σ t

2+δt
4)+

(1− p)(Kue σe
4
+4 Sk eδe σe

3
+6δe

2
σe

2
+δe

4
)

 (53)

where δt=μt-μh and δe=μe-μh .
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