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Abstract: Modern surface acquisition devices, such as interferometers and confocal microscopes,
make it possible to have accurate three-dimensional (3D) numerical representations of real surfaces.
The numerical dental surfaces hold details that are related to the microwear that is caused by food
processing. As there are numerous surface parameters that describe surface properties and knowing
that a lot more can be built, is it possible to identify the ones that can separate taxa based on their
diets? Until now, the candidates were chosen from among those provided by metrology software,
which often implements International Organization for Standardization (ISO) parameters. Moreover,
the way that a parameter is declared as diet-discriminative differs from one researcher to another.
The aim of the present work is to propose a framework to broaden the investigation of relevant
parameters and subsequently a procedure that is based on statistical tests to highlight the best of
them. Many parameters were tested in a previous study. Here, some were dropped and others
added to the classical ones. The resulting set is doubled while considering two derived surfaces: the
initial one minus a second order and an eighth order polynomial. The resulting surfaces are then
sampled—256 samples per surface—making it possible to build new derived parameters that are
based on statistics. The studied dental surfaces belong to seven sets of three or more groups with
known differences in diet. In almost all cases, the statistical procedure succeeds in identifying the
most relevant parameters to reflect the group differences. Surprisingly, the widely used Area-scale
fractal complexity (Asfc) parameter—despite some improvements—cannot differentiate the groups
as accurately. The present work can be used as a standalone procedure, but it can also be seen as a
first step towards machine learning where a lot of training data is necessary, thus making the human
intervention prohibitive.

Keywords: dental microwear analysis; sampling method; statistical tests; surface parameters

1. Introduction

Fundamentally, dental microwear analysis involves gathering as many dental surface details that
are related to wear as possible to aid in its characterization. It is a generic expression referring to the
study of the patterns on teeth left by the processing of food.

Researchers have long acknowledged this technique as a means of providing information about
the diet in the days or weeks prior to death. This way of inferring a diet is widespread and can be
qualified as mature. Numerous works have been and are still published on the matter and champion
the efficiency of the method in distinguishing some diets from others. In particular, depending on
the mechanical properties of the foodstuff, scratches or pits are left on human or other animal teeth,
thus making it possible to guess the predominant diet before death. The clearer the signal strength,
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the more certain the conclusions. For a less abbreviated history of dental microwear analysis, the
reader is referred to Ungar et al. [1] (pp. 389-425), in which the authors describe dental microwear
analysis from the early thirties up to the beginning of the 2000s. Ungar and DeSantis [2,3] provide
more recent conclusions that were collected from works on mammals. As a novel approach to the
method of analyzing the dental microwear data is presented here, only some recent works are cited to
give a snapshot of the current uses.

Depending on the researcher’s habits, needs, equipment, etc., different ways of dealing with
dental microwear analysis can be distinguished. Three kinds of devices are used today to analyze
the tooth surfaces: three-dimensional (3D) optical profilers, two-dimensional (2D) Scanning Electron
Microscopes (SEM), and 2D low-magnification light microscopes.

Light microscopes involved in stereomicroscopic microwear analysis are used to count the pits
and scratches. The scratches are recognized as being characteristic of tough food, like mature grass
and pits, are markers of brittle food, like fruit, seeds, some leaves, etc. The relative proportion of pits
and scratches is then often used as an indicator of grazing or browsing habits. The efficacy of this
method relies heavily on the observer experience, which explains the variability in the results: different
operators count surface features differently and may tune the light orientation differently, highlighting
more or fewer features on the surface [4,5]. However, this method is still in use and it proves to be
efficient [6-9]. SEM is used less than before because it has been advantageously replaced by 3D optical
profilers, such as confocal or interferometer microscopes. The latter are more affordable and easier to
use. However, some recent works on dental microwear are based on SEM images, analyzed with the
help of an image-processing software [10-12].

As for 3D digitized data treatment, Scale Sensitive Fractal Analysis (SSFA) has garnered a lot of
interest because it uses a few parameters that correlate strongly to characteristic diets and has been
successfully applied in numerous works, for which some of the more recent are references in this
study [13-18]. Another approach, Surface Texture Analysis (STA), is sometimes used as a complement
to SSFA, consists of computing ISO-25178 areal parameters, the extension of classic industrial profile
parameters, see [19-21].

As pointed out by DeSantis [3], there are between 20 and 30 ISO-25178 parameters. However, SSFA
parameters are more closely linked to the diet. STA parameters can prove to be more discriminant
in some cases. As for selecting the relevant parameters, the question has been addressed in an
industrial context by Najjar et al. [22,23], Bigerelle et al. [24], and Deltombe et al. [25], utilizing a
methodology that is based on a bootstrap method. First, Najjar et al. [22] searched for the best
correlation between a given surface property and roughness parameters. The correlation strength—the
linear regression slope—was then quantified using a bootstrap approach. Then, Najjar et al., Bigerelle et
al., and Deltombe et al. [23-25] used analysis of variance (ANOVA) to organize roughness parameters
according their relevance (F statistics) in discriminating industrial process steps. The bootstrap was
used to quantify the F probability density function. The authors proposed a methodology close to the
one developed here that aims to address the following issue: among a given set of parameters, what
are those which discriminate best between different surface types, without any preconceived opinion?
Even if the question is the same, some differences lead to different approaches. Here, the surfaces
are not presumed homogeneous, which broadens the parameter set. Hence, intensive calculations
are avoided. As a given parameter is naturally supposed to behave as a normal variable among the
individuals of the population, the use of a bootstrap approach is not justified. These two considerations,
large parameter sets and no mandatory bootstrap, have lead the authors of this study to parametric
tests. It is to be noted, though, that the cited works and the present one share similar methods to order
the “best parameters” F statistics and p-values.

The first goal of 3D digitized surface analysis should be to determine whether it is better to build
a set of parameters that can differentiate between different diet groups, provided that a parameter is
not necessarily associated to a particular diet, or whether it is more desirable to work with a small set
of parameters, perhaps less efficient, but more understandable. However, the present study does not
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aim to answer this question, but rather, to extend the existing parameters and test their ability in order
to separate different groups. Some groups are easily distinguishable, others less so. The methodology
here, based on surface sampling and automated statistical treatments, has previously been successfully
tested and compared to Dental Microwear Texture Analysis (DMTA) results by Francisco et al. [26].
The surface sampling relies on a simple observation: some surfaces do not exhibit a given feature
across their entire surface. For instance, a diet that is known to scar the enamel may fail to leave
scratches on a part of the digitized surface. Regarding the surface feature analysis, the authors have
proposed a sequence of statistical treatments to identify the meaningful parameters and leave aside
the others. In the final discussion, it has been mentioned that the widely used Asfc parameter has
surprisingly lead to moderate results and that it should be reworked. In addition to that point, it has
also been concluded that the whole procedure should be applied to other species to confirm or refute
its efficiency.

In the present work, the same methodology is followed, but with modifications. The set of
discriminative parameters has been refined, as will be described in Section 2.2.

2. Materials and Methods

2.1. Material

Here, the reliability of new developments in describing dental microwear textures, as introduced
in Francisco et al. [26], is tested. To do so, the choice was made to select six sets composed of modern
wild species or samples of domesticated animals fed on different diets, issued by the ANR TRIDENT
Project [27-29]. The reader will find in the Electronic Supplementary Material (ESM) some illustrations
of the different species. It is important to note that we made the set assumptions before we started
the simulations. The expectations related to the group separation are based on (from the strongest to
the weakest):

e  different tooth microwear textures,
e  known diet habits of the studied species, and
e the confidence in the procedure reliability.

In the first case, it is a question a procedure validation. Even if it is not guaranteed that the results
corroborates the tooth observations—some visual features may not be caught by the parameters—good
results are expected. As for the two other cases, there is more uncertainty but the large number of
parameters suggests that there should be interesting findings.

2.1.1. Triplet 1 (T1), “Old World Monkeys”

This triplet is composed of three African species of monkeys with divergent dietary habits and
habitat preferences: 19 specimens of Cercocebus atys (CE), 19 of Papio hamadryas (PA), and 19 of Colobus
polykomos (CO). The first species lives in Central African forest and feeds mostly on hard fruits and
seeds [30,31]. The third species also occupies inter-tropical African forest, but differs from Cercocebus
atys by being a leaf-eating monkey [32,33]. Papio hamadryas is more plastic in its dietary and habitat
preferences. It mostly occupies wooded to open habitats and its diet varies from one season to
another [34,35].

Testing hypothesis: leaf eating monkeys such as Colobus polykomos display significant differences
in dental microwear textures when compared to seed- and fruit-eating monkeys, such as Cercocebus
atys [36]. The wide spectrum of dietary habits for Papio hamadryas suggest a wide range of textures on
tooth enamel surfaces overlapping the ecospaces of the two former taxa.

2.1.2. Triplet 2 (T2), “European Ruminants”

The triplet is composed of 20 specimens of Cervus elaphus (CE) from Bialowieza, Poland,
20 specimens of Bos taurus (BO) from the Camargue, Rhone delta, France, and 20 specimens of chamois
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Rupicapra rupicapra (RU) from the Bauges National Park, Alps, France. The Polish cervids are forest
dwellers and their microwear textures reflect browsing habits [37]. The semi-wild cattle from the
Camargue displays dental microwear textures suggesting a high amount of herbaceous dicots. The
chamois is a mountain species with a diet that is composed of dicots and monocots.

Testing hypothesis: to be able to discriminate the browsing red deer from the grazing wild cattle is
only to be expected. Here, the question is how best to discriminate the chamois, a mixed feeding
species, from the two other dietary categories.

2.1.3. Triplet 3 (T3), “African Ruminants”

The triplet is composed of African species represented by 15 specimens each: the grazing antelope
Alcelaphus buselaphus (AB), the browsing Tragelaphus scriptus (TS), and the fruit-eating Cephalophus
silvicultor (CS).

Testing hypothesis: simply put, to be able to discriminate between the three dietary categories here
is expected.

2.1.4. Quadruplet (Q1), “Cervus”

The set is composed of four populations of red deer (Cervus elaphus) with contrasted habitats
and diets. 15 specimens of red deer come from the Scottish highlands. They include high amounts of
herbaceous monocots (GR) in their diet. A second 15-individual group comes from the Bialowieza
National Park, Poland. This group is composed of browsers (BR). Two 15-individual groups of red
deer occupying woodland from Central France are representative of mixed feeding species (I1 and 12).

Testing hypothesis: the red deer is known to be plastic in its feeding preferences. The authors
hypothesize that its diet and notably the amount of herbaceous monocots that is consumed correlates
to the tree cover. The expectation here is that dietary differences can be detected and so too can
preferences in habitat.

2.1.5. Triplet 4 (T4), “Three Cervids”

This triplet is composed of 15 moose Alces alces (AA) from Bierzba, Poland, 15 roe deer Capreolus
capreolus (CC) from the Dourdan forest in France, and 15 red deer Cervus elaphus (CE) from southern
Spain. The sample of red deer is known to be one of the larger grazing populations of red deer in
Europe. Alces alces mostly browse on leaves, buds, shoots and the bark of bushes, shrubs, and trees.
The roe deer (Capreolus capreolus), however, is a selective browser, avoiding ligneous (woody) parts,
but including in its diet a lot of forbs and leaves of variable toughness depending on the season.

Testing hypothesis: the challenge is multiple here.

e  Although the red deer in southern Spain is highly engaged in grazing and the roe deer from
Dourdan in France is a selective browser, many specimens share high anisotropy. The challenge
here is to be able to distinguish between the two dietary habits, and thus, to find out which
parameters are relevant for that purpose.

e Roe deer and moose are both browsers. However, they differ significantly in the widely used
parameter epLsar (exact proportion length—scale anisotropy of relief, an anisotropy marker). The
authors of this study hypothesize that it could be linked to the differences in the amount of
ligneous material (woody parts), which is greater for the moose. So, the challenge is to be able to
unite them and thus differentiate them from the grazing deer (Cervus elaphus).

2.1.6. Quintet (Q2), “Browse, Grass and Dust” (Sheep Experiment)

This set of five 10-ewe samples is issued from the ANR TRIDENT project (ANR-13-JSV7-0008-01).
The first 10-ewe sample (L1) was fed with an assemblage dominated by ray grass. Sheep from samples
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L5 and L6 were fed with silage dominated by red clover. The ray grass and red clover were both
sowed in September 2014 and were mowed in June 2015. Sheep from the samples L7 and L8 were fed
with a grass-dominated silage. This multi-specific grass assemblage comes from a 15 year old pasture
mowed and grazed by livestock every year. The silage given to samples L6 and L8 were laden daily
with 13.2 g/ewe of fine quartz-dominated dust (under 100 um). This simulates windblown deposits
on vegetation in the West African Guinean savannah during the five-month long Harmattan wind
season [27].

Testing hypothesis: herbaceous monocots, including grasses, are richer in biosilica phytoliths than
herbaceous dicots, such as the red clover. These plants also differ in inner structure and thus on
mechanical properties. Furthermore, fresh grasses are less likely to scar enamel than mature grasses
from old pastures [38]. Exogenous particles are also responsible for the loss of dental tissue. The
differences in dietary bolus will probably generate significant differences between these samples.

2.1.7. Triplet 5 (T5), “Seeds, Browse, and Grass” (Sheep Experiment)

This set of three 10-ewe samples is issued from the ANR TRIDENT project (ANR-13-JSV7-0008-01).
The first 10-ewe sample, L5 was fed with a red clover-dominated silage. Sheep from sample L7 were
fed with a grass-dominated silage. A final 10-ewe sample, LO, was fed with a red clover-dominated
silage supplemented by 25% of barley kernels.

Testing hypothesis: herbaceous monocots including grasses are richer in biosilica phytoliths than
herbaceous dicots, such as the red clover. Barley kernels are hard and brittle and their shells are rich in
silica. The differences in dietary bolus, and notably the presence of seeds, should generate significant
differences between these samples.

2.2. Methods

The primary extracted surfaces are obtained, as follows. First, the tooth surface is cleaned of
any foreign items and a silicon polyvinylsiloxane elastomer is utilized to mold the surface (Regular
Body President, ref. 6015—ISO 4823, medium consistency, polyvinylsiloxane addition type; Coltene
Whaledent). Finally, the mold surface is digitized with a confocal, white light profilometer (Leica
Microsystem DCMS; 100 x magnification lens, Numerical Aperture = 0.9; Working Distance = 0.9 mm,
Lateral Resolution up to 140 nm, Vertical Resolution up to 2 nm).

2.2.1. Surface Treatment and Sampling

Following the procedure that is defined by Francisco et al. [26], the primary extracted surface S1
is first numerically cleaned of any abnormal peaks. The resulting surface is called SA. Then, Figure 1a,
considering the tooth surface geometry as a second order polynomial (PS2), the latter is subtracted via
a least square approximation, yielding the surface SB. PS2 could be deemed sufficient due to the small
area measured (0.2 mm), as dental facets are concave or convex with a single preferred axis. However,
in order to enhance the finest scale roughness, the same operation is applied to SA with an eighth
order polynomial (PS8), which creates SC. It must be noted that the order of the polynomial applies
to each direction, and it must not be confused with the maximum polynomial order as proposed by
some software.

The authors of this study have investigated all of the orders, from one to nine, for a wide range
of surfaces and the analysis revealed no clear advantage in using a second order polynomial rather
than a third order for SB. The same goes for SC, a ninth or seventh order polynomial is sometimes
better. Therefore, the authors chose to keep the two orders, two and eight. Working on SC is possibly
sufficient because it makes the roughness clearer, however an eighth order polynomial can erase wavy
features from SA, which is a loss of information.

Following the SSFA parameters HAsfc(n?) (Asfc heterogeneity through n? cells), as proposed by
Scott et al. [39], the heterogeneity of a surface is related to the spatial distribution of its features: a single



Technologies 2018, 6, 75 6 of 21

hole implies more heterogeneity than several holes that are uniformly scattered across the surface. To
be sure to center a particular feature (pit, peak, etc.) on a sample, the simplest way is to have enough
samples uniformly distributed over the surface, Figure 1b. 1024 samples were used in the previous
study [26], but further simulations have yielded similar results with just 256 samples. This makes the
whole computational process much faster. Similarly, 256 x 256 px rather than 512 x 512 pt proved
to be generally sufficient. The term “generally” is important here because the surface signals are
sometimes enhanced and sometimes softened. For instance, with the previous surface set, the results
are slightly less good in the configuration of 256 samples of 256 x 256 px than the configuration of
1024 samples of 512 x 512 px. But, while taking into account the computing time and the fact that the
results are better for other surface sets, it seems reasonable to switch to 256 samples of 256 x 256 px.

6.1um 6.1um 2.9um

fst.05 Ist.05 max.05

-0. 0 05 1.5

Figure 1. The surface roughness enhancement (a): owing to the fact that SA embeds a macro geometry
that hides the dietary signals, a second and an eighth order polynomial are subtracted; (b) SB and
SC are uniformly sampled with 256 x 256 px surfaces; and, (c) Statistics are deduced from the set of
256 samples.

Both minimum and maximum surface heterogeneity are determined (prefixes min_ and max_,
Figure 1c). The standard deviation of the parameter distribution is also determined (std_ prefix).
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The “central” values, or mean and median, being an entire surface signature, are also determined
(mean_ and med_ prefixes).

In order to be more robust when defining the extrema of the parameter distribution, the quantile
5% is used. fst.05_ refers to the 5% quantile and Ist.05_ to the 95% quantile. However, the robustness
must not hide extreme values that might not be outliers. That is why min.05_ and max.05_ are
introduced. They are the mean of the values below (and respectively above) the quantile 5% (and
95%, respectively), Figure 1c. As a trade-off between 5% and 50%, the quantile 25% is also used:
fst.25_ stands for the first quartile and Ist.25_ stands for the last quartile. In the same way as before,
min.25_ and max.25_ are also used. In the eventuality that the parameter distribution shape could
be the signature of a particular diet, the skewness and kurtosis (skw_ and kurt_ respectively) are
also calculated.

To conclude on the statistics that are deduced from the 256 samples of a given surface, each
parameter generates 15 “sub-parameters”. It is obvious that some of them are strongly correlated, but
it does not affect the process of finding those that are the most discriminative.

2.2.2. Height Parameters

As the height parameters are very common, Table 1 simply recalls the standard parameters related
to the surface heights.

Table 1. Height parameters (* ISO 25178).

Parameter Significance

Sa Arithmetic mean of the absolute of the heights (*)
Sp Absolute of the largest height (*)

Sq Height standard deviation (*)

Sv Absolute of the smallest height (*)

Ssk Height skewness (*)

Sku Height kurtosis (*)

Sdar Relative area (developed area/projected area)

Sm  Mean height (0 for the whole surface, but non-zero for its samples)

Smd Median height

2.2.3. Spatial Parameters

There are at least two ways to determine surface anisotropy.

The first one, which belongs to the SSFA toolbox is the so-called epLsary gum parameter [39].
In a given direction, uniformly discretized usually with a 1.8 pm step, the relative length of the profile
is calculated. With 36 measurements, every 5°, a rosette diagram is formed and, after normalization,
the eccentricity gives the resulting epLsary g,,. The most interesting information provided by the
rosette comes in the form of the multiple orientations that it can detect, when, for instance, there are
scratches with different angles. For computational efficiency reasons, epLsary gy, is not used to detect
and quantify anisotropy.

Another approach is based on the autocorrelation function, facr. facr is the normalized product
of the surface heights by the heights of the same surface shifted by the quantity (tx, ty). Therefore,
at the origin (tx = 0, ty = 0), the function is maximal. It then decreases as the distance increases. The
directions along which the surface heights resemble white noise exhibit low f4cr values. Conversely,
if a periodic pattern exists, f4cr exhibits local maxima. Generally, when the roughness is oriented,
the facr decreases faster perpendicularly to the orientation. At a given height z, a horizontal plane
intersects facr (x,y) after a curve close to an ellipsis; the anisotropy is more pronounced for stretched
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ellipses. Three parameters are hence defined: Rmax the major ellipsis radius, Sal the minor ellipsis
radius, and Str~! the ratio Rmax/Sal. An illustration is provided in ESM, Figure S1.

A complementary and original way of determining anisotropy is the f4cr slope study. The facr
decrease in speed from (0,0) is related to its slope. The distance from the origin where the maximum
slope is measured is recorded for each degree of angle. The minimum r; of the recorded distances
defines a circle on which the slopes are calculated for each degree. The minimum of the f4cr slopes is
named s.s/ and the maximum of the fscr slopes b.sl. The anisotropy is characterized by the ratio .5/ =
b.sl/s.sl. The reader is referred to ESM Figure S2 for an illustration on the f4cr analysis and a recap of
the spatial parameters is presented in Table 2.

Table 2. Spatial parameters. (* ISO 25178).

Parameter Significance
Rmax Semi-major axis of the f4cr ellipsis
Sal Semi-minor axis of the fscr ellipsis (*)
Std Texture direction (*)
Stri = Str~! Rmax/Sal ratio (*)
b.sl Highest slope of facr at the distance s from the origin
r.sl b.sl/s.sl ratio
s.sl Smallest slope of f4cr at the distance 75 from the origin

2.2.4. Topological Parameters

Parameters that have both spatial and height attributes are deemed to fall into this class. The main
idea is to mask the heights that exceed a given value, then to count and measure the so-constituted cells.

The very first operation is to discard the smallest 15% of the heights, essentially pits. Sz, the height
amplitude, becomes Sz’. Then, the heights that are above h; = 85% Sz’ or hy = 95% Sz’ are masked. hy
and h, are defined based on experience. As tiny cells may appear, basic morphological operations
are applied to the mask: first, five one-pixel-erosions, and then five one-pixel-dilatations. As a result,
very small areas disappear while bigger areas are preserved. Three parameters are generated for each
threshold h; and h2: Snb1 and Snb2, the number of cells, Smcl and Smc2, the median relative size of the
cells and Sk1 and Sk2, the relative area masked. The ESM Figure S3 provides additional information on
the topological parameters and Table 3 summarizes them.

Table 3. Topological parameters.

Parameter Significance
Sk1, Sk2 Relative area of the surface above 111 and h2 respectively
Smcl, Smc2 Median relative area of the cells with heights exceeding 11 and h2 respectively
Snbl, Snb2 Number of cells with heights exceeding 11 and h2 respectively
Sh Percentage of quasi-horizontal faces (normal within a 4° cone)

2.2.5. Fractal Methods, Relative Area Analysis

In previous work [26], the authors of this study concluded that the Asfc parameter should be
further investigated because of its ability to identify complex surfaces. Indeed, Asfc was no better than
other parameters at separating the fruit-browsing group from the leaf-browsing or grazing group.
From this, stems the hypothesis that the way that the steepest slope was determined could lack in
robustness. In addition, using sampling approaches requires that the Asfc determination be faster.
These points are addressed in the ESM in order to avoid too much technical detail in the paper itself.
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As a result of the study, an efficient procedure for the determination of Asfc is proposed along with the
sampling characteristics: 256 samples of 512 x 512 px subsurfaces.

2.2.6. The Automatic Discriminative Procedure

The procedure proposed by Francisco et al. [26], in its simplified form, is recalled in Figure 2.

Box-Cox Transformation f------ccemmmmmmeamaaaaoaaccecaaas — increases sample normality
I and homoscedasticity

Shapiro-Wilk’s test (SW) |===sssmmmmmmmmmnmmmrcinnaas — test for sample normality

|Ssk|<2 Ses Parameter rejection

Bartlett’ s test Levene’ s Test [------- ---- — test for group
T T homoscedasticity

Normality
SW’s test?

---- — was the SW’s test

Homoscedasticity?
successful?

Max(Var)

____________ <39 ---- — are the group variances

no not so much different?

Outlier identification |- - oo ooooee i cciceca — Dixon’s test + Iglewicz and
| Hoaglin criterion

Post hoc Tukey’s

LSD Tests
p-values ordering f----------n-mmrmmaii e — for each group: the 3 best
discriminating parameters
yes are kept

| Top3

Figure 2. Synopsis of the procedure with all of the parameters as the input, and the three most
discriminative ones as a result (Top3).

A Fortran program loads the surfaces and performs all of the treatments: cleaning, polynomial
subtractions, sampling, and parameter calculations. The resulting files are brought together with a
Python program and the statistics are calculated from the sampling results. A synthetic array is built
in a .csv file that an R program analyzes, following the synopsis provided. Fortran is chosen for its
execution speed, Python for its convenience in dealing with files and text processing, and R for its
suitability for statistical analysis.

A short reminder of the different steps is as follows. As no human intervention is desired until
the end of the process, the whole treatment is based on statistical tests. Almost all tests are built on
assumptions that must be fulfilled to trust the results. In particular, parametric tests require normality
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and homoscedasticity properties. To maximize the chance of being eligible for the tests, the parameters
are Box-Cox transformed instead of systematically log-transformed. What differs from the norm is the
presence of retrieval steps: when tests reject a parameter, that parameter can be called into question
regarding the tests that follow. Rules of thumb, based on expert experience, are introduced to soften
test rigidity. Once the parameters are declared to be test-compliant, questions arise about post hoc
analyses and the necessity of a preceding ANOVA test. However, based on the previous work by the
authors of this study, a post hoc analysis is carried out directly. Because Fisher’s Least Significant
Difference (LSD) test is less conservative than Tuckey’s Honest Significant Difference (HSD) version,
the former is preferred.

The choice of parametric tests is justified in Francisco et al. [26], and is recapped hereafter. Based
on experience, the parametric tests are quiet robust to non-normality. Moreover, non-parametric tests,
such as Kruskal-Wallis’, sometimes reveal to be less robust against heteroscedasticity. It is nonetheless
to be acknowledged that, for very small samples, non parametric tests are better suited. But where is
the frontier between ‘small” and ‘very small’? We suppose here that 10 individuals is indeed a small
sample but still acceptable for parametric tests. To conclude on this point, the methodology that is
proposed here ends with a graphical representation of the sets, which limits erroneous conclusions.

Another debate is about the p-value meaning and how best to draw conclusions about it. Once
again, the choice is made from experience: until now, the lowest p-values have provided the most
discriminating parameters. Therefore, the Top3 parameters will be selected based upon their p-value.
In most cases treated below, three parameters appear to be enough to choose two low-correlated
parameters for a biplot. The procedure aims to assist the researcher in finding the most discriminating
parameters rather than be a substitute for him. Therefore, if the three proposed parameters are too
greatly correlated, the next parameters in the p-value ordered list should be considered.

3. Results

The graphs present back-transformed data. Indeed, to increase the eligibility for F-tests, the
parameters are all Box-Cox transformed. However, once the parameter selection has ended, there is no
need to keep the transformation. When points are circled and labeled with a letter on the graphs, the
reader is referred to the ESM to see the corresponding surface.

3.1. T1, Old World Monkeys

Sm is the mean height of a surface. max_Sm_SB is the maximum mean height value among all
subsurfaces. The results of Figure 3 suggest that CO (Colobus polykomos) subsurfaces have less elevation
than CE (Cercocebus atys) subsurfaces, which exhibit more relief. In addition, flatness (med_Sh_SC)
occurs more often on CO subsurfaces. These results are quite consistent with the fact that leaf-eating is
a smooth wear process that flattens the surfaces, whereas hard fruit-eating leads to greater wear.

As concerns PA (Papio hamadryas), it can be proposed on the basis of the preceding conclusions
that the signal induced by hard item-eating is greater. This is because not enough is erased by smooth
food wear, regardless of whether the species mostly feeds on it or it is a recent signal. It was expected
that an anisotropy axis would leave CO on low value locations, which discriminates it from CE, but
the anisotropy parameters are superseded by Sh, which is the flatness indicator.
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Figure 3. Old World Monkeys, most discriminating parameters. max_Sm_SB p-value for CE-CO:
6.95 x 10713, and for CO-PA: 1.05 x 10~? (a) There is a clear boundary between Colobus (CO) and
Cercocebus (CE). The surfaces related to the points (A) and (B) are represented in the ESM; (b)
Box-whiskers representation of the best parameter (heteroscedasticity is clear, but it must be noted that
the parameters are back-transformed for the graph presentation).

3.2. T2, European Ruminants

As expected, an anisotropy parameter is the best choice to separate the grazing species BO (Bos
taurus) and the browsing species CE (Cervus elaphus), Figure 4. The most discriminative parameter is
fst.05_Stri_SB with p-value = 2.30 x 10~1°. As a reminder, the greater Stri, the bigger the difference
between the small and large axes of the f4cr ellipsis and the higher the texture anisotropy. Low values
of fst.05_Stri_SB (CE) mean that 5% of the 256 surface samples (almost 13) are very low (around 1). In
other words, there is a significant area with no scratch (about 40 x 40 um?).
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Figure 4. European Ruminants, most discriminating parameters. RU-BO mea_Sk1_SC p-value:
2.96 x 10~?, RU-CE p-value=1.29 x 1071°. (a) The anisotropy parameter Stri makes a clear distinction
between Cervus elaphus (CE) and Bos taurus (BO). The surfaces related to the points (A) and (B) are
represented in the ESM; and, (b) Whereas BO spans a large range of Stri, CE Stri values remain around
1 (isotropic surface).
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The parameter that helps in separating the mixed habit species RU (Rupicapra rupicapra) from
the others is Sk1, which measures the surface above 85% Sz’. It may suggest that significant wear has
created relief on the tooth surface, and that softer wear has occurred, decreasing in this way the peak
heights. Conversely, it could also be that little wear has occurred on the tooth.

3.3. T3, African Ruminants

Once again, the anisotropy parameters are good candidates to separate the browsing TS
(Tragelaphus scriptus) and the fruit-eating CS (Cephalophus silvicultor) from the grazing AB (Alcelaphus
buselaphus) species, Figure 5. It is nonetheless important to note that another discriminative parameter
is the kurtosis Sku, as also found by Francisco et al. [26], with an even better p-value (3.71 x 1077).
However, it separates less clearly AB and CS (p-value = 4.10 x 1073 vs. 1.27 x 10~° for r.sl, the Jacf
slope ratio).
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Figure 5. African Ruminants, most discriminating parameters. (a) The anisotropy parameter r.sl clearly
separates Alcelaphus buselaphus (AB) from the other groups. The surfaces related to the points (A) and
(B) are represented in the ESM; and, (b) .s! proves to be a grazer marker.

TS and CS are harder to discriminate: the related p-value is 3.83 x 10~ for med_Ssk_SC. As there
are 15 individuals per category, it can be assumed that the separation is statistically meaningful.

3.4. Q1, Cervus

Surprisingly, the best parameter for separating the browsing red deer from the grazing red deer
species belongs to the topological class: Sk1, p-value = 5.13 x 107, Figure 6. However, a good
compromise is 7.sl, an anisotropy indicator, with the associated p-values BR-GR 3.74 x 10~* and GR-I1
1.55 x 10~3. When both are used in a biplot graph, the separation is quite satisfactory. The results are
to be read, as follows: when sampling a surface, the mean of the 25% highest values of r.s! is smaller
for the browsing group (BR) than for the grazing group (GR). More concisely, GR surfaces have larger
areas of marked scratches. As for min.25_Sk1_SC, it shows that the mean of the 25% lowest values of
Sk1, the relative area above 85% of the threshold height amplitude is statistically greater for GR than
for BR. GR surfaces exhibit fewer low areas.
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Figure 6. Red deer, most discriminating parameters. (a) The anisotropy parameter r.s! together with
the topology parameter Sk are able to separate the browsing red deer (BR) from the grazing red deer
(GR). The surfaces related to the points (A) and (B) are represented in the ESM; and, (b) Here, Sk1 is a
browser marker.

When considering now the intermediate category 12 instead of I1 roughly leads to the same
situation, Figure 7.
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Figure 7. Red deer, most discriminating parameters. (a) The anisotropy parameter r.sl together with
the topology parameter Sk are able to separate the browsing red deer (BR) from the grazing red deer
(GR). Some differences can be seen between groups I1 (Figure 6) and 12; and, (b) Here, max.25_r.sl_SC
is a browser marker.

A question subsequently arises: is it possible to statistically distinguish I1 from 12? As shown
in Figure 8, the pair of parameters (std_r.sl_SB, std_Snbl_SC) achieves this objective, with p-values
6.65 x 107* and 1.78 x 107>, respectively. It seems that what best discriminates between the two
categories is the surface heterogeneity. The statistic “std_" stands for the standard deviation of a given
parameter computed on the 256 subsurfaces. Therefore, std_r.s|_SB quantifies variations of anisotropy
on a surface and std_Snb1_SC quantifies variations of elevated cells, Figure 9.
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Figure 8. Red deer I1 and 12, most discriminating parameters. (a) The anisotropy parameter r.s! together
with the topology parameter Snb1 make it possible to separate them; and, (b) std_Snb1_SC is statistically
lower for 12 than for I1.
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values because of very
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region to another.

Figure 9. I1 and 12 are separated in a biplot std_r.sI_SB/std_Snb1_SC because 12 surfaces have more
areas of different anisotropy levels and I1 surfaces have more areas of different peakedness.

3.5. T4, Cervids

Capreolus capreolus CC and Cervus elaphus CE species are known to statistically share a high
anisotropy, whereas Alces alces AA surfaces are expected to be more isotropic. It is clearly confirmed by
the r.sl parameter med_r.sl_SC, Figure 10, for which the p-values of CC-AA and CE-AA are 4.56 x 108
and 1.52 x 1078, respectively. The second challenge was to separate AA and CC from CE (the most
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prolific grazer). The separation is effective with max_Ssk_SB, for which the p-values of CE-AA and
CE-CC are 7.86 x 107> and 2.68 x 1073, respectively. In addition, CC and CE were not supposed to be
statistically different from an anisotropy viewpoint. This is now confirmed.
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Figure 10. Cervid, most discriminating parameters. (a) The anisotropy parameter r.sl isolates the
browsing moose (AA), the skewness reaches higher values for the red deer (CE); and, (b) med_r.sl_SC is
statistically lower for AA, even if CE spans a wide range of values.

3.6. Q2, Browse, Grass and Dust (Sheep Experiment)

The tiny differences between groups and the small group sizes (10 individuals per group)
undoubtedly pose the most challenging task. Contrary to expectations, no clear anisotropy difference
is found between the categories L1, L5, and L7. Perhaps a weak signal can distinguish L5 from L7, but
as will be seen, the conclusions have to remain moderate.

The set of parameters that seems to be discriminative is Sk, the relative area of the surface above a
given height, Figure 11. However, the usual threshold 85% proved to be unsuitable in the present case
(no distinction between groups). It explains the presence of the other set of Snb, Smc, and Sk (threshold
95%) numbered “2”, which better discriminates the groups. Despite a clear visual separation, the
classification cannot be described as “robust” because of the low number of individuals per group.
However, the results can still be trusted, as suggested by the p-values of max_Sk2_SB for L5-L6
(3.02 x 107%) and fst.25_Scm2_SC for L1-L6 (1.07 x 1075).

If there were more individuals in each group, it could be directly concluded that Scm2 is able to
differentiate ray grass (L1) and red clover diets (L5, L6), and that Sk2 is able to identify the presence of
dust (L6). Furthermore, higher values of fst.25_Scm2_SC for L1 reflect the fact that the cells marked
(subsurface heights above 95% Sz’) are larger than L5 and L6 cells (p-value L1-L5: 1.61 x 10~%). Once
again, with larger groups, it could be said that the ray grass (L1) induces homogeneous and greater
wear than the red clover (L5, L6), for which the surfaces seem not to have been abraded, see ESM. With
the same precautions, due to the size of the groups, there is a greater area above 95% Sz’ for L6 than
for L5.The fact that max_Sk2_SB is greater for L6 may reflect more wear as induced by the dust (wider
“polished” areas, see ESM).

However, given the small groups, this should remain a line of thought. The quantile plot seems
to exhibit too many outliers, but it must be noted that there are few individuals per group, and the
parameters are back-transformed. The Box-Cox transformation significantly reduces the sparsity of the
data, which makes its distribution nearly normal and homoscedastic.

As it appears on Figure 12, fst.25_Scm2_SC remains a good discriminative parameter for L1 and
(L7, L8) with p-values 1.27 x 10~* and 7.46 x 107, respectively. Sk2 is still effective for separating
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groups, but it is used here with a different statistic “med”, which means that the median relative area
above 95% Sz’ is higher for L1. No further explanation that is related to diet can be given about a
hypothetical difference between L7 and L8 as the difference is visually too slight, which is confirmed
by a p-value 1.10 x 1072. It is as if the mature grass is too abrasive to allow for the detection of dust
scars on the tooth surface.
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Figure 11. Ewes fed on ray grass and red clover, most discriminating parameters. (a) The topology
parameters Sk2 and Scm2 separate L5, L6 and (L5, L6), L1 respectively. The surfaces related to points
(A) and (B) are represented in the ESM; and, (b) max_Sk2_SB is statistically higher for L1 than for L5.
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Figure 12. Ewes fed on ray grass and mature grass, most discriminating parameters. (a) The topology
parameters Scm2 and Sk2 separate L1, (L7, L8) and to a slight degree L7, L8, respectively; and,
(b) fst.25_Scm2_SC is statistically higher for L1 than for L7 and L8.

The lowest p-value when considering L5-L7 is obtained with max.05_r.sI_SC (6.14 x 10’3). Ifa
true difference exists, it indicates that L7 statistically exhibits higher anisotropy than L5 and it would
be correlated with the L5 and L7 diets: red clover and mature grass, respectively. However this cannot
be stated with any degree of certainty.

3.7. T5, Seeds, Browse, and Grass (Sheep Experiment)

Figure 13 highlights why separating L5 (red clover) and L7 (mature grass) is so difficult: despite
the ability of Stri to identify anisotropic surfaces, the signals overlap (p-value 1.92 x 10~ 1). It means
that the mature grass scars some individuals more than others within the L7 group, whereas the L5
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surfaces exhibit approximately the same levels of anisotropy. Here, it can only be said for certain that
the mature grass scatters the anisotropy values.
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Figure 13. Ewes fed on mature grass and red clover+barley kernels, most discriminating parameters.
(a) The anisotropy parameter Stri and the topology parameter Scm2 separate L5, L7, LO. The surfaces
related to the points (A) and (B) are represented in the ESM; and, (b) fst.25_Stri_SC is statistically lower
for LO than for L5 and L7.

Adding barley kernels to red clover was expected to increase isotropy, which is confirmed by
fst.25_Stri_SC p-values: 4.02 x 10~* for LO-L7, L7 being the most anisotropic because of its richer silica
grass. Figure 14 illustrates the surface aspects of LO and L7 individuals, which visually corroborates
the presence of anisotropy on L7.

Figure 14. Visual comparison of two SC surfaces belonging to the LO and the L7 groups.

4. Discussion

4.1. Untangling the Jungle of Parameters

It is impossible to isolate a small set of universal parameters from within the 700+ derived
parameter set. However, a given parameter can be evaluated if all of its derivatives are aggregated,
then for each group set, seven in the present work, the minimum of its p-values is picked, and the
mean is calculated. The results are presented in Table 4:
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Table 4. Mean p-value of the parameters for all group sets.

Sku Sk1 Scml Sk2 Smd Std
1.47 x 1074 2.65 x 107* 4.04 x 107* 5.13 x 10~* 6.79 x 10~* 7.75 x 10~*
Ssk r.sl Scm?2 Snb2 Sh Rmax
1.06 x 1073 1.07 x 1073 1.17 x 1073 1.21 x 1073 1.35 x 1073 2.06 x 1073
Stri Sv Sdar Asfc Snbl Sp
225 x 1073 2.44 x 1073 3.16 x 1073 3.50 x 1073 3.86 x 1073 513 x 1073
Sa Sal Sm Sq s.sl b.sl
6.70 x 1073 7.96 x 1073 8.62 x 1073 8.67 x 1073 491 x 1072 1.31 x 1071

Given the above approximation about the efficiency of a parameter, some trends can be
distinguished. In the “height class”, Sku, Ssk, and Smd are good candidates; in the “spatial class”,
Std, r.sl and Stri should be kept; in the “topological class”, there should be just one threshold, maybe
between 85% and 95%, to keep Sk(i), Scm(i), and Snb(i). The authors of the present study think that,
despite the fact that Asfc has never been at the top of the best parameters, it potentially represents a
relevant parameter: either the surface should be cleaned differently, or a different parameter, more
related to curvature, should be investigated.

From experience, the expert eye sometimes succeeds in visually distinguishing groups where the
above parameters cannot. Hence, as for SEM gray level pictures, parameters from image processing are
worth adding. After numerical treatments, like gradient, smoothing, equalizing, and binarization, some
parameters can be associated to features that allow for expert software to link them to a particular diet.

4.2. The Derived Parameters Outclass the Whole-Surface Parameters

SB, SC, and the sampling procedure are confirmed to be signal enhancers.

e  Subtracting a second order polynomial does not alter the wear information: the geometry removed
is not related to microwear. Things are different for an eighth order polynomial that can remove
microwear patterns, but it also brings out details that are hidden in longer wavelength reliefs.

e When a given parameter, Stri, for instance, applied to the whole surface hardly separates
two groups, its derived parameters, fst.25_Stri_SC for instance, are likely to perform a clearer
separation. Besides this, the smallest p-values determined for the seven cases are all related to
derived parameters. Thus, the quantiles 5%, 25%, 75%, and 95% are considered as “contrast
mediums”. However, the standard deviation plays another role, especially when being applied to
the texture direction Std. It then quantifies the different anisotropy orientations on a surface.

4.3. The Biplot as the Arbitor

The statistical procedure proves to be efficient: whenever it selects parameters with low p-values,
the group separation is effective. However, parameters with high p-values, above 5%, can also be
real markers. One group needs only to have a more limited range of values than another while both
overlapping to guarantee a high p-value, and yet the signals are different. The first is homogeneous
regarding its individuals, whereas the second is not. Except for this kind of exotic case, the biplot is
the vital final step after the statistical procedure. Currently, it is hazardous for a program to act as
a substitute for an expert appraisal: the authors here consider the procedure to be decision-making
assistance. Indeed, it happens that one low p-valued parameter correlates too directly to another for
a biplot representation, and that the user then advantageously switches to another parameter with
a higher p-value, but a complementary potential for separation. It also happens that a low p-valued
parameter is less meaningful than another parameter that has a higher, but still proximal, p-value. In
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that circumstance, the discrimination is slightly less accurate, but the results are easier to understand
from a wear point of view.

4.4. Beware the Overfitting

Satisfying separations can be obtained by pure chance, an additional parameter is one more
possibility to separate the group ... by sheer luck! Signals are sometimes so weak that no real
separation is possible using the actual parameters. Building an ad hoc additional parameter, combined
with small size groups, can end in misleading conclusions. This could have happened with the Q2 set
(i.e., the sheep experiment) where the parameters Sk2 and Scm?2 are found to be the best for separating
the groups, but rather than being artificially introduced, these parameters have been retained for their
good mean performance.

4.5. Going Further

It is always possible, and even desirable, to refine and enhance the presented procedure, adding
relevant parameters, or subtracting macro-geometries that are better suited than second or eighth
order polynomials, or sampling in a different manner, etc. To go beyond this in the methodology,
the authors believe that one question must first be asked: is the ethology more important than the
classifying purposes?

e  Ifthefinal goal is to be able to classify an unknown species based upon tooth surface characteristics,
then machine learning will be the first step towards an appropriate answer. Supposing that an
Artificial Neuron Network (ANN) is chosen for that task and provided a large training set of
surfaces of several thousands, and a hundred parameters, the machine will succeed in classifying
a given surface in the right diet group. Actually, the surface will be located across all of the diet
groups together with a probability for each. It can be interpreted as a signal amount. For instance,
if the classifying procedure results in 70% browser, 25% grazer, and 5% fruit or seed eater, if the
training set is large and variate, it can be proposed that the individual fed on 70% smooth grass
(or leaves), 25% tough grass, and 5% fruit (or seeds). Going even further, the deep learning is
able to identify elementary surface features in its neuron deep layers. These are the elementary
signatures of the different diets. Provided that it is possible to associate a given surface to the diet
content, with in vivo experiments, for example, and that the training set is large enough, the ANN
could propose a typical bolus content for an unknown surface. This second point is impractical
for the moment because of the lack of precise information on diets, but the first is possible. It
“only” needs the researchers to share a common surface database. The main drawback is that the
whole process is a black box, the results are less prone to physical interpretation.

o  If the final goal is to find the parameters that accurately separate already identified groups and to
understand why this is, further developments are less ambitious and they have been mentioned
in the first part of the discussion.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7080/6/3/75/s1.
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