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Since many years, the pioneering work of Hu and Tonder is used to generate rough surfaces with prescribed statistical moments (skewness and kurtosis) along with spatial properties (correlation lengths). The present work enlightens the drawbacks of this method and it proposes an original approach based on a hybrid analytical/numerical method.

Simulations are conducted on very different surface specimens and the method is validated over a wide range of statistical moments. The results are obtained with high accuracy (beyond what is usually needed) and very short computing times (the order of a second)

Introduction

Every engineering surface exhibits irregularities when they are examined at an enough small scale: peaks and valleys appear, revealing its roughness. Engineering surfaces are prepared with progressive finishing processes. Each machining process (or wear) leaves its own signature, with more or less alternating peaks and valleys. Hence, the superposition of all of the signatures leads to the final roughness, characterized by the surface height distribution and the asperities spacing.

As recalled by Bhushan [1], the properties of solid surfaces are crucial to surface interaction because surface properties affect real area of contact, friction, wear, and lubrication. Depending on the desired mechanical application and operating conditions, roughness can have significant effects on the mechanism behavior: shortened durability, higher friction coefficients, higher load capacity, …

In the particular case of lubricated contacts, if the surfaces are kept well separated -high Sommerfeld number -a safe full-film regime is established, and the roughness plays no significant role in the contact behavior. However engineers are brought to extend these operating conditions towards lower Sommerfeld numbers, hence approaching critical lubrication conditions, and creating contact between opposing asperities. Many reasons may motivate this choice.

First, the better understanding and control of mixed lubrication -compared to decades ago -and second, for enhanced functioning purposes. As an example, because of lower viscosity and/or higher temperatures, automotive conrod big end bearings partly operate under mixed lubrication conditions, but the mechanism integrity is still guaranteed. In the field of sealing, mechanical seals can not prevent fluid leak, if the two components are not kept very close to each other.

To gain knowledge on surface roughness influence, experiments are obviously needed, but modeling is unavoidable: it is a fast and cheap means to carry out parametric studies. Thus, since almost four decades, rough surface generation is being studied, for which a state of the art can be found in Minet et al. [2].

A difficult problem arises: there are as many different roughness types as surfaces. However its has been proved that the surfaces exhibiting the same wellchosen "global characteristics" are equivalent from a tribological point of view [START_REF] Bakolas | Numerical Generation of Arbitrarily Oriented non-Gaussian Three-dimensional Rough Surfaces[END_REF]. Furthermore, it is well known that both spatial and spectral characteristics are needed as "global characteristics". The spatial characteristics are well described by the four first statistical moments: mean µ, variance Va (square of the standard deviation σ), skewness Sk and kurtosis Ku. As for the spacing characteristics, the AutoCorrelation Function (acf) is widely used.

As described by Whitehouse [4], most of the conventional machining processes produce non-Gaussian surfaces Fig. 1, ref. [4], and, thanks to its versatility, the beta-distribution can be used to model the height distribution, Fig. 2.
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However, modeling the surface height distribution is not self-sufficient: additional information is needed regarding the height spacing. Having both controlled, has lead to an abundant literature since the pioneering work of Patir [5] and since then, the researchers have perfected the rough surface generation for contact, lubrication, …, purposes.

Non-Gaussian rough surfaces were numerically generated for elastic/plastic contact analysis by Kim et al. [START_REF] Tw Kim | The Contact Behavior of Elastic/Plastic non-Gaussian Rough Surfaces[END_REF] and Chilamakuri and Bhushan [START_REF] Chilamakuri | Contact Analysis 25/31 of non-Gaussian Random Surfaces[END_REF], with the Hu and Tonder procedure [START_REF] Hu | Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis[END_REF]. Both papers [START_REF] Tw Kim | The Contact Behavior of Elastic/Plastic non-Gaussian Rough Surfaces[END_REF][START_REF] Chilamakuri | Contact Analysis 25/31 of non-Gaussian Random Surfaces[END_REF] recall that most of the common machining processes produce surfaces with non-Gaussian distribution, but only low skewness were used (|Sk| ≤ 1) with short correlation lengths β (β ≤ surface_width/20). Wu [9] has improved the Hu and Tonder procedure, but his new method cannot generate surfaces with every skewness and kurtosis, especially when the skewness and kurtosis are large. The author argues that such surfaces do not exist, or maybe the limitation of the FFT use is reached. Using Wu's procedure, Reizer [START_REF] Reizer | Simulation of 3D Gaussian surface topography[END_REF] has observed high divergence between the modeled and measured surface parameters, when the correlation length was larger than 0.15 of the evaluation length.

Luo et al. [11] have developed a roughness generation procedure, using Johnson or Pearson translators, regarding the desired final parameters. The chosen Sk range [-2,+2] and Ku range [0, 10] were justified regarding most common engineered surfaces, and more specifically, regarding Kim et al. work [START_REF] Tw Kim | The Contact Behavior of Elastic/Plastic non-Gaussian Rough Surfaces[END_REF] on rough contact analysis. However as measured by Minet et al.

[2] on mechanical seal faces, values of (Sk, Ku) up to (-6, 100) should be taken into account. Furthermore, Sedlacek et al. [START_REF] Sedlačeka | Correlation Between Standard Roughness Parameters Skewness and Kurtosis and Tribological Behavior of Contact Surfaces[END_REF] have proved that the pair of parameters |Sk| and Ku not only influences the wear in dry conditions, but tends to lower friction when increasing, in mixed lubrication conditions.

Up to now, moderate ranges of (Sk, Ku) were used but, as confirmed by Minet et al. [2], larger ranges are sometimes needed. However, a more general numerical surface generation faces difficulties that make conventional procedures fail:

• large Sk and Ku, (some honed surfaces),

• Ku below 3, (some turned or milled surfaces),

• and, large autocorrelation lengths.

In the present work, an original and efficient method is proposed to deal with the aforementioned situations. In addition, it can be used to reproduce existing surfaces: instead of working with theoretical skewness and kurtosis values, one can get the heights from the real surface.

Surface global characteristics

The surface topography can be seen as a random process for which peaks randomly alternate with valleys. As for any random sequence, the peak and valley relative number and height is quantified by four statistics -the vertical roughness properties. The spatial distribution of the roughness can be described as the superposition of waves of different lengths, leading to smooth surfaces (predominant long wavelengths) or sharp surfaces (predominant short wavelengths).

Statistical properties

Let η=(ηi)i=1,...,n be a set of n independent identically distributed (iid) random variables. Under the assumption that it is fully characterized by its four statistical moments (μn, n=1,2,3,4), Eq.( 1), (ηi)i=1,...,n is said statistically equivalent to (zi)i=1,...,n if both share the same moments.

μ 1 =μ= 1 n ∑ i =1 n η i ; μ 2 =Va= 1 n ∑ i=1 n (η i -μ) 2 σ=√Va μ 3 =Sk = 1 n ∑ i=1 n ( η i -μ σ ) 3 ; μ 4 = Ku= 1 n ∑ i =1 n ( η i -μ σ ) 4 (1) 
(µ, Va, Sk, Ku) are known as, resp., mean, variance, skewness and kurtosis but Va is seldom used in the field of tribology, the standard deviation σ is preferred.

Fig. 3 presents four surfaces measured with a white light interferometer device.

• Fig. 3(1) 'Ech03' is a turned surface, which kurtosis is below 3: it is an uncommon case which is difficult to reproduce.

• Fig. 3(2) 'Ech14' has been roughly milled; its statistics are quite common but the pattern is trouble for numerical generation.

• Fig. 3(3) 'Fluorin' has been highly polished; it is an easy surface to generate because it is nearly Gaussian

• Fig. 3(4) 'Rotor' is a worn rotor surface which statistics make the numerical generation difficult.

The specimen are less than 1mm x 1mm, along x and y axes (horizontal and vertical resp.) In order to compare the surface statistical properties, each surface height distribution is normalized with regard to its standard deviation. Fig. 4 presents the resulting curves, and some remarks arise:

• A surface distribution can appear to be bimodal 'Ech03', because of the superposition of two distributions (often due to two machining processes).

• The skewness is non-zero when the roughness distribution is asymmetric. When positive, the skewed distribution illustrates cases where the peaks are statistically greater than the valleys. Conversely, a negative skewed surface, 'Rotor', has deeper valleys, as if the heights of a peaked surface have been reversed.

• The 'Fluorin' height distribution is nearly Gaussian,

• 'Ech14' has a smooth slightly skewed distribution despite a highly patterned appearance.

The kurtosis -to be distinguished from excess of kurtosis -is a positive statistics and measures the "peakedness" of the height distribution; for a Gaussian distribution Ku =3. For a symmetric peaked distribution -Sk =0, Ku >3 -there are more middle heights, but some positive and negative heights are greater. It is to be reminded for further developments that there exists a relationship between Sk and Ku, Ku⩾Sk 2 +1 .

which is sometimes referred as Pearson's inequality [START_REF] Pearson | Mathematical Contributions to the Theory of Evolution, XIX; Second Supplement to a Memoir on Skew Variation[END_REF]. As suggested in ref. [START_REF]Moment (mathematics[END_REF], it can be proved as follows:

• E [(η 2 -a η-1) 2 ]⩾0 , because the distribution (η 2 -aη-1)
2 is positive; E stands for the mathematical expectancy,

• if E(η)=0 and σ(η)=1 then, the previous relationship writes a 2 -2 Sk a+( Ku-1)⩾0 , where Sk=E(η 3 ) and

Ku=E(η 4 )
• and, the condition is verified for Sk 2 -( Ku-1)⩽0

(negative discriminant to ensure that the second order polynomial remains positive with regard to a)

The strict equality holds for binary distributions. η⊗ η=acf (Δ x , Δ y)

Spatial properties

= 1 σ 2 ∬ η( x , y) η( x+Δ x , y+Δ y) dxdy (2)
As information is given on a grid n=p², involving (ηij)i,j=1,...,p , Eq.( 2) is rewritten in discrete way, Eq.( 3)

η⊗ η=acf (k ,l )= 1 σ 2 ∑ i=1 p ∑ j =1 p η(i , j ) η( i+k , j+l ) (3) 
Fast Fourier Transforms, FFT, will be used to compute the acfs, so the input signal is supposed to be periodic. 

β X ) 2 + ( -sin α . x+cosα . y β Y ) 2 ] (4)
However, if a periodic component is introduced by the machining process, the resulting acf will be a combination of two functions, as illustrated by Petropoulos et al. [START_REF] Petropoulos | Surface Texture Characterization and Evaluation Related to Machining[END_REF], for shaping, turning, grinding and supergrinding: the acf shape will quickly differ from an exponential when moving away the origin. Thus the acf initial slope and its decrease rate will be kept as surface smoothness indicators: the greater, the sharper.

2.2.b. acf curves of the reference surfaces

Along the turning tool displacement axis, vibrations make the surface less smooth than in the orthogonal direction. As it can be seen in Fig. 3(1) long wavelengths are predominant along x direction, which is corroborated by the acf, Fig. 5: the surface heights are normalized with respect to σ, then, if wavelengths are more pronounced in a direction, the acf will decrease slowly in the orthogonal direction. .2.c. Computational aspects The computational cost is proportional to n 2 , which is prohibitive with grids above n=512x512. However it is reminded that a convolution is faster computed thanks to a FFT, which only needs nlog(n) operations.

z⊗ z =FFT -1 [Z 2 ]=FFT -1 [FFT( z) * FFT( z)] (5) 
The FFT efficiency is due to the assumption that the surface is periodic in both direction. As it will be seen in the part dedicated to the results, this computational trick can induce side effects -artifacts -in the generation of numerical surfaces.

Conventional method for the surface numerical generation

The well-known Hu and Tonder [START_REF] Hu | Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis[END_REF] procedure is reminded hereafter, with a slight improvement proposed by Bakolas [START_REF] Bakolas | Numerical Generation of Arbitrarily Oriented non-Gaussian Three-dimensional Rough Surfaces[END_REF].

Step 1

[Determination of the desired spatial characteristics (acf), and the four statistical moments μi (mean μ, variance σ², skewness Sk and kurtosis Ku)]

Unlike Skz and Kuz which are chosen by the user in order to be representative of the desired worn surface, the prescribed mean μ is set to 0 and the standard deviation σ to 1. However, at the end of the surface generation process, these two moments can be changed with no effect on the third and fourth moments, by scaling and shifting the final surface heights.

Step 2

[Determination of the digital filter H.]
The use of a digital filter writes:

z=h ⊗η ( 6 
)
where z is the final surface height, η a random white noise and h the digital filter.

In the frequency space it becomes Z=H.A, then,

Z Z = H H A Ā which is simply written as Z 2 = H 2 A 2 .
As Z 2 =FFT( acf z ) , and because h is symmetric regarding x and y, H = √ (|FFT( acf z )|)/|A| .

If η is white noise, |A| becomes a constant and can be ignored, Eq.( 7)

h= FFT -1 [ √ (|FFT(acf z )|) ] (7) 
Step 3 8), except for the mean.

μ z =0 σ z 2 ≈ ∑ k=1 n h k 2 Sk z ≈ ∑ k=1 n h k 3 [ ∑ k=1 n h k 2 ] 3 2 Sk η Ku z -3≈ ∑ k =1 n h k 4 [ ∑ k =1 n h k 2 ] 2 ( Ku η -3) (8) 
In this work, the authors propose the use of an alternative set of equations Eq.( 9), rather than the classical one Eq.( 8). It is simpler and uses the zeromean property of η. Indeed h can be written h= h+μ h where h is zero-mean, then z=( h+μ h )⊗ η= h⊗ η .

μ z =0 σ z 2 ≈n σ h 2 Sk z ≈ 1 √ n Sk h Sk η Ku z -3≈ 1 n ( Ku h -3)( Ku η -3) (9) 
The detailed transformations are provided in Appendix 2.

Step 4

[Johnson's transformation of η to match Skη and Kuη ] The Johnson's translation system is usually utilized to transform non-Gaussian data sets into Gaussian data sets. In the present case, the system is reversed in order to obtain data sets η with prescribed moments, starting from Gaussian noise φ. The translator system is composed of three functions reminded in Eq.( 10)

S U :η i ,i =1,... , n = ξ +λ sinh { ϕ i -γ δ } S L :η i , i=1,. .. , n = ξ +λ exp { ϕ i -γ δ } S B :η i , i=1,. .. , n = ξ +λ / { 1+exp ( -ϕ i -γ δ )} (10) 
The kind of transformation used (Unbounded, Lognormal or Bounded) and the ξ, λ, γ, δ parameters depend on the prescribed moments. Hill et al. [START_REF] Hill | Fitting Johnson Curves by Moments[END_REF] have provided an algorithm which automatically choose the right transformation with the associated parameters.

Step 5

[z is obtained by digital filtering of η]

The digital filter H is used to average η, and finally

z=FFT -1 (Z=HA).
At the end of the process, z is supposed to exhibit the right autocorrelation function acf and the right four statistics, μ, σ, Sk and Ku.

Analysis of the conventional method and first improvements

About Hill's determination of the transformation parameters -limitation 1.

The aforementioned process is limited by Hill's algorithm. Fig. 6 shows the kind of transformation used regarding (Sk, Ku) value: "U" stands for "Unbounded", "B" stands for "Bounded", "failure" indicates that Hill's algorithm has not converged, and "unreachable" is used below Pearson's limit Ku<Sk 2 +1. Fig. 6(2) highlights the importance of the area for which no solution is provided. As a consequence numerous (Skη, Kuη)

required by Step3 can not be reached, and the process stops. 

Ku

the process lays on numerically generated random series, there is no "formula" to reproduce a data set; if a particular random serie, among all generated series, gives satisfactory results, there is no savable parameter in order to reproduce it. [START_REF] Tw Kim | The Contact Behavior of Elastic/Plastic non-Gaussian Rough Surfaces[END_REF][START_REF] Hu | Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis[END_REF] or Eqs. (6,9) -limitation 3.

On the quality of the resulting acf(z)

When η is generated with prescribed statistical moments, it is no more white noise. Therefore |A| is not constant and z does not exhibit the prescribed autocorrelation function acf(z). Furthermore when the decay factors (βX, βY) increase (long wavelengths), the resulting acf(z) worsens. An immediate correction consists in applying the formula in Eq. (11).

z=FFT -1 ( H A |A| ) (11) 
Doing so, acf(z) is exactly the same as the one prescribed but η is altered: it is white noise (FFT(η)=A/| A|) but its statistical moments are no longer the same. As the statistical moments need anyway to be corrected, as explained below, Eq.( 11) is kept so that acf(z) will perfectly match the prescribed acf.

On the quality of the resulting statistical moments (Skzc, Kuzc), theoretical background

The skewness and kurtosis belong to higher-order statistics. These scalar values are particular cases of higher-order statistical functions that are sensitive to phase relationships between multiple frequencies. To explain the origin of Eq.( 8) a short piece of Higher-Order Statistics (HOS) follows, without the proofs, [START_REF] Nikias | Signal Processing with Higher-Order Spectra[END_REF][START_REF] Mendel | Tutorial on Higher-Order Statistics (Spectra) in Signal Processing and System Theory: Theoretical Results and Some Applications[END_REF].

The pth-order moment function of a real stationary random process η is defined as

m p η ( τ 1 , τ 2 ,…, τ p-1 )≝E [η k , η k+ τ 1 ,…, η k+ τ p -1 ] = 1 n ∑ k =1 n η k η k+ τ 1 …η k+ τ p -1
which only depends on the lags {τ 1 , τ 2 ,…, τ p-1 }=τ p -1 .

Therefore the 2nd-order moment function m 2 η ( τ 1 ) is the η autocorrelation function and then the zeroth-lag moment m 2 η ( 0) , the mean square value.

The pth-order cumulant is defined as the pth-moment, with correction terms from lower moments, so chosen as to make the result additive under convolution of the probability density functions, pdf ([19] Appendix C, « Convolutions and Cumulants »). The following relationships between moment and cumulant sequences of zero-mean are -for orders p=1, 2, 3, 4:

• c 1 η =m 1 η = E[η k ]=0 , mean value • c 2 η ( τ 1 )=m 2 η ( τ 1 )-(m 1 η ) 2 =m 2 η ( τ 1 ) , autocorrelation sequence • c 3 η ( τ 1 , τ 2 )=m 3 η ( τ 1 , τ 2 )-m 1 η (…)=m 3 η ( τ 1 , τ 2 ) , skewness function • c 4 η ( τ 1 , τ 2 , τ 3 )=m 4 η ( τ 1 , τ 2 , τ 3 )-m 2 η ( τ 1 ) m 2 η ( τ 3 -τ 2 ) -m 2 η ( τ 2 ) m 2 η ( τ 3 -τ 1 )-m 2 η ( τ 3 )m 2 η ( τ 2 -τ 1 ) , kurtosis function
By putting τ 1 = τ 2 = τ 3 =0 in the previous relationships, the following constants appear:

• γ 2 η =E[η k 2 ]=c 2 η (0) (variance), • γ 3 η =E[η k 3 ]=c 3 η (0,0) (skewness γ 3 η / [γ 2 η ] 3 / 2 ), • γ 4 η =E[η k 4 ]-3 [ γ 2 η ] 2 =c 4 η (0,0,0 ) (normalized excess of kurtosis γ 4 η / [γ 2 η ] 2 )
A first result to be noticed is that, 1/ if η is assumed to be iid, e.g. white noise, Eq.( 12) is verified:

{ c p η ( τ p-1 )= γ p η , if τ p-1 =0 c p η ( τ p-1 )=0 , otherwise (12) 
A second point is that 2/ the pth-order cumulant function of a non-Gaussian stationary random signal η can be written as (for p=3, 4 only)

c p η ( τ p-1 )=m p η ( τ p-1 )-m p G ( τ p -1 )
where m p G ( τ p -1 ) is the pth-order moment function of an equivalent

Gaussian signal that has the same mean value and autocorrelation sequence as η. Hence for a Gaussian

process c 3 η ( τ 1 , τ 2 )=c 4 η ( τ 1 , τ 2 , τ 3 )=0 . Anyway, if η is Gaussian c p η ( τ p-1
)=0 for all p, be it colored or white process. So it can be said that cumulants not only display the amount of higher-order correlation, but also provide a measure of the distance of the random process from gaussianity.

When applied to a linear filter, z k = ∑ i=1 n h i η i+k the pthorder cumulant writes:

c p z ( τ p-1 )= ∑ i0 .. ∑ ip-1 h l-i 0 h l-i 1 + τ 1 …h l -i p -1 +τ p-1 ×c p η (i 1 -i 0 ,…i p-1 -i 0 )
and its zeroth-lag value, Eq.( 13):

c p z ( 0)= ∑ i 0 ∑ i1 … ∑ ip-1 h l-i 0 h l-i 1 …h l-i p -1 ×c p η (i 1 -i 0 ,i 2 -i 0 , …i p-1 -i 0 ) (13) 
The third point is that 3/ if η is assumed to be iid, Eq. ( 13) becomes:

c p z ( 0)= γ p η ∑ k =1 n h k p ( 14 
)
Eq.( 14) finally yields the Eq.( 8) relationships for p=2,

To sum up the important points:

1/-3/ white noise cumulants are identically zero, except zero lag cumulants, then there exist simple relationships between the noise statistics and the filtered signal, Eq. ( 14) and more particularly Eq.( 8).

2/ Gaussian noise cumulants are identically zero:

filtered Gaussian noise remains Gaussian.

To conclude on this piece of theory, if η can not be considered as white noise, Eq.( 8) relationships are no longer satisfied because of cross-correlations that not vanish in Eq.( 13). For instance, for extremely skewed distributions regarding the number of points n, the cross-products of η autocorrelation do not reduce to zero. As illustrated on Fig. 7, the problem can be overcome by increasing the number of points; the crossproduct mean obviously decreases but the standard deviation also. To conclude, as the final moments need anyway to be corrected, the use of Eqs. (9,11) is fully justified because it at least ensures the right acf(z).

On the quality of the resulting statistical moments (Skzc, Kuzc), parametric study

In order to assess the error introduced with Eqs. (9,11), a small parametric study is carried out:

• βX/512=βY/512=τ={0.01, 0.02, … , 0.64}

• (Skz, Kuz)={(0,3) , (0,6) , (-2, 12)} ie a Gaussian signal, a non -Gaussian symmetric pdf signal and a skewed signal resp.

• n=512x512

For each case It can be concluded that the errors become large for high values of τ (very long wavelengths) and increasing values of (Skz, Kuz). So the question is, is there any relationship between (Skz , Kuz) and (Skzc , Kuzc) ?

• Because τ has evidently an influence on the results, it is set to a moderate value (τ=0.08).

• (Skh , Kuh) value is taken in the range [0,-50] x [START_REF] Reizer | Simulation of 3D Gaussian surface topography[END_REF]8000] , then (Skz, Kuz) is calculated according Eq.( 9) and (Skzc, Kuzc) is the computed value after digital filtering Eq.( 11)

• (Skh , Kuh) = (49.2, 5453.3) is a constant because it only depends on τ, according to Eq.( 4).

On Fig. 9 it can be seen that for a given Skz , different

Skzc are obtained: one can conclude that the kurtosis has an effect on the skewness prediction, which is due to the η whitening process. On the contrary, a rather good correlation exists between Kuz and Kuzc whatever the skewness. with Eq.( 9), (right)

Hence, for a given τ, the relationships can be corrected in order to gain accuracy; in the present case (τ=0.08) that leads to Eq. [START_REF] Petropoulos | Surface Texture Characterization and Evaluation Related to Machining[END_REF].

Sk z = 1 1.40 √n Sk h Sk η Ku z -3= 1 1.57 n ( Ku h -3)( Ku η -3) (15) 
It has to be recalled that Gaussian noise must be transformed into a Gaussian signal, therefore the fitting functions have been corrected accordingly.

Tabs. 3,4 detail the error on skewness and kurtosis after correction. To summarize the preceding analysis, the corrected (Sk,Ku) formulas Eq.( 15) improve the accuracy of the results, but they strongly depend on τ. So the last analysis to be performed quantifies the effect of τ on Eq. ( 9). τ values are taken in the range [0.01, 0.64], h is generated according to Eq.( 7) and (Skh, Kuh) is calculated; Fig. 10 shows a strong correlation between (Skh, Kuh) and τ. 16), the error on Skh remains below 6% and the error on Kuh below 12%, which is accurate enough to pursue the analysis. A similar case is encountered when the prescribed kurtosis is below 3 associated to high τ values of the acf: the kurtosis Kuη will even turn negative, which is impossible.

Skη
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Conclusion on the conventional method Limitation 1: Numerous (Sk,Ku) values are not reachable with Hill's algorithm.

Limitation 2: Among the reachable (Sk,Ku) values, some need a lot of tries to generate an accurate (Sk,Ku) serie.

Limitation 3: Assuming that the final acf matches the prescribed one, using the proposed correction Eq.( 11), z statistics do not match the prescribed ones.

New hybrid method

To get rid of the aforementioned limitations, three major improvements should be proposed: a) Any (Skη, Kuη) value must be reachable, provided the fact that Pearson's inequality remains satisfied -limitation 1.

b) A more robust method must be used to generate η; ideally speaking, a deterministic algorithm should be defined -limitation 2.

c) The final surface heights must be corrected if necessary, to better match the prescribed moments -limitation 3.

Use of an analytical function instead of a data set transformation, improvements (a) and (b)

Instead of generating random numbers, an analytical function can be used to generate the heights ηi=η(xi) along a well-chosen axis. The advantage is that the height distribution will be directly provided with the desired statistical moments in a deterministic way. For reasons that will be explained later, three cases are considered: (Eq.18). A set of 256 2 values is generated, and the third and fourth statistical moments calculated.

{ 1.10 Sk z 2 +1>Ku z ⩾1.00 Sk z 2 +1 (a) 1.34 Sk z 2 +1>Ku z ⩾1.10Sk z 2 +1 (b) Ku z ⩾1.34 Sk z 2 +1 (c) (17) 
I 1 =[-π 2 (1-a), π 2 (1-b)] (a,b) ∈ [ 10 -10 , 1] (18) 
The map Ku vs Sk is plotted on Fig. 14. It can be a priori deduced that a large range of (Sk, Ku) is covered.

Let us now consider the atanh function and its varying interval I2. In the same manner, the (Sk,Ku) map is plotted (Fig. 15) and it appears that the range of (Sk,Ku)

values is much more limited. tan 

I 2 =[-(1-a),+(1-b)] (a ,b) ∈ [10 -14 ,1] (19) 
(x i )=tan [ -π 2 (1-a)+ i-1 n-1 π 2 [2-(a+b)] ] i ∈{i ,...n } and x i ∈[-π 2 (1-a), π 2 (1-b)] (21) 

Comments

• The lack of fit that appears on Fig. 13(1) was foreseeable: Ech03 is a "strong" bimodal surface (Fig. 4), its profile exhibits a central curvature change that the tangent function can not fit. That is the reason why the present study is limited to unimodal or weakly bimodal surfaces. However bimodal profiles can be handled by mixing two unimodal profiles.

• Some (Sk, Ku) values are hardly reached with the tan function, as appears in Fig. 14 between the black curves.

• As expected, for large kurtosis values and negative skewness, Fig. 13(4), xa becomes small: the -π/2 asymptote of the tangent function appears.

5.1.b. Transformation of a data set sum into an integral

The use of an analytical representation of the heights is of limited interest if the sums, as expressed in Eq.( 1), can not be avoided because it becomes time consuming for large n. So, how will be the statistical moments calculated in a discrete problem? Considering the mean and recalling that Simpson's method involves such a sum and that it links it to the function integral, the relationship Eq.( 22) is deduced, with n=2p the number of points, and h=(β-α)/(n-1) the interval length. The goal being to establish a relationship between I1,n (analytical) and

S η = 1 n ∑ i=1 n η i , I1,n is decomposed, as
shown in Fig. 17, where I1,2 and In-1,n are approximated in Eq.( 23), yielding Eq.( 24).

I 1, n = ∫ α β η(x)dx ≈ h 3 [ η( x 1 )+4 ∑ i=1 p η(x 2 i )+2 ∑ i =1 p-1 η(x 2 i+1 )+η(x 2 p+1 ) ] ≈ h 3 [ η 1 +4∑ i=1 p η 2 i +2 ∑ i=1 p-1 η 2i + 1 +η 2 p+ 1 ] = 1 2 [ I 1,2 +I 2, n +I 1, n-1 +I n-1,n ] (22) 
I 1,2 ≈ h 6
(η 1 +4 η 1+ 0.5 +η 2 )

I n-1, n ≈ h 6 (η n -1 +4 η n-0.5 +η n ) (23) S η = 1 n ∑ i=1 n η i ≈ n-1 n(β-α) I 1,n + 1 
12 n [9(η1+ηn)+(η2+ηn-1)-4(η1+0.5+ηn-0.5)]

(24)

Based on this principle, the computation of the four moments becomes therefore instantaneous and does not depend on the data set length n. The following integrals, Eq.( 25), can therefore be analytically determined by hand (but can turn to be tedious), or calculated on a symbolic calculation software. 

5.1.c. Data set with prescribed moments

The remaining task is to control the shape of the tangent function, so that the discrete form will match the desired statistical moments.

Modifying a function shape can be achieved by parameterizing its limits. As an example, for the tangent function, the closer to ±π/ 2 the larger the tangent values and the higher the kurtosis. Eq.( 26) defines the domain limits, using two parameters a and b.

x∈[-π 2 (1-a) , π 2 (1-b)] {a ,b}∈]0,1 ] (26) 
An optimization algorithm is finally used to find the right values of a and b, such that the functional f, Eq. ( 27), is minimized, with imposed Sk and Ku.

f (a , b)=[ Sk 2 -Sk 2 (a ,b)]+|Ku-Ku(a ,b)| (27)
Once a and b give satisfactory results regarding Sk and Ku, the set of points (ηi)i=1,n is shifted and scaled to match prescribed values of μ and σ with no subsequent effect on Sk and Ku.

Therefore to this point, a data set η has been generated

and it matches the prescribed four first statistical moments.

5.1.d. Limitations and solutions Near Pearson's limit (Ku ≈ Sk 2 +1) the height distribution becomes binary and, the numerical generation is no longer satisfactory, as illustrated in Fig. 18. Because the relations in Eq.( 8) are very approximate, it can lead to non reachable values of (Skη, Kuη) such that Ku η ⩽Sk η 2 +1 . Instead of giving up, or arbitrarily modifying the input (Skz, Kuz), it is better to threshold Kuη using a binary distribution and complete the process with the approximate value of Skη and its corresponding Kuη, KuηSkη 2 +1. The resulting generated surface will be anyway corrected thanks to improvement (c), as shall be seen later.

To solve this problem of weak fitting, another function, Eq.( 28), is introduced. It is built so that it exhibits a starting and an ending plateau; therefore, if the domain extends from low values to large values of x, the discrete representation will be binary-like, Fig. 19. To assess the exponential function ability to fit binary distributions, the same parametric study as for the tangent function is carried out, and the (Sk, Ku) map is plotted over the interval I3, Eq.( 29), Fig.20 (ei)i=1,...,n an exp distribution. A bimodal distribution composed of both distributions with the same probability can be expressed as:

e (x i )=sign(x i )[1-exp(-|x i |)] x i =- 1 a (1-a)+ i-1 n-1 ( 1 a + 1 b -2 ) x i ∈ [ -1 a (1-a) , 1 b (1-b) ] {a ,b}∈]0,1 ] (28) 
I 3 =[- 1 a (1-a), 1 b (1-b)] (a, b) ∈ [10 -14 ,1] (29) 
(h i ) i =1...2 n = { σ t (t i )+μ t i=1... n σ e (e i )+μ e i=n+1. ..2n (30) 
Then, using the equations in Appendix 4,

μ h =0→μ e =-μ t , μ t ∈[ 0,1[ σ h 2 =1→σ t 2 +σ e 2 =2(1-μ t 2 ) then { σ t =√2(1-μ t 2 )cos γ σ e =√2(1-μ t 2 )sin γ , γ ∈ [ 0, π 2 ] (31) 
Hence,

2 Sk h = Sk t σ t 3 +Sk e σ e 3 +3μ t (σ t 2 -σ e 2 ) 2 Ku h =Ku(σ t 4 +σ e 4 )+4μ t (Sk t σ t 3 -Sk e σ e 3 )+ 6μ t 2 (σ t 2 +σ e 2 )+2μ t 4 ( 32 
)
An optimization routine is used to determinate the two unknowns μt and γ, which is quite instantaneous. If one wishes a final set of only n terms instead of 2n terms, Skh and Kuh must be doubled, and half terms of the bimodal distribution dropped.

To conclude on this part, whatever the profile being fitted, the tangent function can be used for most of cases, and a complementary exponential function is introduced for limit cases.

Efficiency, accuracy

The new approach proposed by the authors can thus be modeled as follows: 

μ a , b = 1 n ∑ i =1 n tan (x i )≈ n-1 n π 2 (2-a-b) [ ∫ -π 2 (1-a) π 2 (1-b) tan (x)dx ] + 1 12n [9(tan(x 1 )+tan ( x n ))+(tan (x 2 )+ tan (x n-1 )) -4(tan (x 1+ 0.5 )+tan ( x n-0.5 ))] (33) 
Knowing μ a , b the standard deviation is also determined as a function of a and b, Eq.( 34)

σ a ,b 2 = 1 n ∑ i=1 n (tan (x i )-μ a , b ) 2 ≈ n-1 n π 2 (2-a-b) [ ∫ -π 2 (1-a) π 2 (1-b) (tan ( x)-μ a ,b ) 2 dx ] +... (34)
Then Ska,b, Kua,b follows, Eq.(35).
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Sk a ,b = 1 n ∑ i =1 n ( tan (x i )-μ a ,b σ a , b ) 3 ≈ n-1 n π 2 (2-a-b) [ ∫ -π 2 (1-a) π 2 (1-b) ( tan ( x)-μ a ,b σ a, b ) 3 dx ] +... Ku a , b = 1 n ∑ i =1 n ( tan (x i )-μ a , b σ a , b ) 4 ≈ n-1 n π 2 (2-a-b) [ ∫ -π 2 (1-a) π 2 (1-b) ( tan ( x)-μ a ,b σ a, b ) 4 dx ] +... (35) 
Finally, the minimization problem Eq.( 27) is solved and (a, b) determined. Then, a data set is generated with (a,b) resulting in (Skη, Kuη).

So, the first validation to be carried out is the ability of the method to analytically reach any (Sk,Ku) value and being close to its value. 
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Results

The hybrid method is used to generate surfaces that share exactly the same statistic and spatial parameters as It can be noticed that:

• the height scales are not the same as those of Fig. 3: it is just because the heights are normalized with respect to their standard deviation.

• The generated Ech03, Fig. 27 An important limitation seems to be brought out from the use of FFTs but:

• it only deals with existing surfaces which have long wavelength patterns,

• in addition, one only needs to rotate the original surface so that the pattern orientation is 0 [π/2], as done below.

Ech03 is rotated to ensure that its principal axes are parallel to x and y (α=0). As a consequence the statistical moments change, but it remains the very same surface Fig. 29(1). It is a very challenging case because Kuz<3, along with long wavelengths, Fig. 30; Eq.( 9) yields a Kuη value much below 1, which is mathematically impossible. So, the hybrid method keeps the Skη value given by Eq.( 9), with a modified Kuη, Kuη Some marked peaks can appear on the generated surface, then to be utilizable in a realistic context, the surface has to be manually cleared of the higher peaks.

It will affect a little its characteristics but the result will be a good compromise between the original surface look and the original surface characteristics. The statistical moments of the generated surface are obtained with an error lower than 0.5% The computing time is higher compared to Hill's algorithm but it remains of the order of a second, on a common computer. The case (4) is the most severe one but it can be seen on Fig. 32 that the autocorrelation functions along x and y axes are perfectly matched. 

Conclusion

From a general point of view, the gap in accuracy and efficiency of the conventional method, in the task of generating rough surfaces, is filled.

First, the traditional technique fails for numerous prescribed (Sk, Ku) cases. Many more become unsolvable if the surface to be modeled has long wavelengths. Second, the conventional method is based on the assumption of infinite series, which worsens the results of small series: a lot of tries are required to match the desired results.

An original and solid approach is then proposed. It is able :

• to handle any (Sk, Ku) case, even for small series (provided that Ku<n, as explained in Appendix 3)

• to generate rough surfaces with high correlation lengths without any accuracy loss.

The accuracy is proved to be highly satisfactory as well as the efficiency, because of very short computing times. 

Appendix 1

Appendix 2

Relationships between cross-products and non-centred moments

Let us first define the four non-centred moments of

( x i ) i=1, ... n : μ x =Ε( x); V x =Ε( x 2 ); S x =Ε ( x 3 ); K x =Ε ( x 4 ) (36) 
Developing (μ x ) 2 , the following relationship holds Relationships between non-centred moments and central statistical moments

Va x =V x -μ x 2 Sk x = S x -3μ x V x +2μ x 3 (V x -μ x 2 ) 3/ 2 Ku x = K x -4μ x S x +6μ x 2 V x -3μ 4 (V x -μ x 2 ) 2 (44)

Relationships between z and η statistical moments

Mean Linking μz and μη is an easy task, because of the summation over i of ηk+i in Eq.(45). η i η j ] /(n-1) with j= p+i and using Eq.( 37), the relationship between the variances of the input signal η, the filter h and the output z is as follows: ≈ nV h V η +n( nμ h

z i = ∑
2 -V h ) ( -V η n-1 ) ≈ nVa h V η = nVa h =Va z ( 46 
)
remembering that η has zero mean and unit variance. the z fourth non central moment 

1 n ∑ i =1 n z i 4 = ∑ j , k , p , q=1 n h j h k h p h q ( 1 n ∑ i =1 n η j+i η k +i η p +i η q +i ) = ∑ j =1 n h j 4 ( 1 n ∑ i =1 n η j + i 4 ) +4 ∑ j,

Appendix 3

Maximum of kurtosis

As the kurtosis increases when the distribution becomes "taller and skinnier", its maximum is reached when a single point as a different value from all other points: 

η i = { -k , i=1

Appendix 4

Bimodal distribution

Let the subscripts t and e be related to a tangent and exponential distribution respectively. Then, mixing the two distributions with the probability p and (1-p) respectively will rise the following relationships between the statistical moments, [START_REF] Kim | On More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P 500 Index[END_REF].

Figure 1 :

 1 Figure 1: (Sk, Ku) for the most common machining processes, [4]

Figure 2 :

 2 Figure 2: (a, b) beta function parameters for the most common processes, [4]

Figure 3 :( 3 )Figure 4 :

 334 Figure 3: Real worn surfaces -(0,0) coordinate is top left (1) Ech03, 0.9mmx0.9mm, (Sk, Ku) = (-0.13, 1.87) (2) Ech14, 0.9mmx0.9mm, (Sk, Ku) = (-0.86, 3.94) (3) Fluorin, 0.37mmx0.37mm, (Sk, Ku) = (0.09, 2.77) (4) Rotor, 0.37mmx0.37mm, (Sk, Ku) = (-4.45, 29.01)

2. 2

 2 .a. Generality The statistical parameters are related to how the heights are vertically distributed. The spatial properties represent how the heights η(x,y) are organized in the 2D-space. A practical means to quantify the spatial properties is to compare the surface to a copy shifted of 5/31 the quantity Δx,Δy; the more similar, the smoother the surface. The comparison is usually performed thanks to the normalized autocorrelation ηη, Eq.(2).

  Hence the above cross-correlations are in fact cyclic cross-correlations: i+k=i+k [p] and j+l=j+l [p]. As will be shown in the results, this assumption proves to be valid for the great majority of the treated cases. The acf reveals the relative importance of randomness regarding periodicity of a profile. It is widely admitted that the acf of a pure random profile is well fitted by a declining exponential. By extension it is considered that most of engineering surfaces have an exponential acf, as expressed in Eq.(4), where βX and βY are decay factors relative to α direction. Then, on the α-rotated ellipse, which major and minor axes are βX, βY resp., acf(x,y)=acf(0,0)/10 acf =exp [ -2.3 √ ( cos α . x+sin α . y

Figure 5 :

 5 Figure 5: Normalized acf of the worn surfaces Ech03, βX=1.9, βY=0.3, α=-4.0°E ch14, βX=0.18, βY=0.05, α=7.0°F luorin, βX=0.10, βY=0.06, α=-16.0°R otor, βX=0.06, βY=0.03, α=-23°2

Figure 6 : 4 . 2 .

 642 Figure 6: transformation type for Sk = 0...5 (left) and Sk=0...100 (right)

Figure 7 :

 7 Figure 7: standard deviation of a data set normalized autocorrelation (Sk=-2, Ku=8)

Figure 8 :

 8 Figure 8: comparison of the generated acf and the prescribed one

Figure 9 :

 9 Figure 9: Skewness obtained after filtering (Skzc) vs predicted skewness (Skz) with Eq.(9), (left) and kurtosis obtained after filtering (Kuzc) vs predicted kurtosis (Kuz)with Eq.(9), (right)

Figure 10 :

 10 Figure 10: (Skh, Kuh) as a function of τ, in other words the digital filter statistics regarding the decay factor of the acf

  said that the (Skh,Kuh) fit can not be extrapolated to lower values of τ because as proved in Appendix 3, lim τ→0 Sk h ≈ √n-3 and lim τ →0 Ku h ≈n-2 , which is quite different from Eq.(16). However such cases should not happen: if τ <<0.01 then h≈δ1 (h=1 if i=1, h=0 otherwise), hence z≈η which presents no interest. With prescribed (Skz, Kuz), (Sk, Ku) formulas of Eq.(9), are used to deduce (Skη, Kuη) with respect to τ, thanks to (Skh, Kuh) fit . Pearson's limit is reached whenever Ku-Sk 2 -1<0, so the non-dimensional parameter P M =( Ku η -Sk η 2 -1)/ Ku η is plotted against τ and when PM becomes negative it means that (Skη, Kuη) can not be generated. Fig.11 represents the evolution of the aforementioned criterion with (Skz, Kuz)=(-2, 12) as an example. As it clearly appears if τ is greater than 0.08, (Skη, Kuη) violates Pearson's limit and can not be generated: the classical Hu and Tonder's procedure stops.

Figure 11 :

 11 Figure 11: "Pearson's criterion" as a function of the decay factor τ

Figure 12 :

 12 Figure 12: maximum of the decay factor τ as a function of Kuz for common values of Skz

  Most of encountered engineering surfaces belong to the latter situation, Eq.(17.c). Some cases Eq.(17.b) are called binary-like height distributions and are rarely observed. Almost no real surface is highly binary, Eq. (17.a). However, step 3 of Hu and Tonder's algorithm can require Ku  in the three ranges. 5.1.a. Usefulness and relevance of an analytical height function Most of unimodal surfaces are fitted with a tangent function As presented above, Figs.3,1-4 exhibit very different morphologies. The very first operation performed on the surfaces is the normalization, with respect to their standard deviation. Then, for each surface a vector filled with 2048 representative heights is built and ordered.

Figure 13 Fig. 13

 1313 Figure 13: tangent fit on real profiles Ech03, xa=0.96, xb=1.37, xc=4.08, xd=0.86 Ech14, xa=0.20, xb=0.43, xc=0.74, xd=0.25 Fluorin, xa=0.38, xb=0.35, xc=0.92, xd=-0.07 Rotor, xa=0.03, xb=0.20, xc=0.27, xd=0.20

Figure 15 :

 15 Figure 15: (Sk,Ku) values reached by the atanh function over the interval I2

Figure 16 :

 16 Figure 16: comparison between the tan function and the atanh function behaviors

  Prior any analytical development, the tangent function fitting capacity -tan(x).xc+xd -has been checked on a large variety of surfaces, including Figs.3,1-4, on a classical spreadsheet. As a result, it is found that, despite high skewness and kurtosis levels to be fitted, the tangent function remains a good candidate for height generation. Fig.13 illustrates the tangent fitting ability with xa, xb, xc and xd ( x a = π 2 a and x b = π 2 b ) which are determined with the spreadsheet solver.

Figure 17 :

 17 Figure 17: Relationship between the integral I1,n, and the integrals starting from odd and even points. I1,n=0.5*(I2,n+I1,2+I1,n-1+In-1,n)

  , μ is determined as a function of Int1, then, σ as a function of Int2 then, Sk(a,b) and Ku(a,b) as a function of Int3 and Int4 resp., with α=-π/2(1-a) and β=+π/2(1-b).

Figure 18 :

 18 Figure 18: height ordered binary distribution with its tangent fit

Figure 19 :

 19 Figure 19: exponential function over the domain [-7,15] (Sk,Ku)=(-0.7, 1.6)

Figure 20 : 2 + 1 ,Fig. 14 .

 202114 Figure 20: (Sk,Ku) values reached by the exp function over the interval I3

Figure 21 :

 21 Figure 21: functions used regarding the targeted (Sk,Ku)

(

  Sk, Ku) → (Ska,b, Kua,b) → (Skη, Kuη) It means that once prescribed (Sk, Ku), (a,b) are determined leading to (Ska,b, Kua,b). Eq.(33) is obtained thanks to Eq.(24) with α=-π 2 (1-a) and β= π 2 (1-b) for the tangent function. The integral is determined formally as a function of a and b.

(

  Fig.22 shows the validation domain (Sk,Ku)  [0,100]x[1,10001]; for a given (Sk,Ku), an analytical function is automatically chosen (tangent, exponential, or intermediate), and (a,b) is determined. The domain is covered with 512x512 validation points.

Figure 22 : 2 )

 222 Figure 22: error map (%) of the hybrid method. (Sk,Ku) in [0,100]x[1,10001]. Error on Sk (1), and Ku (2)

Figure 24 :

 24 Figure 24: initial profile and corrected profile

Figure 25 :

 25 Figure 25: ordered profiles

Figure 26 :

 26 Figure 26: overall generating process

  the reference surfaces, Figs.27,28. The final heights {z'}, step 5.2 Fig.26, are not numerically generated but recover from the original surfaces.

  (1) exhibits vertical lines and Ech14, Fig.27(2) shows artifacts (like pin holes). Because of the use of FFTs, it is assumed that the surfaces are periodic. This assumption remains valid for short (βX, βY) even if the roughness has a clear orientation, Fig.27(3). However if a long wavelength pattern is present with an orientation different from 0 [π/2], the non-periodicity gap makes artifacts appear.

Figure 27 :Figure 28 :

 2728 Figure 27: Generated surfaces matching the reference surfaces of Fig.3 -(1) Ech03, (2) Ech14, (3) Fluorin, (4) Rotor

=Skη 2

 2 +1. At the end of the process, z exhibits the right spatial characteristics but its statistical parameters do not exactly match the prescribed ones. However, as z is replaced by z', having the right (Sk,Ku), the final surface is very close to the original surface from both statistical and spatial points of view, as shown on Figs.29,30.

Figure

  Figure 29: rotated Ech03 (1), generated surface (2); Sk=0.37, Ku=2.03

Figure 30 :

 30 Figure 30:normalized autocorrelation function along x and y axes for the case of Fig.29

Figure 31 :Figure 32 :

 3132 Figure 31: from top left to bottom right, Sk=-3, Ku=15 (1) βX/512=βY/512=0.02 (2) βX/512=0.04,βY/512=0.02 (3) βX/512=0.12,βY/512=0.08 (4) βX/512=0.48,βY/512=0.32

x j x k =n 2 μ x 3 - 3 x j x k x l = n 3 μ x 4 -6n 2 μ x 2 V

 3342 V x μ x , the following relationship holds1 nμ x V x +2S x (39) Developing (V x ) =n μ x S x -K x (41)Developing V x μ x 2 , the following relationship holds1 x k = n 2 μ x 2 V x -n( 2μ x S x +V x 2 )+2 K x x +n(8μ x S x +3V x 2 )-6 K x (43)

  p+ i , with p=k-j≠0 and with the assumption that,

η

  j +i η k+i )

η i η p +i η q+i ≈ 1 (η i η j+i η p +i η q +i ≈ 1 (n- 1 )η

 111 i η k +i η l +i ) (n-2)(n-3) [ 1 n ∑ i , j , p , q=1,i≠ j≠ p≠q n η i η j η p η q ] i η j η p η q ]

Table 1 . Variability in the process of generating η with Johnson

 1 The following table, Tab.1, shows the mean and standard deviation of 20 Johnson's generated series, for (Sk,Ku) = (-2, 20) and n=512 2 : despite the quality of the Gaussian starting random series, the generation of η leads to very variable kurtosis results.

		φ		η	
		Sk	Ku	Sk	Ku
	μ	7.10 -4	3.+7.10 -4 -2.+4.10 -3	19.8
	σ	6.10 -3	1.10 -2	1.4 10 -1	5.6

's translator system 4.3. About the relationships Eqs.

Table 2 . Errors induced by the use of (Sk, Ku) moment relationships

 2 

		(0,3)	(0,6)	(-2,12)
	τ	errSk	errKu (%)	errSk	errKu (%)	errSk	errKu (%)
	0.01	0.01	0.23	0.02	18.93	0.63	29.00
	0.02	0.00	0.72	0.00	18.73	0.59	28.63
	0.04	0.02	1.92	0.01	19.50	0.57	27.78
	0.08	0.01	1.50	0.04	19.75	0.64	28.80
	0.16	0.08	3.18	0.03	21.80	*	*
	0.32	0.09	2.06	0.06	21.17	*	*
	0.64	0.01	10.04	0.17	25.54	*	*

5 calculations are performed because of the stochastic nature of the process. errKu is the relative difference between the prescribed kurtosis Kuz and the calculated kurtosis Kuzc values, errSk is the absolute difference between the prescribed skewness Skz and the calculated skewness Skzc values (because of the zero value, relative difference is not possible). For the (Skh, Kuh) cases that violate Pearson's inequality, a star (*) replaces the result in Tab. 2.

Table 3 . Errors induced on the skewness

 3 

	Kuη Kuzc Kuz	errKu %	Kuη Kuzc Kuz	errKu %
	10 3.1 3.0	1.4 2500 36.1 35.1	3.1
	100 4.3 4.2	1.4 2800 40.1 38.8	3.4
	200 5.6 5.4	3.7 3000 42.8 41.9	2.0
	500 9.6 9.3	3.6 3500 49.4 49.4	0.6
	600 10.9 10.6 3.3 4000 56.0 54.9	2.3
	800 13.6 13.0 4.3 5000 69.3 69.2	0.2
	1000 16.2 15.9 2.3 6000 82.6 85.1	2.9
	1500 22.9 22.7 0.8 7000 95.8 94.7	1.2
	2000 29.5 28.9 2.1 8000 109.1 108.4 0.6

Table 4 . Errors induced on the kurtosis

 4 

  = τ 1 , τ 2 , ... , τ p -1 HOS set of lags Δx, Δy shifting quantities along x and y resp.

	I1, I2, I3	tan, atanh and exp function resp. intervals	ξ, λ, γ, δ Johnson's transformation parameters
	Inti, i=1, 2, 3, 4 analytically calculated integrals	φ	Gaussian noise
	m p η	η pth-order moment function	μ	mean
	m p G	pth-order moment function of an η equivalent	μi	i th statistical moment
	Gaussian signal	σ	standard deviation
	n	number of points of the distributions	τ	decay factor (τ=βX=βY)
	Oz height-ordering operator p number of rows/columns of a surface Sk, Ku skewness and kurtosis	τ p -1 Acronyms
	(Ska,b, Kua,b)	theoretical skewness and kurtosis	acf autocorrelation function
				FFT Fast Fourier Transform
				HOS Higher-Order Statistics
				iid independent identically distributed random
				variables
				pdf probability density function
				Notation
	z, Z final random distribution, Z=FFT(z)	a, b integration parameters
	z'	corrected final random distribution	acfz acf(z), z autocorrelation function
	α	principal direction of the heights	c p η η pth-order cumulant
	α, β integration bounds	E	mathematical expectancy
	βX , βY	decay factors along x and y resp.	h	bimodal distribution of the intermediate zone ;
				interval length of the discretized interval Ii i=1, 2, 3
	γ	parameter that links (ei)i=1,…,n and (ti)i=1,…,n	
				h, H digital filter, H=FFT(h)
	γ p η η pth-order centred statistical moment	
	η, A starting random distribution, A=FFT(η)	
				i=1, 2, 3
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I1,2 , I1,n-1 , I1,n , I2,n, In-1,n decomposition of the interval Ii (Skzc, Kuzc) calculated z skewness and kurtosis (Skηc, Kuηc) calculated η skewness and kurtosis t, e tangent and exponential distributions resp. Va variance, Va= σ² x, y image directions, horizontal and vertical resp. xa, xb, xc, xd tangent fitting parameters.

where δt=μt-μh and δe=μe-μh .
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