
HAL Id: hal-03042171
https://hal.science/hal-03042171

Submitted on 8 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph embeddings for Abusive Language Detection
Noé Cecillon, Vincent Labatut, Richard Dufour, Georges Linares

To cite this version:
Noé Cecillon, Vincent Labatut, Richard Dufour, Georges Linares. Graph embeddings for Abusive
Language Detection. SN Computer Science, 2021, 2, pp.37. �10.1007/s42979-020-00413-7�. �hal-
03042171�

https://hal.science/hal-03042171
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Graph embeddings for Abusive Language Detection

Noé Cécillon* · Vincent Labatut · Richard
Dufour · Georges Linarès

Received: date / Accepted: date

Abstract Abusive behaviors are common on online social networks. The increas-
ing frequency of anti-social behaviors forces the hosts of online platforms to find
new solutions to address this problem. Automating the moderation process has
thus received a lot of interest in the past few years. Various methods have been
proposed, most based on the exchanged content, and one relying on the struc-
ture and dynamics of the conversation. It has the advantage of being language-
independent, however it leverages a hand-crafted set of topological measures which
are computationally expensive and not necessarily suitable to all situations. In the
present paper, we propose to use recent graph embedding approaches to automat-
ically learn representations of conversational graphs depicting message exchanges.
We compare two categories: node vs. whole-graph embeddings. We experiment
with a total of 8 approaches and apply them to a dataset of online messages. We
also study more precisely which aspects of the graph structure are leveraged by
each approach. Our study shows that the representation produced by certain em-
beddings captures the information conveyed by specific topological measures, but
misses out other aspects.

Keywords Graph embedding · Automatic abuse detection · Conversational
graph · Online conversations · Social networks

Noé Cécillon
Laboratoire Informatique d’Avignon – LIA EA 4128, Avignon Université, France E-mail:
noe.cecillon@univ-avignon.fr

Vincent Labatut
Laboratoire Informatique d’Avignon – LIA EA 4128, Avignon Université, France E-mail:
vincent.labatut@univ-avignon.fr

Richard Dufour
Laboratoire Informatique d’Avignon – LIA EA 4128, Avignon Université, France E-mail:
richard.dufour@univ-avignon.fr

Georges Linarès
Laboratoire Informatique d’Avignon – LIA EA 4128, Avignon Université, France E-mail:
georges.linares@univ-avignon.fr



2 Noé Cécillon* et al.

1 Introduction

In recent years, online social media have allowed people to meet and discuss world-
wide. These popular platforms attract more and more users, and are confronted
with an increasing number of abusive behaviors. This phenomenon started to draw
attention from governments, requesting companies to perform moderation on their
social media platforms. Depending on the size of the communities to be admin-
istered, this could be an expensive process since moderation is currently mainly
done by human operators. Moreover, this task is difficult, especially because the
definition of what constitutes an abuse is ambiguous and can vary depending on
the context (e.g. media platform, community, and/or country). In order to au-
tomate the detection of abusive content in such social media, researchers have
proposed methods primarily based on Natural Language Processing (NLP) ap-
proaches. These works rely on the textual content of the exchanged messages to de-
tect specific types of abuse, such as offensive language [9,28,44,29], hate speech [14,
37,42,2], racism [43] and cyber-bullying [13]. However, a major limitation of such
NLP-based approaches is their sensitivity to intentional text obfuscation done by
malicious users to fool automatic systems. For instance, sh1t and f*ck are easily
understandable by humans but difficult to detect by an algorithm if the training
corpus does not reflect such situations. Therefore, NLP statistical systems cannot
reflect all the forms of language that these abuses can take, due to the wide variety
of language registers (which can range from colloquial to sustained), the language
proficiency of the contributors, and even the particular vocabulary inherent to the
concerned community of users.

To address this language limitation and dependency, authors have proposed
to incorporate behavioral information about users and the structure of conver-
sations [4,7,12,25,46] as a way to improve the efficiency of language-based ap-
proaches. In a previous work [31], we proposed to leverage conversational graph-
based features to detect abusive messages in chat logs extracted from an online
game. Such conversational graphs model interactions between users (i.e. who is
arguing with whom?), completely ignoring the language content of the messages.
We characterized the structure of these graphs by computing a large set of manu-
ally selected topological measures, and used them as features to train a classifier
into detecting abusive messages. As we did not know in advance which topologi-
cal measures are the most discriminative for this task, we had to consider a very
large set, and performed feature selection in order to identify the most relevant
ones. This constitutes an important limitation of this method, and more generally
of such feature engineering approaches. One important drawback is the impor-
tant run-time caused by the large number of measures to compute. Furthermore,
since the set of measures has to be manually constituted by humans, it could be
non-exhaustive, missing relevant features for the task at hand, or on the contrary
include a lot of redundant information. It is even possible that no measure defined
in the literature captures the relevant information to perform the task at hand.

Graph embedding methods automate this graph representation process. They
allow representing graphs as low-dimensional vectors while preserving at least a
part of their topological properties. On the one hand, these representations are au-
tomatically learned, so they do not require to perform any feature selection, and
they are much more time-efficient than the approaches described above. On the
other hand, unlike standard topological measures, the obtained representations are



Graph embeddings for Abusive Language Detection 3

not directly interpretable in terms of graph structure. It is therefore not straight-
forward to understand exactly which information is captured by the embedding,
and is possibly relevant to the application. Moreover, different embedding methods
are assumed by construction to capture different aspects of the graph structure,
but it is difficult to compare them directly, for the same reason. One way to assess
the appropriateness of an embedding method for a task, and to compare several
embedding methods through on it, is to do so empirically.

In [16], Goyal & Ferrara propose such an experimental work. They compare
five methods on tasks such as unobserved link prediction and node classification.
They conduct their experiments on various types of networks (e.g. social relation-
ships, user network, collaboration network). Nonetheless, only node-level methods
are tested and, as stated in [6], performances of graph embedding methods are
very task-dependent. Therefore, most effective methods in [16] might not be as
appropriate on the task we focus on in this work. Mishra et al. [25] propose to
profile authors in order to enhance the detection of abusive content online. They
construct a community graph representing all authors and their connections and
use a node embedding method to obtain a vector representation of each user called
user profile. This method shows promising results when combined with standard
abuse detection methods relying exclusively on the textual content. It is however
limited to the use of a single embedding method.

In this work, we adopt an approach similar to Goyal & Ferrara and apply
it to our abuse detection task. We leverage the (already mentioned) framework
presented in our previous work [31], which is able to classify messages depending
only on the structure of the conversation surrounding them. Text is not used in the
process, only conversational networks, which makes it language-independent. On
this basis, our first contribution is to study the effectiveness of graph embeddings in
the context of online abuse detection. We assess and compare 8 methods designed
to operate at different scales of the graph (node and whole-graph), and to preserve
different structural properties. Our second contribution is an analysis of our results
aiming at better understanding which structural properties of the graph are well
captured by the considered embedding methods.

The rest of this article is organized as follows. First, in Section 2, we review the
literature related to node and whole-graph embedding methods. Then, we present
our task in Section 3, as well as the baseline that we previously developed and
the embedding methods that we use in our experiments. In Section 4, we describe
our dataset, our experimental protocol and settings, the results that we obtain,
and we discuss the topological properties preserved by each considered embedding
method. Finally, in Section 5, we summarize our main findings and present some
perspectives.

2 Related Work

Generally speaking, the expression graph embedding refers to a family of methods
aiming to represent graphs, or parts of graphs, in a low-dimensional space in
which at least certain aspects of their structure are preserved [6]. By construction,
objects which are similar for these aspects have close vector representations in the
embedding space [45]. In addition to the plain structure, certain methods are able



4 Noé Cécillon* et al.

to capture additional information such as node labels or the weight and direction
of edges.

One can distinguish four main categories of graph embedding methods, de-
pending on the nature of the considered objects: node embedding, edge embed-
ding, subgraph embedding and whole-graph embedding. Each category better fits
the needs of different applications and problems. In this work, our task can be
formulated as a node and/or graph classification problem, hence in the rest of this
paper, we focus exclusively on both of these types of embeddings.

The rest of this section is a review of the main node and whole graph embedding
methods. Table 1 summarizes these methods, and show their main characteristics.

2.1 Node Embedding

Node embedding is the most common form of graph embedding in the litera-
ture. Such methods take a graph as input, for instance as an adjacency matrix,
and output a vector of fixed dimension for each node in the graph. Following the
taxonomy proposed in [16], we distinguish three categories, depending on the gen-
eral approach used to perform the transformation: Matrix Factorization, Neural
Network and Random Walks. Note that the latter also uses neural networks but
introduces a different strategy to sample the graph.

Matrix Factorization There are various ways to represent a graph in a matrix form,
such as the adjacency, Laplacian or transition matrices. The pioneering studies on
node embedding propose to map nodes into low-dimensional vectors by decom-
posing such matrices into products of smaller matrices of the desired dimension,
a process called Matrix Factorization (MF).

The most straightforward approach is to leverage existing dimensionality re-
duction techniques, originally designed for tabular data, and apply them to a graph
matrix. Doing so with the Locally Linear Embedding (LLE) method proposed by
Roweis & Saul [35] amounts to considering that every node in the graph is a
weighted linear combination of its neighbors. The method first estimates weights
that best reconstruct the original characteristics of a node from its neighbors, and
then uses these weights to generate vector representations. This method has been
used in the literature to perform face recognition [45]. Belkin & Niyogi propose
Laplacian Eigenmaps (LE) [5], a method aiming at keeping strongly connected
nodes close in the result space. Representations are obtained by computing the
Eigenvectors of the graph Laplacian. Typical applications for this method in-
clude node classification and link prediction [5,16]. A major drawback of these
two methods is their important time complexity, making them poorly scalable
and impossible to use on very large real-world graphs.

Ahmed et al. propose a method called Graph Factorization (GF) [1] which
is much more time efficient and can handle graphs with several hundred million
nodes. GF uses stochastic gradient descent to optimize the matrix factorization.
To improve its scalability, GF uses some approximation strategies, which can intro-
duce noise in the generated representations. Furthermore, GF focuses on preserving
only the first-order proximity, i.e. nodes which are directly connected have close
representations. Hence, the global graph structure is not necessarily well preserved



Graph embeddings for Abusive Language Detection 5

by this method. Ahmed et al. use this method to partition graphs and to predict
the volume of e-mail exchanges between pairs of users [1].

Ou et al. introduce a MF method called High-Order Proximity preserved Em-
bedding (HOPE) [30]. This similarity matrix is obtained using centrality measures
like Rooted PageRank, Katz measure and Adamic-Adar score. HOPE is specifi-
cally designed to preserve asymmetric transitivity in directed graphs. To this end,
two vector representations are learned for each node, a source vector and a target
vector. Applications of this method includes link prediction, proximity approxi-
mation and vertex recommendation [23]. However, once again the time complexity
of this MF method is high and does not allow the processing of very large graphs.

Li et al. present BoostNE [22]. This multi-level graph embedding framework
learns multiple graph representations at different granularity levels. Inspired from
boosting, it is built on the assumption that multiple weak embedding can lead
to a stronger and more effective one. It applies an iterative process to a closed
form node connectivity matrix. This process successively factorizes the residual
obtained from the previous factorization, to generate increasingly finer represen-
tations. The sequence of representations produced is then assembled to create the
final embedding. Li et al. apply their method to a multi-label node classification
task.

Neural Networks Neural approaches have been successfully adapted to many fields
including graph embedding. Wang et al. propose the Structural Deep Network Em-
bedding (SDNE) framework [40]. This method learns representations based on first
and second order proximities in the graph. These two properties are jointly opti-
mized using a deep autoencoder and a variation of Laplacian Eigenmaps, applying
a penalty when similar nodes are mapped far from each other in the embedding
space. This allows a good representation of both the local and global structure of
the graph. This method has been used on tasks similar to the embedding method
LE, i.e. node classification and link prediction [16,40].

Kipf & Welling develop a method called Graph Convolutional Networks (GCN) [19].
It uses an iterative process wherein each iteration captures local neighborhood, and
their repetition allows capturing the global neighborhood of nodes. At each iter-
ation, the process aggregates the representations of neighboring nodes and uses a
function of the obtained representation and the embedding at previous iteration to
generate the new representation. Kipf & Welling leverage their method to perform
document and entity classification.

Generative Adversarial Networks (GAN) have also been adapted to node em-
bedding. Wang et al. [41] propose GraphGAN, which works through two models.
First, a generator G(v|vc) tries to approximate the true connectivity between nodes
v and vc and selects the most likely connected nodes to vc. Second, a discrimina-
tor D(v, vc) computes the probability of an edge to exist between v and vc. The
generator tries to fit the distribution of nodes as much as possible to generate
the most indistinguishable fake pairs of connected nodes. The discriminator tries
to distinguish between ground truth and the fake pairs created by the generator.
This method is however only able to capture the local structure. Wang et al. ap-
ply GraphGAN to node classification, link prediction and movie recommendation
tasks.



6 Noé Cécillon* et al.

Random Walks Random-walks have first been adopted by graph embedding ap-
proaches trying to mimic word-embedding methods such as word2vec [24]. They
allow representing the graph structure under a sequential form, analogous to sen-
tences in a text. They are used to sample the graph, and can been seen as a proxi
allowing to obtain a partial representation of its structure. They also have the ad-
vantage of being able to deal with graphs too large to be explored in their entirety.
Given a starting node, random-walk-based methods generate node sequences by
selecting a neighbor and repeating this procedure until the node sequence reaches
a certain length.

Perozzi et al. propose DeepWalk [33]. It is among the first node embedding
methods based on random-walks. First, DeepWalk samples node sequences using
uniform random walks and then applies the standard SkipGram model [24] to gen-
erate the representations. This model takes a node as input and aims at predicting
its context, i.e. the nodes in its neighborhood. With this method, nodes with sim-
ilar contexts share similar representations. Typical applications of this approach
include node classification [18,40] and link prediction [30]. However, a limitation
is that two nodes can be structurally similar (i.e. they play the same role in the
graph) but be distant in the graph, hence, not share any common neighbors. Their
representations might thus be completely different.

The Node2vec [17] method proposed by Grover & Leskovec was developed fol-
lowing the idea of DeepWalk. The main difference is that Node2vec uses biased
random-walks to provide a more flexible notion of a node’s neighborhood and
better integrate the notion of structural equivalence. It has been used to predict
links in a biomedical context [23], and to classify nodes [18]. Node2vec randomly
initializes the node embeddings, which can result in being stuck in a local optima
during the computation of embeddings. Chen et al. propose an improved weight
initialization strategy to avoid such problems in their method Hierarchical Repre-
sentation Learning method (HARP) [8]. In Walklets [34], Perozzi et al. introduce
a new random walk strategy. Traditional random-walk methods select the next
node from the current node’s neighbors. Instead, Walklets proposes to skip over
nodes to obtain sequences of nodes which are not direct neighbors. This strategy
allows modeling and preserving higher order relationships between nodes and can
be used in multi-label classification problems [34].

2.2 Whole-Graph Embedding

As mentioned before, node embedding methods are the most widespread in the
literature. But some tasks require information at a higher granularity, in which
case one would turn to whole-graph embedding. These methods allow to represent
a whole graph as a single vector of fixed length. They take a collection of graphs,
and output a representation for each of them.

de Lara & Pineau [20] propose a S imple and Fast (SF) algorithm based on the
spectral factorization of the graph Laplacian. It computes the k smallest positive
Eigenvalues of normalized Laplacian of the input graph in ascending order, to
form the representation of the whole-graph. de Lara & Pineau use their approach
to predict the properties of chemical compounds [20].

Mousavi et al. [26] introduce a whole-graph embedding hierarchical framework
called Pyramidal Graph Embedding (PyrGE), based on some ideas originating from



Graph embeddings for Abusive Language Detection 7

Table 1 List of graph embedding approaches and the additional information they can encode.
PyrGE and Graph2vec can additionally handle node attributes and node/edge labels, respec-
tively. Column Sc. stands for Scale (Node vs. W hole Graph); and Cat. for Category (Matrix
Factorization, N eural N etworks and Random W alks). Columns W. and D. indicate whether
the method supports weighted and directed links, respectively.

Sc. Cat. Method Ref. W. D. Application

N MF LLE [35] – – Image processing
LE [5] 3 – Node classification, link prediction
GF [1] 3 – Graph partitioning
HOPE [30] 3 3 Node recommendation, proximity approximation
BoostNE [22] 3 – Node classification

NN SDNE [40] 3 – Node classification, link prediction
GCN [19] 3 – Document/entity classification
GraphGAN [41] – – Movie recommendation

RW DeepWalk [33] – – Node classification, link prediction
Node2vec [17] 3 3 Node classification, link prediction
HARP [8] – – Node classification
Walklets [34] – – Node classification

WG MF SF [20] – – Molecular property prediction
PyrGE [26] – – Graph classification
FGSD [39] 3 – Graph classification
NetLSD [38] – – Graph classification, Community detection

NN Graph2vec [27] – – Graph visualization, similarity ranking

image processing algorithms. Important global information from images can be
extracted by recursively analyzing local information. In the context of graphs, this
means that the overall graph structure can be modeled by analyzing substructures
at different scales. To this end, a graph pyramid is formed with subgraphs of
different scales. Every graph is embedded into vector representations which are
all concatenated to form the global graph embedding. The representations are
obtained by factorizing an affinity matrix. PyrGE is especially designed for large
graphs since they potentially contain more different scales. Mousavi et al. used it
for graph classification tasks.

Verma & Zhang propose a Family of Graph Spectral Distances (FGSD) [39]
to represent a whole-graph. This method is built on the assumption that the
graph atomic structure is encoded in the multiset of all node pairwise distances.
It computes the Moore-Penrose Pseudoinverse spectrum of the graph Laplacian.
Vector representation of the whole graph is constructed from the histogram of
this spectrum. Typical tasks include graph classification in various fields such as
bioinformatics and social networks [39,38].

Tsitsulin et al. introduce NetLSD [38], a permutation- and size-invariant, scale-
adaptive embedding method. Like aforementioned node embedding method LE [5],
NetLSD operates on the Laplacian matrix of the graph. It relies on a physical
analogy consisting in simulating a heat diffusion process on the graph to preserve
its structure. The method processes the amount of heat transferred between nodes
at different times scales. These heat traces at different time scales are then used
to compute the heat trace signature of the graph, i.e. the vector representation of



8 Noé Cécillon* et al.

the graph. Tsitsulin et al. use NetLSD for graph classification and for community
detection.

Narayanan et al. design Graph2vec [27], which can be viewed as an adaptation
of DeepWalk [33] and Node2vec [17] to the whole-graph embedding paradigm.
Indeed, these two approaches generate random walks to approximate the context
in which nodes appear and fetch them to a SkipGram model. Graph2vec also uses
a SkipGram model, but it operates on rooted subgraphs since the method is aimed
at representing whole graphs and not nodes. Hence, similarly to nodes with similar
neighborhoods sharing close representations in DeepWalk and Node2vec, graphs
containing the same rooted subgraphs share similar representations in Graph2vec.
A SkipGram model is then trained on these subgraphs and generates the whole
graph representations. Graph2vec has been used to perform graph classification,
graph visualization and similarity ranking [3]. It is able to capture information
about node labels additionally to the graph structure.

3 Methods

In this work, we focus on a task consisting in detecting abusive messages in chat
logs. This can be formulated as a classification problem consisting in deciding if
a message is abusive or not. In order to turn a chat log into a graph, we rely on
a conversational graph extraction method that we previously introduced in [31],
and that we briefly present in Section 3.1. The principle here is that classifying
the messages amounts to classifying the graphs that represent them.

This setup allows us to experiment with various node and whole-graph em-
bedding methods, which we present in Section 3.3. For comparison, we use as a
baseline a set of features that we manually crafted in a previous work [31]. These
are constituted of a large set of topological measures, that we selected to get
the most exhaustive representation of the graph that we could, as explained in
Section 3.2. We view the embedding methods as a way to automate the elabora-
tion of this representation of conversational graphs, which was otherwise designed
manually in [31] through feature selection.

Figure 1 gives an overview of our experimental framework, highlighting the dif-
ferences between the approaches based on the topological measures (top) and the
embedding methods (bottom). The baseline features are computed separately for
the input graph, before being concatenated to form the global representation of the
graph, and this single vector is finally fetched to the classifier. By comparison, the
graph embedding method directly produces a single vector representation of fixed
length (6 in this example) which is then sent to the classifier in a straightforward
way.

3.1 Graph Extraction

Intuitively, the content exchanged in an online conversation could be assumed to be
the most relevant information to detect important events, such as the occurrence
of abuses. However, we have showed in a previous work [31] that the dynamics of
the conversation, i.e. the way the interactions between its participants unfold, is
also critical, and can even lead to better classification results. This information can



Graph embeddings for Abusive Language Detection 9

Classification
Conversational

Graph

Graph Embedding-based Approach

Topological Measures-based Approach

Predicted
ClassVector representation

m1

mp

M1

Mq

Topological
measures
computing

Embedding
computing

Concatenation

Vector representation

m1(v) mp(v)

⟨m1⟩ ⟨mp⟩

M1 Mq

Fig. 1 Overview of our experimental framework. The top part corresponds to the approach
adopted in our baseline, whereas the bottom part describes the method used with graph
embeddings. Figure available at 10.6084/m9.figshare.7442273 under CC-BY license.

be leveraged by modeling the exchanges between participants through a so-called
conversational graph. In this work, we use the same method to extract graphs from
conversations. We explain the most essential points of this process in the rest of
this section, but the interested reader will find a more detailed description in [31].

Our method is designed to process a stream of messages posted in a given
chatroom. It extracts a graph describing the conversational context of a message
of interest, called targeted message. In the context of a classification task, this
message corresponds to the message that one wants to classify. We define a so-
called context period centered around this targeted message, and containing the
k messages published right before and right after it (where k is a predefined con-
stant). The graph corresponds to the temporal integration of this events occurring
during this period. Each one of its nodes represents a participant of the conver-
sation, which was active at least once during the considered context period. The
graph links are directed and weighted. They model the interactions between these
participants over the period: their directions reflect the communication flow, and
their weights represent the overall intensity of the exchanges. The iterative process
used to estimate the link directions and weights is detailed in [31], as well as the
parameters that can be used to control this process.

Figure 2 illustrates our graph extraction method. The left part is the con-
versation (stream of messages), with the targeted represented in red. The graph
representing the state of the conversation around this message is shown on the
right. Its red node models the author of the targeted message.

3.2 Baseline

Our baseline relies on our previous work presented in [31,11]. In [31] we only focus
on graph-based features, but in [11] we also leverage textual content to perform
the classification. We propose 3 strategies to combine both types of features: 1)
Early fusion relies on a global feature set, containing both text- and graph-based
features; 2) Late fusion uses two separate classifiers dedicated to text- and graph-
based features, respectively, and fetches their outputs to a third classifier; and 3)
Hybrid fusion combines both previous strategies.

However, our goal in the current work is to study the behavior of graph embed-
ding methods on this task. Therefore, we only focus on the interactions between

https://doi.org/10.6084/m9.figshare.7442273


10 Noé Cécillon* et al.

User4: PTDR

User1: salut !

User2: alors, ce raid?

User1: je l'ai raté !

User1: je dormais...

User2: naaaan !

User3: quoi ?!

Fig. 2 Representation of our method to build graphs from conversations. The left part is an
extract of the considered conversation, which takes the form of a sequence of chat messages.
The red message corresponds to the targeted message, i.e. the message we ultimately want
to classify. The right part is the corresponding conversational graph, with the author of the
targeted message in red. For readability reasons, weights and directions have been omitted in
the graph. Figure available at 10.6084/m9.figshare.7442273 under CC-BY license.

the participants of the conversation, as modeled by the graphs whose extraction
process was just described in Section 3.1. It is worth stressing that completely
ignoring the textual content exchanged by the participants of the conversation
makes our method language-independent, and obfuscation-resistant.

We select a set of standard topological measures to describe the graph in a num-
ber of distinct ways, in terms of scale and scope. The scale depends on the nature
of the characterized object: node or graph. Some of the measures characterize the
graph as a whole (i.g. diameter, density), whereas other focus on individual nodes
(i.g. degree, closeness). The scope corresponds to the nature of the information
used to characterize the object: micro, meso, or macroscopic. Some of the selected
measures leverage only local information (i.g. transitivity, reciprocity), other con-
sider the full graph (i.g. betweenness, eccentricity) or intermediate substructures
(i.g. modularity, participation coefficient).

The graph scale measures, denoted M1, ...,Mq in Figure 1, are directly used as
classification features. The node measures, denoted m1, ...,mp in the same figure,
are computed for all nodes, and used to produce two different types of features.
The first corresponds to the value obtained for the node modeling the author of
the targeted message (i.e. red node in Figure 2), denoted mi(v) in Figure 1. The
second is the average of this measure over all nodes in the graph, denoted 〈mi〉
in the figure, which is considered as a graph scale representation. In total, the full
set is constituted of 459 features, including several variants of certain topological
measures. Their detailed list is available in [31].

For each annotated message in our corpus, we first extract the correspond-
ing conversational graph, as explained before. We then compute the whole set of
topological measures to fully describe each one of these graphs. The graph-scale
measures allow to characterize the whole conversation at once, whereas the node-
scale measures are used to describe the position of the node corresponding to
the author of the targeted message. Finally, all of these values are used as input

https://doi.org/10.6084/m9.figshare.7442273


Graph embeddings for Abusive Language Detection 11

features fetched to an SVM classifier. In addition, we perform a feature ablation
study to identify the most discriminative topological measures for the task at hand,
which we call Top Features. It turns out that 9 top features are enough to reach a
performance 97% as good as the performance obtained with the whole feature set
on the test set.

3.3 Embedding Methods

In this subsection, we describe the graph embedding methods that we use in our ex-
periments. We found in our previous work [31] that topological measures describing
the graph at different scales and scopes can convey complementary information,
allowing to improve the performance on the classification task. This is the reason
why we decided to include both whole-graph and node embedding methods in this
study. We selected methods that use different strategies, and focus on preserving
various aspects of the graph, in order to include as much diversity as possible.
All implementations are from the Karate club toolkit [36] except Node2vec, which
was developed by E. Cohen1. In our description, the names of the parameters
correspond to those used in these toolboxes.

3.3.1 Whole-Graph Embedding

As explained in Section 3.1, we extract a conversational graph for each targeted
message, based on its context period. Using a description of the whole graph
amounts at considering the entire conversation at once when performing the clas-
sification. We found in our previous study [31] that certain graph-scale topological
measures such as the Authority score and Reciprocity are particularly discrimina-
tive for the task at hand. In this experiment, we consider whole-graph embedding
methods as the embedding analog of graph-scale measures.

Spectral Features [20] (SF) This method was developed to perform a classification
task over a corpus of unweighted undirected graphs. Moreover, it assumes each
graph is connected. Its first step is quite standard and consists in computing the
spectrum of the normalized graph Laplacian, keeping only the k smallest positive
Eigenvalues. The very smallest of these values is ignored though, as it corresponds
to the number of components, i.e. 1 according to the above assumption.

These Eigenvalues, in ascending order, form the representation of the graph.
If the graph contains less than k nodes, (resulting in less than k Eigenvalues), the
vector is right-padded with zeros. Parameter k, called dimensions in the imple-
mentation, therefore directly controls the size of the representation.

Family of Graph Spectral Distances [39] (FGSD) This method was also proposed
to perform classification task over a corpus of undirected graphs, but now these are
weighted. Verma & Zhang designed their representation in order to characterize
a graph in terms of certain of its constituting subgraphs, and so that it has the
property of being invariant under graph isomorphism. It relies on the assumption
that the characteristics of the graph are encoded in the set of all its node pairwise

1 https://github.com/eliorc/node2vec



12 Noé Cécillon* et al.

distances. They propose a family of graph spectral distances (FGSD) based on the
spectrum of the graph Laplacian, which is able to encode both local and global
structure properties. They select the most appropriate distance in this family, in
order to fulfill their objective of isomorphism-invariance, and to obtain a sparse
representation.

This results in a representation whose length depends on the graph order. To
get a fixed-length vector suitable for classification, they discretize the distribution
of the obtained node pairwise distances through a histogram. Parameter-wise, the
user controls the way this histogram is computed. It is necessary to provide the
range covered by the histogram (hist_range) and its number of bins (hist_bins).

Graph2vec [27] (G2V) This method was not designed for a specific task, but was
evaluated on graph classification and clustering benchmarks. Unlike the previous
methods, graph2vec must be trained on a corpus of graphs, as it relies on unsuper-
vised learning through a neural network. It is designed analogically to document
embedding methods proposed in NLP. As these methods leverage the fact that a
document is formed of a sequence of words, Narayanan et al. consider a graph as
the set of subgraphs surrounding each node.

The algorithm takes the set of graphs to represent, and outputs their represen-
tations by applying a two-step process. It first identifies the subgraphs surrounding
each node and constituting the graph. More precisely, it looks for so-called rooted
subgraph, i.e. node neighborhoods of a certain order. Second, these subgraphs are
considered as the vocabulary and fetched to a doc2vec SkipGram [21] model. To re-
duce the computational cost, the method follows a negative sampling strategy (i.e.
at each iteration, the model updates the representations of only a fixed number of
negative samples).

This embedding method captures structural equivalence, i.e. graphs whose
nodes tend to possess this form of similarity will be close in the representation
space. In addition, it is able to take into account an extra input corresponding
to a label associated to each node. Parameter-wise, the user must specify the
degree of the rooted-subgraphs (wl_iterations), while the rest of the parame-
ters controls the SkipGram model: size of the representation (dimensions), down-
sampling frequency (down_sampling), number of epochs (epochs), learning rate
(learning_rate) and minimal count of graph feature occurrences (min_count).

3.3.2 Node Embedding

In the conversational graph extracted from the context of the targeted message,
all nodes are not equal. As mentioned in Section 3.1, one of them represents the
author of the targeted message, which we assume plays a particular role if an
abuse is occurring at this moment of the conversation. In [31] we experimented
with a node-based representation of the conversation, consisting in characterizing
individually this node of interest (by opposition to the whole graph), through a
selection of nodal topological measures such as Strength and Closeness centrality.
The node embedding methods presented in this section can be considered as the
embedding analog of these measures in the present study.

DeepWalk [33] (DW) DeepWalk relies on another analogy between graph and
text, allowing to adapt a neural network-based approach originating from NLP.



Graph embeddings for Abusive Language Detection 13

It takes a graph as input and uses a set of random walks of fixed length as a
proxy to represent the graph structure. The procedure samples a certain number of
uniform random walks starting from each node, which are considered as analog to a
set of sentences, whereas the nodes set corresponds to the vocabulary. DeepWalk
uses a SkipGram model to update the node representations by predicting their
neighborhood (i.e. context). The obtained representation captures the modular
structure of the graph.

The parameters of this method include the size of the neighborhood that we
want to consider (window_size), the learning rate (learning_rate), the num-
ber of epochs (epochs) and the minimal count of node occurrences for including
the node in the model (min_count). Other parameters correspond to the size of
the generated embeddings (dimensions), the number of random-walks starting at
each node (walk_number) and their maximum length (walk_length). The last two
parameters are typical of random walk-based approaches.

Node2vec [17] (N2V) Node2vec is designed to preserve the node neighborhood in
the space of representation. It follows the main idea of DeepWalk but uses bi-
ased random-walks by introducing weights to the transition probabilities between
nodes. The goal with this change is to improve the sampling step and get ran-
dom walks that better model node neighborhoods. The bias allows controlling the
behavior of the random walker, resulting in a trade-off between purely breadth-
first (exploring the closer nodes first) and depth-first (favoring increasingly distant
nodes) samplings. The former tends to produce representation that preserve struc-
tural equivalence, whereas the latter provides a wider view of the neighborhood.

Node2vec has the same parameters as DeepWalk plus two extra ones. The
return parameter p controls the likelihood of immediately revisiting a node during
the walk, and the in-out parameter q controls the balance between the breadth-first
and depth-first strategies.

Walklets [34] (WL) Walklets is an extension of DeepWalk which aims at explicitly
modeling multi-scale relationships, i.e. combine distinct views of node relationships
at different granularity levels. Walklets introduces a key change in the random walk
sampling algorithm, as the walk can now skip some nodes to reach farther parts
of the network. This allows reaching distant nodes while keeping walk lengths
short and tractable. Implicitly, this amounts to sampling different powers of the
adjacency matrix. Like DeepWalk, the random walks are the inputs of a SkipGram
model. It creates a representation for each power of the adjacency matrix that is
explored (i.e. each size of skip) and the output representation is the result of their
concatenation.

The method has the same set of parameters as DeepWalk. However, in Walklets,
the window size denotes the power order of the adjacency matrix to use (i.e. the
size of skips in random walks) and thus, the number of distinct representations that
the model learns. The dimension corresponds to the size of each representation.
The size of the global embedding generated is the product of the values of these
two parameters.

BoostNE [22] (BNE) BoostNE also learns multiple graph representations at dif-
ferent granularity levels, but unlike Walklets, it relies on matrix factorization. It
applies the principle of gradient boosting to perform successive factorizations of



14 Noé Cécillon* et al.

an original target matrix denoted as node connectivity matrix. Each one results
in a representation corresponding to an increasingly finer granularity. The final
embedding is obtained by concatening these representations.

The parameters of this method are the following. First, the user must specify
the number of granularity levels considered (iterations), as well as two param-
eters controlling the non-negative matrix factorization step (order and alpha).
Finally, similarly to Walklets, parameter dimensions corresponds to the size of the
representation.

GraphWave [15] (GW) This representation was designed to preserve the struc-
tural roles of nodes while being robust to small perturbations in the graph struc-
ture. It leverages heat wavelet diffusion patterns to estimate a multidimensional
representation. The process mimics a physical process consisting in propagating
some energy through the graph structure, starting from the node of interest. The
way this energy is diffused over the graph is assumed to characterize the node
and its neighborhood. Formally, it is represented by the distribution of wavelet
coefficients, which is sampled to get the proper vector representation of the nodes.

Parameter-wise, a scaling parameter allows controlling the hear kernel (heat -
coefficient), which corresponds in terms of graph structure to the radius of the con-
sidered node neighborhood. The number of points used to sample the distribution
of wavelet coefficients (sample number) corresponds to the size of the representa-
tion. The granularity of the grid used to perform this sampling is controlled by
parameter step_size. Wavelet calculation can be performed exactly of approx-
imately (mechanism), in which case the parameters switch and approximation

allow controlling its precision.

4 Experiments

In this section, we present the data and the experimental protocol necessary to
carry out our experiments (Section 4.1), and explain how we fixed the many pa-
rameters of the considered graph embedding methods (Section 4.2). We then seek
to compare the performance of various types of graph embedding methods (Sec-
tion 4.3). We finally explore the complementarity of such methods with our baseline
based on topological measures (Section 4.4).

4.1 Data and Experimental Protocol

Data The raw data is a proprietary database containing approximately 4 million
messages, written in French and posted on the in-game chat of SpaceOrigin2, a
Massively Multiplayer Online Role-Playing Game (MMORPG).

Among all the exchanged messages, 655 have been reported as being abusive
by other players, and confirmed as such by at least one human moderator. They
constitute the Abuse class. Non-abusive messages constitute most of the dataset
(more than 99% of the messages): in this case, it is standard to use only a part of
the available data in order to get balanced training and testing classes, and thus

2 https://play.spaceorigin.fr/

https://play.spaceorigin.fr/


Graph embeddings for Abusive Language Detection 15

prevent the classifier from being biased toward the majority class. We constitute
the Non-abuse class by randomly sampling the same number of messages from
the ones that have not been reported, with the constraint that a message must
not appear in the same conversation as an already selected message [31]. As a
result, our dataset is composed of 1,320 independent messages, equally distributed
between the Abuse and Non-abuse classes. Equally distributing the dataset leads
to a higher performance and is common in abuse detection literature [28,37,4,46].

Additionally, we construct a small development set of 120 messages following
the same procedure, meant to be used when estimating the embedding methods
parameters. This set is also balanced. We associate each message to its surrounding
context (i.e. messages posted before and after it), as explained in Section 3.1.

Experimental Protocol We conduct our experiments on a binary classification task
to detect whether a message belongs to the Abuse or the Non-abuse class. We apply
the graph extraction process developed in Section 3.1 to our dataset in order to
construct a conversational graph for each one of its messages. It is controlled by
certain parameters, for which we use the best value identified in our previous
work [31], which are: a sliding window of 10 messages, a context period of 850
messages, and link computed through a linear assignment strategy. On average,
the extracted graphs contain 46 nodes and 500 edges. We make this dataset of
1, 320 conversational graphs publicly available online3.

We use the 8 embedding methods presented in Section 3.3 in addition to the
baseline approach (topological features) described in Section 3.2 to generate vector
representations of these graphs. For the whole-graph embedding methods, we use
the complete representation, whereas for node embedding methods, we only use
the representation of the node representing the author of the targeted message (cf.
Section 3.1).

We input these representations to an SVM to perform the classification. We
use the implementation provided by the Sklearn toolkit [32], under the name SVC
(C-Support Vector Classification). As an alternative, we also experimented with
Sklearn’s implementation of the multilayer perceptron (MLP). However, it yields
very similar performances compared to the SVM, so we decided to not present
them here. We suppose that the size of our dataset lowers the effectiveness of such
approaches neural approaches, at least on our task. We conduct our experiments
on an Intel Core i3-3250 3.5 GHz CPU. Because of the relatively small size of our
dataset, we set-up our experiments using a 10-fold cross-validation. We use 70%
of the data for training and the remaining 30% for testing. Each fold is balanced
in terms of classes.

The classification performance is expressed in terms of micro F -measure, the
harmonic mean of the precision and recall. Since our dataset is balanced, micro
and macro F -measure are equivalent in our experiments. In the rest of the paper,
we use F -measure to refer to them collectively.

4.2 Parameters of Graph Embedding Approaches

In this section, we describe the configuration of the parameters of all graph em-
bedding approaches used in our experiments. We vary the values of parameters

3 DOI: 10.6084/m9.figshare.7442273

https://doi.org/10.6084/m9.figshare.7442273


16 Noé Cécillon* et al.

0 100 200 300 400 500 600
Dimension of the representation

0.60

0.65

0.70

0.75

0.80

0.85

F-
m

ea
su

re
FGSD
SF
Graph2vec
DeepWalk
Walklets
BoostNE
GraphWave
Node2vec

Fig. 3 Performance in terms of F -measure, as a function of the representation dimension.
Figure available at 10.6084/m9.figshare.7442273 under CC-BY license.

on the development set to determine their optimal values. As this is not the main
objective of this work, we only focus on the main results here.

During our experimentation, we found that most of the parameters have only
a limited impact on the performances of embedding methods on our abuse detec-
tion task. This includes the dimension of the generated representation, which is
the only parameter common to all methods. Figure 3 shows the performance as a
function of this dimension, for all the methods. Performances are computed on the
development set. Note that in this figure, we consider the dimension of the output
representation (i.e. from the extracted embedding representation of graphs) and
not the dimension of individual embeddings which are then concatenated in meth-
ods such as Walklets and BoostNE. As expected, for most methods, a dimension
too small seems to lack discriminative power, as there is not enough information
to reliably represent the graph structure. Conversely, as our dataset is composed
of relatively small graphs (a few hundred nodes at most), a dimension too large
appears does not improve the performance, and just increase the computational
cost. Put differently, it seems that we do not need a very large representation of
the graph to reach the best performance on this task. This is consistent with our
findings from our previous work on the baseline, in which we showed that carefully
selecting 9 Top Features among hundreds was enough to keep a performance 97%
as good as the original performance on the test set.

The exact parameter settings used for all embedding methods are described in
Table 2. Graph2vec is able to take into account a label associated to each node: we
use the ID of the author modeled by the node. For BoostNE, it is worth stressing
that parameter order has a strong effect on the performance, as increasing the
value of this parameter lowers the performance. Using larger values might be
beneficial on larger graphs, though. For GraphWave, performance stays relatively
constant with a sample number higher than 100, but strongly decreases with a
lower value.

https://doi.org/10.6084/m9.figshare.7442273


Graph embeddings for Abusive Language Detection 17

Table 2 Parameters of the 8 graph embedding methods.

Parameter FGSD SF G2V DW WL N2V BNE GW

dimensions 200 128 128 128 32 128 8 100
hist_range 10 - - - - - - -
wl_iterations - - 1 - - - - -
down_sampling - - 10−4 - - - - -
learning_rate - - 0.06 0.05 0.05 - - -
epochs - - 12 - - - - -
min_count - - 1 1 1 - - -
window_size - - - 10 4 10 - -
walk_number - - - 5 5 10 - -
walk_length - - - 80 80 20 - -
p - - - - - 0.95 - -
q - - - - - 1.0 - -
iterations - - - - - - 16 -
order - - - - - - 1 -
alpha - - - - - - 0.01 -
step_size - - - - - - - 0.2
heat_coefficient - - - - - - - 0.5
approximation - - - - - - - 100
switch - - - - - - - 1000

Table 3 F -measures obtained for the baseline and the 8 graph embedding methods. The left
part corresponds to results obtained with the embedding methods alone, whereas the right part
shows how they perform when combined with the topological measures used in the baseline.
In the Scale column, WG stands for Whole-Graph and N for Node.

Scale Method Embeddings only Embeddings & Topo. meas.
Dimension F -measure Dimension F -measure

WG FGSD 200 77.06 659 87.27
SF 128 79.88 587 88.34
Graph2vec 128 81.91 587 89.16

N DeepWalk 128 78.85 587 87.73
Node2vec 128 83.70 587 89.03
Walklets 128 79.49 587 88.15
BoostNE 136 63.28 595 86.54
GraphWave 200 83.04 659 87.97

– Baseline Dimension: 459 F -measure: 88.08

4.3 Performance on Abusive Message Detection

Embeddings Only The first two columns of Table 3 present the F -measure values
obtained by our baseline and the 8 embedding methods described in Section 3.3.
It also shows the dimension of the vector representations used to perform the
classification. The last two columns correspond to results obtained when we use
simultaneously the embedding methods and the topological measures from our
baseline (described in Section 3.2), by concatenating their vector representation.
The reported performances are obtained following the protocol described in Sec-
tion 4.1.

We first focus on the results obtained without the topological measures (embed-
dings only). They demonstrate how appropriate the considered embedding meth-



18 Noé Cécillon* et al.

ods are for the task at hand. Our first observation is that there is no clear distinc-
tion between node and whole-graph approaches in terms of F -measure. Since the
whole graph is representing the message and its context, one could have thought
that embedding the whole graph could allow capturing more important informa-
tion than a single node embedding. However, it seems that these graphs can be
well-characterized by focusing on the embedding representing only the node corre-
sponding to the author of the targeted message. This could mean that the relative
position of this node in the graph is enough to characterize the whole conversation,
and that node-level embeddings are able to capture such information.

The baseline yields the best performance, though. This is not surprising be-
cause this hand-crafted set of features was specifically designed for this task and
dataset, whereas the embedding methods are somewhat generic. An interesting
result is that Node2vec and GraphWave (node scale approaches), and Graph2vec
(whole-graph scale) yield relatively good performance. These three approaches
have several advantages over the baseline. First, they are not specifically designed
for this task or dataset and are hence more likely to be efficient in other settings.
Second, embedding methods are more scalable than hand-crafted sets of features.
Computing the topological measures used in our baseline is computationally very
expensive, with a total runtime of more than 8 hours. On the other hand, it only
takes a few minutes to deal with Graph2vec, GraphWave and Node2vec on the
same computer, which makes them a lot more time-efficient. The other methods,
except BoostNE, obtain correct performances with a F -measure around 79%. SF
and FGSD, which operate on the whole graph, might be penalized by the small size
of our dataset and by the fact that graphs have approximately the same size and
thus, possibly similar structures. DeepWalk is less efficient than Node2vec, which
is in line with other studies [16,17]. The Walklets algorithm learns multi-scale re-
lationships in the graph. However, such relationships might not be very developed
in our graphs, which could explain its lower performance. This observation could
also be the reason of the very poor performances of BoostNE, which also operates
on different granularity levels.

Embeddings & Topological Measures Now, to study the complementarity between
the baseline and the embedding methods, we propose to combine these features fol-
lowing the three fusion strategies proposed in [11] and summarized in Section 3.2.
An important difference with our previous work is that instead of using these
strategies to combine topological measures and text features, our aim in this work
is to combine topological measures and graph embeddings, since we do not use the
textual content of the exchanged messages.

Our experiments show that the three strategies lead to very similar perfor-
mances on our task. Hence, in the remaining of this paper we present only the
results obtained using one of them. We choose the Early fusion, because it is the
simpler of the three, and also because it eases interpreting the results, in partic-
ular regarding the feature ablation. In practice, the embedding generated by the
considered embedding method is concatenated with the topological measures com-
puted for the graph. We perform a new classification following exactly the same
protocol as before, and report the obtained performance in the last two columns
of Table 3.

Graph2vec, SF and Node2vec are the 3 methods that improve the baseline
performance when combined with it, up to a 89.16 F -measure for Graph2vec.



Graph embeddings for Abusive Language Detection 19

This result is critical, as it proves that the information captured by these three
embedding methods is not similar, at least partially, to the information captured by
the baseline. Furthermore, the additional information captured in the embeddings
is useful for the classification task, since combining it with the baseline improves
the classification performance. This result acknowledges the assumption that graph
embedding methods can be used to detect abusive messages and that they can even
capture useful information that is not caught by a hand-crafted set of measures.

When combined with the baseline, Walklets and Graphwave yield F -measures
almost similar to what is obtained by the baseline alone. This seems to indicate
that the generated embeddings contain information that is already captured by
the baseline features, or that is useless for this specific classification task. However,
even if the embeddings do not improve the performance, they do not introduce
incorrect information (i.e. noise) in the representations as the performances stays
approximately the same with and without them.

Contrariwise, DeepWalk, FGSD and BoostNE combined with the baselines
yield a F -measure that is inferior to that of the baseline on its own. It seems that
the representations generated by these methods introduce some incorrect informa-
tion when combined with the baseline, which causes a loss of performance. It is
worth highlighting that these approaches were already the three worst performing
methods when used without the baseline.

4.4 Feature Ablation

In our previous work [11], we identified, among the topological measures used in
the baseline, the most discriminative features for our classification task, which we
called Top Features. For this purpose, we used a standard feature ablation process.
As embedding methods provide vector representations in which dimensions are
not directly interpretable, it does not make sense to apply the same method here.
Instead, we propose to study whether the most important topological measures
from our baseline are well captured by the embedding methods.

To this end, we compare the F -measure score obtained by each embedding
method on its own, with the score obtained by using a representation composed
of the same embedding completed by one of the Top Features. Figure 4 shows the
difference between these two scores for all embedding methods and Top Features. If
the performance significantly increases, we conclude that the topological measure
was not captured by the embedding. This cases are represented in red in the
figure. If the performance stays the same or increases by less than 0.50% with the
additional feature, we conclude that the structural property corresponding to this
topological measure is well captured by the embedding (represented in green). If
the performance increase is higher than 0.50% but not statistically significant, we
conclude that the property is only partially captured by the embedding method
(represented in blue).

An interesting result shown by Figure 4 is that some topological measures seem
to be well captured by all, or almost all the embedding methods (e.g. PageR-
ank centrality, Vertex count, Closeness centrality at node and graph level and
Reciprocity). Contrariwise, the average Coreness score, which is considered as a
graph-scale measure, is partially captured by SF, a graph embedding method and



20 Noé Cécillon* et al.

FG
SD SF G2V DW N2V WL

BNE GW

Pagerank

Strength

Closeness

Hub score

Average Coreness

Vertex Count

Average Closeness

Average Authority

Reciprocity

0.31 0.0 0.07 0.1 -0.0 -0.13 4.36 0.05

2.76 1.06 4.16 1.84 1.08 1.77 15.7 0.41

0.05 0.05 -0.03 -0.08 0.1 0.13 0.0 0.82

1.52 0.79 4.58 1.91 0.87 1.48 5.94 0.38

5.11 1.71 4.67 2.28 0.91 2.28 17.05 0.69

0.28 -0.03 0.25 0.03 0.02 -0.05 0.41 0.23

0.52 0.08 0.13 0.22 0.35 0.33 1.24 1.07

1.37 -0.03 0.05 -0.03 0.02 0.02 2.65 -0.13

0.03 0.08 0.2 0.12 0.14 0.12 -0.15 -0.07

Fig. 4 Topological measures captured (green), partially captured (blue) or not captured (red)
by the embedding approaches. The first 4 topological measures are computed at the Graph
level and the last 5 topological measures are computed at the Node level. Each value is the
difference between the F -measure score obtained by the embedding method on its own and
the score obtained by the embedding method completed by the corresponding Top Feature.
Figure available at 10.6084/m9.figshare.7442273 under CC-BY license.

by Node2vec and GraphWave, two node embeddings methods. The latter is also
the only method that completely captures the Strength centrality and Hub score.

SF, Node2vec and GraphWave, which are among the best performing methods
in Table 3 are able to capture or partially capture all the important measures
studied. However, they yield a F -measure much lower than the baseline. Therefore,
we can suppose that these methods might not capture other properties of the
graph which are less important but improve the performance when all combined.
Graph2vec fails to capture some measures (i.e. average Coreness score, Strength
centrality and Hub score). However, as suggested by the result of its combination
with the baseline, Graph2vec might miss some important measures of the baseline
but this method is able to capture other important properties of the graph which
are not conveyed by the baseline features. This is why Graph2vec is the best
performing method when considering the combination with the baseline.

An other interesting result of this study is that there is no clear difference in
the type of information captured by node and whole-graph embedding approaches.
Node embedding methods are able to capture certain graph-scale topological mea-
sures and whole-graph embedding methods can capture some node-scale measures.
This property may result from the relatively small size of our graphs, as the sec-
ond order neighborhood of a node might include a majority of the nodes in the

https://doi.org/10.6084/m9.figshare.7442273


Graph embeddings for Abusive Language Detection 21

graph. Thus, differences between node and whole-graph embedding methods are
not as important as what they could be on larger graphs. Furthermore, our graphs
are centered around a specific node. This specificity might help the whole graph
embeddings to capture better node-level information.

5 Conclusion

In this paper, we use graph embedding representations to tackle the problem of
automatic abuse detection in online textual messages. We compare 8 methods op-
erating on nodes and whole graphs to find the category of embeddings which fits
the best the needs of this task. Our results show that Node2vec, GraphWave and
Graph2vec are the methods that perform the best on this task. We compare the
performance of these 8 graph embedding methods with a baseline previously de-
signed using a feature engineering approach. With a 88.08 F -measure, this baseline
outperforms the embedding methods, but the top ones obtain promising results: up
to 83.70 with the Node2vec approach. We also study the complementarity between
embedding methods and the topological measures used in the baseline. Combining
them with Graph2vec allows to improve the performance up to a 89.16 F -measure.
Finally, we study which aspects of the graph structure each embedding method
is able to capture. We find that methods operating on nodes and whole graphs
are all able to include the information conveyed by certain topological measures
defined both at node and graph scales.

A limitation of this work is the small size of our dataset (1,320 messages). Our
application could benefit a larger dataset with more variety and examples of abu-
sive messages. We have already started working in this direction, by proposing and
freely distributing WAC4, a corpus based on Wikipedia edit discussion pages [10].
It combines and improves two preexisting corpora to provide simultaneously com-
ments annotated in terms of abuse and their surrounding conversation. This new
corpus could be a larger field of experimentation, with around 383k annotated
messages including 51k abusive ones distributed over 3 classes of abuse. Another
limitation is the relatively small size of the graphs that we use to model conver-
sations, which is likely to reduce the differences between node and whole-graph
embedding methods. Working on larger graphs could help better distinguish the
differences between these two types of embedding methods.

In the current work, we use static graphs to represent conversations. However,
as our dataset contains details about the time at which messages were posted, a
possible future work is to integrate a temporal aspect in our study. For example,
by constructing sequences of embeddings to represent the evolution of conversa-
tion over time, or to experiment with representation able to simultaneously embed
structural and temporal information. Another track is to leverage the content of
messages through text embeddings, as we did previously with a feature engineer-
ing approach. Here too, it is possible to consider using separate embeddings for
structure and text, or specific embeddings able to combine both types of informa-
tion at once. Finally, another interesting track is to study the complementarity of
different categories of graph embedding methods, for example by simultaneously
using node, edge and whole graph representations.

4 DOI: 10.6084/m9.figshare.11299118

https://doi.org/10.6084/m9.figshare.11299118


22 Noé Cécillon* et al.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict
of interest.

References

1. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed
large-scale natural graph factorization. In: 22nd International Conference on World Wide
Web, pp. 37–48 (2013). DOI 10.1145/2488388.2488393

2. Badjatiya, P., Gupta, S., Gupta, M., Varma, V.: Deep learning for hate speech detection
in tweets. In: 26th International Conference on World Wide Web Companion, pp. 759–760
(2017). DOI 10.1145/3041021.3054223

3. Bai, Y., Ding, H., Qiao, Y., Marinovic, A., Gu, K., Chen, T., Sun, Y., Wang, W.: Un-
supervised inductive graph-level representation learning via graph-graph proximity. In:
28th International Joint Conference on Artificial Intelligence, pp. 1988–1994 (2019). DOI
10.24963/ijcai.2019/275

4. Balci, K., Salah, A.A.: Automatic analysis and identification of verbal aggression and
abusive behaviors for online social games. Computers in Human Behavior 53, 517–526
(2015). DOI 10.1016/j.chb.2014.10.025

5. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for
embedding and clustering. In: Advances in Neural Information Process-
ing Systems 14, pp. 585–591 (2002). URL http://papers.nips.cc/paper/
1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.
pdf

6. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: Prob-
lems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineer-
ing 30(9), 1616–1637 (2018). DOI 10.1109/TKDE.2018.2807452

7. Chatzakou, D., Kourtellis, N., Blackburn, J., De Cristofaro, E., Stringhini, G., Vakali, A.:
Mean birds: Detecting aggression and bullying on twitter. In: 2017 ACM on Web Science
Conference, pp. 13–22 (2017). DOI 10.1145/3091478.3091487

8. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: Hierarchical representation learning for
networks. In: 32nd AAAI Conferenceon Artificial Intelligence (2018). URL https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16273/15922

9. Chen, Y., Zhou, Y., Zhu, S., Xu, H.: Detecting offensive language in social media to
protect adolescent online safety. In: International Conference on Privacy, Security, Risk
and Trust and International Conference on Social Computing, pp. 71–80 (2012). DOI
10.1109/SocialCom-PASSAT.2012.55

10. Cécillon, N., Labatut, V., Dufour, R., Linarès, G.: Wac: A corpus of wikipedia conversa-
tions for online abuse detection. In: 12th International Conference on Language Resources
and Evaluation (2020)

11. Cécillon, N., Labatut, V., Dufour, R., Linarès, G.: Abusive language detection in online
conversations by combining content- and graph-based features. Frontiers in Big Data 2,
8 (2019). DOI 10.3389/fdata.2019.00008. URL https://www.frontiersin.org/article/
10.3389/fdata.2019.00008

12. Dadvar, M., Trieschnigg, D., Ordelman, R., de Jong, F.: Improving cyberbullying detection
with user context. In: 35th European Conference on IR Research, vol. 7814 (2013). DOI
10.1007/978-3-642-36973-5 62

13. Dinakar, K., Reichart, R., Lieberman, H.: Modeling the detection of textual cyberbullying.
In: 5th International AAAI Conference on Weblogs and Social Media / Workshop on the
Social Mobile Web, pp. 11–17 (2011). URL https://www.aaai.org/ocs/index.php/ICWSM/
ICWSM11/paper/view/3841

14. Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati, N.: Hate
speech detection with comment embeddings. In: 24th international conference on world
wide web, pp. 29–30 (2015). DOI 10.1145/2740908.2742760

15. Donnat, C., Zitnik, M., Hallac, D., Leskovec, J.: Learning structural node embeddings
via diffusion wavelets. In: 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, p. 1320–1329 (2018). DOI 10.1145/3219819.3220025

http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16273/15922
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16273/15922
https://www.frontiersin.org/article/10.3389/fdata.2019.00008
https://www.frontiersin.org/article/10.3389/fdata.2019.00008
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/3841
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/3841


Graph embeddings for Abusive Language Detection 23

16. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: A
survey. Knowledge-Based Systems 151, 78 – 94 (2018). DOI https://doi.org/10.1016/j.
knosys.2018.03.022

17. Grover, A., Leskovec, J.: Node2vec: Scalable feature learning for networks. In: 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864
(2016). DOI 10.1145/2939672.2939754

18. Hou, B., Wang, Y., Zeng, M., Jiang, S., Mengshoel, O.J., Tong, Y., Bai, J.: Customized
graph embedding: Tailoring embedding vectors to different applications. arXiv (2019).
URL http://arxiv.org/abs/1911.09454

19. Kipf, T.N., Welling, M.: Semi-supervides classification with graph convolutional networks.
In: ICLR (2017). URL https://arxiv.org/pdf/1609.02907.pdf

20. de Lara, N., Pineau, E.: A simple baseline algorithm for graph classification. arXiv (2018).
URL https://arxiv.org/pdf/1810.09155.pdf

21. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: 31st
International Conference on International Conference on Machine Learning, vol. 32, p.
II–1188–II–1196 (2014). URL http://proceedings.mlr.press/v32/le14.html

22. Li, J., Wu, L., Guo, R., Liu, C., Liu, H.: Multi-level network embedding with boosted low-
rank matrix approximation. In: 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, p. 49–56 (2019). DOI 10.1145/3341161.3342864

23. Liang, X., Li, D., Song, M., Madden, A., Ding, Y., Bu, Y.: Predicting biomedical relation-
ships using the knowledge and graph embedding cascade model. PLoS ONE 14 (2019).
DOI https://doi.org/10.1371/journal.pone.0218264

24. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations
in vector space. In: ICLR Workshop Track Proceedings (2013). URL https://arxiv.org/
pdf/1301.3781.pdf

25. Mishra, P., Del Tredici, M., Yannakoudakis, H., Shutova, E.: Author profiling for abuse
detection. In: 27th International Conference on Computational Linguistics, pp. 1088–1098
(2018). URL https://www.aclweb.org/anthology/C18-1093

26. Mousavi, S.F., Safayani, M., Mirzaei, A., Bahonar, H.: Hierarchical graph embedding in
vector space by graph pyramid. Pattern Recognition 61(C), 245–254 (2017). DOI 10.
1016/j.patcog.2016.07.043

27. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.:
graph2vec: Learning distributed representations of graphs. In: 13th International Work-
shop on Mining and Learning with Graphs (MLG) (2017). URL http://www.mlgworkshop.
org/2017/paper/MLG2017_paper_21.pdf

28. Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., Chang, Y.: Abusive language detection
in online user content. In: 25th International Conference on World Wide Web, pp. 145–153
(2016). DOI 10.1145/2872427.2883062

29. Okky Ibrohim, M., Budi, I.: A dataset and preliminaries study for abusive language
detection in indonesian social media. Procedia Computer Science 135, 222 – 229
(2018). DOI 10.1016/j.procs.2018.08.169. URL http://www.sciencedirect.com/science/
article/pii/S1877050918314583

30. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph
embedding. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1105–1114 (2016). DOI 10.1145/2939672.2939751

31. Papegnies, E., Labatut, V., Dufour, R., Linarès, G.: Conversational networks for automatic
online moderation. IEEE Trans. Comput. Social Systems 6(1), 38–55 (2019). DOI 10.
1109/TCSS.2018.2887240

32. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12, 2825–2830 (2011). URL http://www.jmlr.org/papers/
v12/pedregosa11a.html

33. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In:
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 701–710 (2014). DOI 10.1145/2623330.2623732

34. Perozzi, B., Kulkarni, V., Skiena, S.: Don’t walk, skip! online learning of multi-scale net-
work embeddings. In: 2017 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, pp. 258–265 (2017). DOI 10.1145/3110025.3110086

35. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290(5500), 2323–2326 (2000). DOI 10.1126/science.290.5500.2323

http://arxiv.org/abs/1911.09454
https://arxiv.org/pdf/1609.02907.pdf
https://arxiv.org/pdf/1810.09155.pdf
http://proceedings.mlr.press/v32/le14.html
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://www.aclweb.org/anthology/C18-1093
http://www.mlgworkshop.org/2017/paper/MLG2017_paper_21.pdf
http://www.mlgworkshop.org/2017/paper/MLG2017_paper_21.pdf
http://www.sciencedirect.com/science/article/pii/S1877050918314583
http://www.sciencedirect.com/science/article/pii/S1877050918314583
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://www.jmlr.org/papers/v12/pedregosa11a.html


24 Noé Cécillon* et al.

36. Rozemberczki, B., Kiss, O., Sarkar, R.: An api oriented open-source python framework
for unsupervised learning on graphs. arXiv (2020). URL https://arxiv.org/pdf/2003.
04819.pdf

37. Salminen, J., Almerekhi, H., Milenković, M., Jung, S., An, J., Kwak, H., Jansen, B.J.:
Anatomy of online hate: Developing a taxonomy and machine learning models for iden-
tifying and classifying hate in online news media. In: International AAAI Conference on
Web and Social Media (ICWSM 2018) (2018). URL https://www.aaai.org/ocs/index.
php/ICWSM/ICWSM18/paper/viewFile/17885/17024

38. Tsitsulin, A., Mottin, D., Karras, P., Bronstein, A., Müller, E.: Netlsd: Hearing the shape
of a graph. In: 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2347–2356 (2018). DOI 10.1145/3219819.3219991

39. Verma, S., Zhang, Z.L.: Hunt for the unique, stable, sparse and fast fea-
ture learning on graphs. In: Advances in Neural Information Process-
ing Systems 30, pp. 88–98 (2017). URL http://papers.nips.cc/paper/
6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.
pdf

40. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234 (2016).
DOI 10.1145/2939672.2939753

41. Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., Guo, M.: Graph-
gan: Graph representation learningwith generative adversarial nets. In: 32nd AAAI Con-
ference on Artificial Intelligence, pp. 2508–2515 (2018). URL https://www.aaai.org/ocs/
index.php/AAAI/AAAI18/paper/view/16611

42. Warner, W., Hirschberg, J.: Detecting hate speech on the world wide web. In: Second
Workshop on Language in Social Media, pp. 19–26 (2012). URL https://www.aclweb.
org/anthology/W12-2103

43. Waseem, Z., Hovy, D.: Hateful symbols or hateful people? predictive features for hate
speech detection on twitter. In: NAACL Student Research Workshop, pp. 88–93 (2016).
URL http://www.aclweb.org/anthology/N16-2013

44. Xiang, G., Fan, B., Wang, L., Hong, J., Rose, C.: Detecting offensive tweets via topical
feature discovery over a large scale twitter corpus. In: 21st ACM International Conference
on Information and Knowledge Management, pp. 1980–1984 (2012). DOI 10.1145/2396761.
2398556

45. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions:
A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis
and Machine Intelligence 29, 40–51 (2007)

46. Yin, D., Xue, Z., Hong, L., Davison, B.D., Kontostathis, A., Edwards, L.: Detection of
harassment on web 2.0. In: WWW Workshop: Content Analysis in the Web 2.0, pp. 1–7
(2009). URL http://www.cse.lehigh.edu/~brian/pubs/2009/CAW2/

https://arxiv.org/pdf/2003.04819.pdf
https://arxiv.org/pdf/2003.04819.pdf
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/viewFile/17885/17024
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/viewFile/17885/17024
http://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf
http://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf
http://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16611
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16611
https://www.aclweb.org/anthology/W12-2103
https://www.aclweb.org/anthology/W12-2103
http://www.aclweb.org/anthology/N16-2013
http://www.cse.lehigh.edu/~brian/pubs/2009/CAW2/

	Introduction
	Related Work
	Methods
	Experiments
	Conclusion

