
HAL Id: hal-03042140
https://hal.science/hal-03042140

Submitted on 6 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing with Failures for Execution Consistency in
Context-aware Systems

Ahmed-Chawki Chaouche, Jean-Michel Ilie, François Pêcheux

To cite this version:
Ahmed-Chawki Chaouche, Jean-Michel Ilie, François Pêcheux. Dealing with Failures for Execu-
tion Consistency in Context-aware Systems. Procedia Computer Science, 2020, 177, pp.212 - 219.
�10.1016/j.procs.2020.10.030�. �hal-03042140�

https://hal.science/hal-03042140
https://hal.archives-ouvertes.fr

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 177 (2020) 212–219

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2020.10.030

10.1016/j.procs.2020.10.030 1877-0509

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020)

November 2-5, 2020, Madeira, Portugal

Dealing with Failures for Execution Consistency
in Context-aware Systems

Ahmed-Chawki Chaouchea,∗, Jean-Michel Iliéb, François Pêcheuxb

aMISC Laboratory, University Abdelhamid Mehri - Constantine 2, Campus Ali Mendjeli, 25000 Constantine, Algeria
bLIP6, UMR 7606 Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

Abstract

In this paper, we consider a symbolic mechanism designed to help guide the performance of actions of a Belief-Desire-Intention
(BDI) agent under both concurrency and relevance criteria. Behind the planning activity which can optimistically estimate the
relevance of traces, we propose to directly supervise the best effort execution of the intentions as to keep track of the most relevant
ones in case of failures. To support the presented method, a typical use case is given that targets the automated guidance of an
autonomous vehicle.

© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Contextual planning and guidance; Relevant execution; Plan multi revision strategy; Failure handling

1. Introduction

The automated guidance of mobile entities in a changing ambient environment is a great challenge supported by
many academic and industrial works. It serves several huge industrial projects such as smart city, e.g. [5, 8]. As the
ambient context can change anywhere and anytime, such an objective requires the planning action to be context aware
in order to dynamically adapt the execution directives on the fly.

Various planning approaches have already been proposed to handle the ambient complexity, e.g. [2]. However,
few ones actually propose to exploit the attitudes of a Belief-Desire-Intention (BDI) software agent to adapt itself to
unexpected changing situations [1]. In BDI approaches, each agent can be designed as a powerful software entity,
which allows reasoning in terms of agent intentions, coming from the agent’s beliefs and desires. Intentions are
realized through some action plans that are usually assumed to be known. High-order Agents (HoA) agents [3] are

∗ Corresponding author. Tel.: +33-678-139-432 ; fax: +33-144-277-495.
E-mail address: ahmed.chaouche@univ-constantine2.dz

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020)

November 2-5, 2020, Madeira, Portugal

Dealing with Failures for Execution Consistency
in Context-aware Systems

Ahmed-Chawki Chaouchea,∗, Jean-Michel Iliéb, François Pêcheuxb

aMISC Laboratory, University Abdelhamid Mehri - Constantine 2, Campus Ali Mendjeli, 25000 Constantine, Algeria
bLIP6, UMR 7606 Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

Abstract

In this paper, we consider a symbolic mechanism designed to help guide the performance of actions of a Belief-Desire-Intention
(BDI) agent under both concurrency and relevance criteria. Behind the planning activity which can optimistically estimate the
relevance of traces, we propose to directly supervise the best effort execution of the intentions as to keep track of the most relevant
ones in case of failures. To support the presented method, a typical use case is given that targets the automated guidance of an
autonomous vehicle.

© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Contextual planning and guidance; Relevant execution; Plan multi revision strategy; Failure handling

1. Introduction

The automated guidance of mobile entities in a changing ambient environment is a great challenge supported by
many academic and industrial works. It serves several huge industrial projects such as smart city, e.g. [5, 8]. As the
ambient context can change anywhere and anytime, such an objective requires the planning action to be context aware
in order to dynamically adapt the execution directives on the fly.

Various planning approaches have already been proposed to handle the ambient complexity, e.g. [2]. However,
few ones actually propose to exploit the attitudes of a Belief-Desire-Intention (BDI) software agent to adapt itself to
unexpected changing situations [1]. In BDI approaches, each agent can be designed as a powerful software entity,
which allows reasoning in terms of agent intentions, coming from the agent’s beliefs and desires. Intentions are
realized through some action plans that are usually assumed to be known. High-order Agents (HoA) agents [3] are

∗ Corresponding author. Tel.: +33-678-139-432 ; fax: +33-144-277-495.
E-mail address: ahmed.chaouche@univ-constantine2.dz

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

2 A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000

particularly well-adapted BDI agents for ambient systems which gracefully handle the concurrency of intentions and
autonomously learn with physical information to provide adapted execution plans working contextually.

In this paper, we aim at building the symbolic guidance of a self-driving robot fulfilling its missions contextually, in
an ambient environment. The core difficulty is to maintain the viability of an execution plan (soundly and efficiently)
since the concrete execution of actions may actually fail. Replanning operations are then required. Taking into account
the concurrency of actions may lead to an exponential use in the planning memory, with the risk of damaging the
achievement of missions under timing constraints. In contrast, we aim at producing the best effort to reinforce the
execution of the selected plan even if some sub-plans are indeed removed or replanned. With regards to a complete
symbolic replanning procedure, we investigate an intermediate planning operation locally to the execution control
with two advantageous corollaries, free time for the BDI agent reasoning and an improved reactivity for the concrete
driving operations.

Associating weights with symbolic information allows to abstractly represent the consequences of a symbolic
reasoning, e.g. the authors of [9] use weights to solve conflicts between beliefs and in [4], weights are proposed
to express scheduling directives between concurrent intentions. In this paper, we agree on such notions but we also
assume that each intention can be reassigned with a new weight value expressing the relative relevance of the intention
regarding to the current mission. In fact, scheduling concepts cannot account for the relevance of intentions, since
relevance does not necessarily mean being executed first.

In this paper, We show how both the planning and the execution processes can take care of these weights to
demonstrate an efficient and consistent execution plan with respect to the intentions to be achieved. The idea is to
introduce both scheduling and relevance information for each intention, i.e. a double weighted function which values
result from the deliberation of the Mental process: (1) The scheduling weight allows to partition the intentions in
distinguished ordered subsets that can be achieved in sequence. In other terms, the subset of ingress intentions having
a high scheduling weight value must be achieved first. Moreover, two intentions of the same subset can be achieved
concurrently, independently of their associated relevance weights ; (2) The relevance weight allows us to specify the
relevance of intentions according to their achievement priorities. In other terms, the agent gives preference to some
execution plans with the aim of achieving the intentions having the highest relevance.

The schedule of the paper is the following: Section 2 schemes an embedded extension of the HoA multi-process
architecture proposed in [6] which allows controlling the driving operations by an intelligent contextual planning.
Based on this architecture, Section 3 shows how the planning process can formally handle both intention weights, up
to obtain an optimal execution plan available from some context. Basic concepts to deal with the relevance of actions
are then explained in this section. Section 4 represents the most original part of this paper, introducing an efficient
relevance-based algorithm to directly adapt the execution plan on the fly, whenever the performance of some action
does not conform to the expected execution. Section 5 is our conclusion.

2. E-HoA Embedded Architecture

Planning
process

Execution
process

Mental
process

Context
process

Learning
process

DB

I
σ

aδ(a, c) δ(a, c)
oObservation

process

B

Field layer

Action
process

Symbolic layer

Fig. 1: Embedded Higher-order Agent architecture

Intentions Ws Wr Plan expressions

Order1 2 2 move(ph1);deliver(ph1);exit
Order2 2 2 move(ph2);deliver(ph2);exit
Order3 2 2 move(ph3);deliver(ph3);exit
Back 1 3 move(dep); park(dep);exit
Recharge 2 1 move(stn);re f ill(stn);exit

Table 1: Intentions information for the scenario

Figure 1 highlights the Embedded Higher-order Agent (E-HoA) layered architecture [6], based on a set of co-
operating processes that altogether define the robot behavior. Like other robotic system architectures, such as 3T,
ATLANTIS and LAAS [7], E-HoA subsums the robot behavioral information with the price to handle all the event
messages at the deliberative/planning layer. Nevertheless, the E-HoA symbolic layer already manages weights to ex-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2020.10.030&domain=pdf

 Ahmed-Chawki Chaouche et al. / Procedia Computer Science 177 (2020) 212–219 213

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020)

November 2-5, 2020, Madeira, Portugal

Dealing with Failures for Execution Consistency
in Context-aware Systems

Ahmed-Chawki Chaouchea,∗, Jean-Michel Iliéb, François Pêcheuxb

aMISC Laboratory, University Abdelhamid Mehri - Constantine 2, Campus Ali Mendjeli, 25000 Constantine, Algeria
bLIP6, UMR 7606 Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

Abstract

In this paper, we consider a symbolic mechanism designed to help guide the performance of actions of a Belief-Desire-Intention
(BDI) agent under both concurrency and relevance criteria. Behind the planning activity which can optimistically estimate the
relevance of traces, we propose to directly supervise the best effort execution of the intentions as to keep track of the most relevant
ones in case of failures. To support the presented method, a typical use case is given that targets the automated guidance of an
autonomous vehicle.

© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Contextual planning and guidance; Relevant execution; Plan multi revision strategy; Failure handling

1. Introduction

The automated guidance of mobile entities in a changing ambient environment is a great challenge supported by
many academic and industrial works. It serves several huge industrial projects such as smart city, e.g. [5, 8]. As the
ambient context can change anywhere and anytime, such an objective requires the planning action to be context aware
in order to dynamically adapt the execution directives on the fly.

Various planning approaches have already been proposed to handle the ambient complexity, e.g. [2]. However,
few ones actually propose to exploit the attitudes of a Belief-Desire-Intention (BDI) software agent to adapt itself to
unexpected changing situations [1]. In BDI approaches, each agent can be designed as a powerful software entity,
which allows reasoning in terms of agent intentions, coming from the agent’s beliefs and desires. Intentions are
realized through some action plans that are usually assumed to be known. High-order Agents (HoA) agents [3] are

∗ Corresponding author. Tel.: +33-678-139-432 ; fax: +33-144-277-495.
E-mail address: ahmed.chaouche@univ-constantine2.dz

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020)

November 2-5, 2020, Madeira, Portugal

Dealing with Failures for Execution Consistency
in Context-aware Systems

Ahmed-Chawki Chaouchea,∗, Jean-Michel Iliéb, François Pêcheuxb

aMISC Laboratory, University Abdelhamid Mehri - Constantine 2, Campus Ali Mendjeli, 25000 Constantine, Algeria
bLIP6, UMR 7606 Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

Abstract

In this paper, we consider a symbolic mechanism designed to help guide the performance of actions of a Belief-Desire-Intention
(BDI) agent under both concurrency and relevance criteria. Behind the planning activity which can optimistically estimate the
relevance of traces, we propose to directly supervise the best effort execution of the intentions as to keep track of the most relevant
ones in case of failures. To support the presented method, a typical use case is given that targets the automated guidance of an
autonomous vehicle.

© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Contextual planning and guidance; Relevant execution; Plan multi revision strategy; Failure handling

1. Introduction

The automated guidance of mobile entities in a changing ambient environment is a great challenge supported by
many academic and industrial works. It serves several huge industrial projects such as smart city, e.g. [5, 8]. As the
ambient context can change anywhere and anytime, such an objective requires the planning action to be context aware
in order to dynamically adapt the execution directives on the fly.

Various planning approaches have already been proposed to handle the ambient complexity, e.g. [2]. However,
few ones actually propose to exploit the attitudes of a Belief-Desire-Intention (BDI) software agent to adapt itself to
unexpected changing situations [1]. In BDI approaches, each agent can be designed as a powerful software entity,
which allows reasoning in terms of agent intentions, coming from the agent’s beliefs and desires. Intentions are
realized through some action plans that are usually assumed to be known. High-order Agents (HoA) agents [3] are

∗ Corresponding author. Tel.: +33-678-139-432 ; fax: +33-144-277-495.
E-mail address: ahmed.chaouche@univ-constantine2.dz

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

2 A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000

particularly well-adapted BDI agents for ambient systems which gracefully handle the concurrency of intentions and
autonomously learn with physical information to provide adapted execution plans working contextually.

In this paper, we aim at building the symbolic guidance of a self-driving robot fulfilling its missions contextually, in
an ambient environment. The core difficulty is to maintain the viability of an execution plan (soundly and efficiently)
since the concrete execution of actions may actually fail. Replanning operations are then required. Taking into account
the concurrency of actions may lead to an exponential use in the planning memory, with the risk of damaging the
achievement of missions under timing constraints. In contrast, we aim at producing the best effort to reinforce the
execution of the selected plan even if some sub-plans are indeed removed or replanned. With regards to a complete
symbolic replanning procedure, we investigate an intermediate planning operation locally to the execution control
with two advantageous corollaries, free time for the BDI agent reasoning and an improved reactivity for the concrete
driving operations.

Associating weights with symbolic information allows to abstractly represent the consequences of a symbolic
reasoning, e.g. the authors of [9] use weights to solve conflicts between beliefs and in [4], weights are proposed
to express scheduling directives between concurrent intentions. In this paper, we agree on such notions but we also
assume that each intention can be reassigned with a new weight value expressing the relative relevance of the intention
regarding to the current mission. In fact, scheduling concepts cannot account for the relevance of intentions, since
relevance does not necessarily mean being executed first.

In this paper, We show how both the planning and the execution processes can take care of these weights to
demonstrate an efficient and consistent execution plan with respect to the intentions to be achieved. The idea is to
introduce both scheduling and relevance information for each intention, i.e. a double weighted function which values
result from the deliberation of the Mental process: (1) The scheduling weight allows to partition the intentions in
distinguished ordered subsets that can be achieved in sequence. In other terms, the subset of ingress intentions having
a high scheduling weight value must be achieved first. Moreover, two intentions of the same subset can be achieved
concurrently, independently of their associated relevance weights ; (2) The relevance weight allows us to specify the
relevance of intentions according to their achievement priorities. In other terms, the agent gives preference to some
execution plans with the aim of achieving the intentions having the highest relevance.

The schedule of the paper is the following: Section 2 schemes an embedded extension of the HoA multi-process
architecture proposed in [6] which allows controlling the driving operations by an intelligent contextual planning.
Based on this architecture, Section 3 shows how the planning process can formally handle both intention weights, up
to obtain an optimal execution plan available from some context. Basic concepts to deal with the relevance of actions
are then explained in this section. Section 4 represents the most original part of this paper, introducing an efficient
relevance-based algorithm to directly adapt the execution plan on the fly, whenever the performance of some action
does not conform to the expected execution. Section 5 is our conclusion.

2. E-HoA Embedded Architecture

Planning
process

Execution
process

Mental
process

Context
process

Learning
process

DB

I
σ

aδ(a, c) δ(a, c)
oObservation

process

B

Field layer

Action
process

Symbolic layer

Fig. 1: Embedded Higher-order Agent architecture

Intentions Ws Wr Plan expressions

Order1 2 2 move(ph1);deliver(ph1);exit
Order2 2 2 move(ph2);deliver(ph2);exit
Order3 2 2 move(ph3);deliver(ph3);exit
Back 1 3 move(dep); park(dep);exit
Recharge 2 1 move(stn);re f ill(stn);exit

Table 1: Intentions information for the scenario

Figure 1 highlights the Embedded Higher-order Agent (E-HoA) layered architecture [6], based on a set of co-
operating processes that altogether define the robot behavior. Like other robotic system architectures, such as 3T,
ATLANTIS and LAAS [7], E-HoA subsums the robot behavioral information with the price to handle all the event
messages at the deliberative/planning layer. Nevertheless, the E-HoA symbolic layer already manages weights to ex-

214 Ahmed-Chawki Chaouche et al. / Procedia Computer Science 177 (2020) 212–219
A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000 3

press the concurrent schedule of the intention behaviors. The major process in this layer is the Mental process which
reasons in terms of Beliefs (B), Desires (D) and Intentions (I) [1]. The Mental process, aiming at optimizing the
achievement of the agent’s intentions, asks the Planning process to compute the best execution plan (σ , list of actions
a) from the original weighted intentions (see Section 3). The Planning process is specialized so to compute the best
execution plan in terms of concrete action duration (δ (a,c)) according to some spatio-temporal context c. Durations
are learned from the driving experiences captured at the field layer of the E-HoA architecture. They are managed by
two intermediate processes of great importance, as the Learning process extracts the historical (driving) context of the
robot stored by the Context process.

The contribution of the present paper can be viewed as an enhancing version of the Execution process of the E-HoA
architecture to alleviate the task of the Mental process/planning process. Originally, the Mental process delegates to
the Execution process the task of sequencing the actions specified by the execution plan. We also offer the execution
process the task of taking care of the event messages which can be solved by reviewing the execution plan (see
Section 4).

Delivery Motivating Sample. The use-case scenario of this paper considers a pharmacy deposit and a network of
pharmacies that asynchronously and independently mail orders to the deposit in order to receive prescriptions and
drugs. A driving robot is in charge of the actual delivery. On a daily basis, the objective of the robot consists in
delivering the pharmacies that require a specific list of drugs, then in coming back to the depot to park for a new
routine. Immersed in an ambient environment, the robot must be able to react to the context changes and adapt its
behavior accordingly [5]. Intentions are achieved by means of action plans that are assumed to be known and stored
in an action plan library.

On a daily basis, the objective of the E-HoA consists in delivering the pharmacies that require a specific list of
drugs, then in coming back to the depot and park. Opportunistically, during a daily tour, the robot can decide to
recharge its battery without compromising its main intentions.

The E-HoA agent includes an efficient contextual planner that handles every delivery tour prerequisites. By default,
the intentions of the agent are assumed to be achieved concurrently whenever possible. The intentions column of
Table 1 highlights an illustrative example of what could be the intentions of the agent embedded in the robot.

Knowing that scheduling and relevance information are introduced for each intention i ∈ I by the double weighted
function Ws,Wr : I → N, Ws(i) represents the scheduling weights of i and Wr(i) represents its relevance weights.
The corresponding weighted intention is denoted i(Ws,Wr). In our motivating example, we have I = {Order1(2,2),
Order2(2,2),Order3(2,2),Back(1,3), Recharge(2,1)}, such that the intentions Order1, Order2 and Order3 correspond
to 3 pharmacy orders to be delivered, Back means returning to the depot and Recharge to fill up the robot battery. The
three Order intentions and both the Recharge intentions have the same Ws value, hence can be achieved concurrently,
whereas, the Back intention must be scheduled after all the other intentions. Due to the Wr weight, the Back intention
is more relevant than all the Order intentions which are themselves more relevant than the Recharge intention.

The core difficulty to build a plan of a daily tour is to predict traffic jams that would slow down the delivery
dramatically and try avoiding them, taking into account the context. Actually, it is interesting to anticipate and compute
the best plan according to the expected durations of the actions.

3. From Reasonning to Scheduled Actions

The activity of the Planning process starts with a preliminary stage, which consists in formalizing a modular plan
expression, called agent plan (P). It is derived from the weighted set of intentions selected by the Mental process and
their associated plans, named intention plans (P̂). According to the scheduling weights of the intentions, the agent
plan is specified as an algebraic expression over the action plans attached to the intentions, namely the intention plans.
This can be formally done by using the AgLOTOS algebraic language [4]. In reference of our frame example, the
agent plan corresponding to the intentions of Table 1 has the following shape: P ::= (P̂1|||P̂2|||P̂3|||P̂R)� P̂B, where
’|||’ is the parallel operator and ’�’ is the sequential one. Hence, all but one of the mentioned intention plans are
considered concurrently by the planning process and only P̂B, which is the intention plan for Back, will be executed
after the 4 former one. Further for sake of simplicity, we consider that each intention plan is an elementary action plan

4 A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000

kept simple as this is described in the last column of Table 1, In fact, only the prefexing operator ‘;’ is used to specify
that the actions must be performed in sequence.

Contextual Planning System. Then, based on the formal semantics of AgLOTOS, the Planning process is able to
build a predictive tree structure called Contextual Planning System (CPS). This is used to express the evolution of the
agent plan upon the different interleavings of the actions in plans respecting contextual constraints, mainly pre- and
post-conditions bound to actions. Figure 2 illustrates a part of the CPS construction exploited in our frame pharmacy
example. States are labelled by the predicted evolution of a given context. Here, the context merely focuses on a
spatio-temporal information (�, t), i.e. a location and a time value, since this seems at first glance a good abstraction
of a real context. Spatially, the context evolves according to the move actions and the temporal evolution is deduced
with respect to the duration of actions estimated by the Learning process. The notation δ (a,ctx) will represent such a
duration value for any action a to be performed from some context ctx. Formally, the CPS construction exhibits a set
of transitions representing the possible evolution from an initial contextual planning state. It is assumed to be finite.

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠4 𝑠𝑠5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑝𝑝) 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑(𝑝𝑝𝑝𝑝) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑝𝑝) 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑(𝑝𝑝𝑝𝑝) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑚𝑚𝑝𝑝) 𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝(𝑑𝑑𝑚𝑚𝑝𝑝)

𝑠𝑠6

𝑠𝑠7𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑝𝑝) 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑(𝑝𝑝𝑝𝑝) 𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝(𝑑𝑑𝑚𝑚𝑝𝑝)

[8h00, dep] [8h46, ph2] [9h15, ph2] [10h05, ph1] [10h31, ph1] [11h16, dep] [11h22, dep]

[8h33, ph1]

× ×

Fig. 2: Example of CPS traces

Definition 3.1. (Contextual planning state)
Let CT X be a set of the possible contexts managed by the Context process and P̂ be the set of all the possible intention
plans. A contextual planning state is a tuple ([P],ctx,T), where [P] is any planning state, ctx ∈ CT X is the current
context in this state and T ⊆ P̂ is the set of terminated intention plans.

Let ACT be the set of symbolic actions. The spatio-temporal derivation of a contextual planning state
([P1],ctx1,T1) caused by an action a ∈ ACT of duration value δ (a,ctx1) where ctx1 = (�1, t1), leads to the transi-
tion ([P1],(�1, t1),T1)

a−→ ([P2],(�2, t2),T2), such that [P1]
a−→ [P2], pre(a) |= (�1, t1), (a = move(�) =⇒ �2 = �) ∧ (a /=

move(�) =⇒ �2 = �1), t2 = t1 +δ (a,(�1, t1)), (a = exit) ∧ (P̂ = exit) =⇒ T2 = T1 ∪{P̂}, and post(a) |= (�2, t2).

The initial contextual planning state of our scenario is ([P],(dep,8h), /0), standing for the robot starts its round
tour at 8 AM from the depot, considering the agent plan [P] as the daily mission. Back to Figure 2, the CPS trace
s0 → s1 → s2 → s3 → s4 → s5 → s6, viewed as an execution plan, is reachable from the initial context. This trace
specifies that there are two pharmacy deliveries, for ph1 and ph2, before coming back to the depot to park the robot.
Observe also that from the state s7, a temporal constraint avoids the action deliver(ph1) since this action is assumed
not to be possible before 9h. From the state s4, the park action is not valid due to a spatial constraint expressing that
the robot ought to be in the depot location.

Plan Relevance. To guide the agent efficiently, the Planning process can select an execution trace which maximizes
the number of intentions that can be achieved. This can be captured over all the possible traces of the CPS. We propose
to select interesting traces from the CPS by exploiting the relevance weights of the achieved intentions. Further, the
mapping end(σ) yields the set of achieved intentions for the trace σ . It is deduced from the set of terminated intention
plans (T), declared within the final contextual planning state of σ . Based on this mapping, we compare the traces on
their respective relevances, featured by their (normalized) relevant configurations.

Definition 3.2. (Relevant configuration)
A relevant configuration Rσ is a map indexed over I, such that Rσ (i) =Wr(i) if i ∈ end(σ), and Rσ (i) = 0 otherwise.
A normalized relevance configuration Rσ is a sorted map directly deduced from Rσ , by considering a decreasing order
of the intention relevance values.

Corollary 3.1. (Maximum relevance trace)
Consider any two traces σ1 and σ2 of a CPS, σ1 is more relevant than σ2 iff Rσ1 > Rσ2 . A maximum relevance trace
is defined for the CPS as a trace having the maximum normalized relevance configuration over the traces of the CPS.

 Ahmed-Chawki Chaouche et al. / Procedia Computer Science 177 (2020) 212–219 215
A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000 3

press the concurrent schedule of the intention behaviors. The major process in this layer is the Mental process which
reasons in terms of Beliefs (B), Desires (D) and Intentions (I) [1]. The Mental process, aiming at optimizing the
achievement of the agent’s intentions, asks the Planning process to compute the best execution plan (σ , list of actions
a) from the original weighted intentions (see Section 3). The Planning process is specialized so to compute the best
execution plan in terms of concrete action duration (δ (a,c)) according to some spatio-temporal context c. Durations
are learned from the driving experiences captured at the field layer of the E-HoA architecture. They are managed by
two intermediate processes of great importance, as the Learning process extracts the historical (driving) context of the
robot stored by the Context process.

The contribution of the present paper can be viewed as an enhancing version of the Execution process of the E-HoA
architecture to alleviate the task of the Mental process/planning process. Originally, the Mental process delegates to
the Execution process the task of sequencing the actions specified by the execution plan. We also offer the execution
process the task of taking care of the event messages which can be solved by reviewing the execution plan (see
Section 4).

Delivery Motivating Sample. The use-case scenario of this paper considers a pharmacy deposit and a network of
pharmacies that asynchronously and independently mail orders to the deposit in order to receive prescriptions and
drugs. A driving robot is in charge of the actual delivery. On a daily basis, the objective of the robot consists in
delivering the pharmacies that require a specific list of drugs, then in coming back to the depot to park for a new
routine. Immersed in an ambient environment, the robot must be able to react to the context changes and adapt its
behavior accordingly [5]. Intentions are achieved by means of action plans that are assumed to be known and stored
in an action plan library.

On a daily basis, the objective of the E-HoA consists in delivering the pharmacies that require a specific list of
drugs, then in coming back to the depot and park. Opportunistically, during a daily tour, the robot can decide to
recharge its battery without compromising its main intentions.

The E-HoA agent includes an efficient contextual planner that handles every delivery tour prerequisites. By default,
the intentions of the agent are assumed to be achieved concurrently whenever possible. The intentions column of
Table 1 highlights an illustrative example of what could be the intentions of the agent embedded in the robot.

Knowing that scheduling and relevance information are introduced for each intention i ∈ I by the double weighted
function Ws,Wr : I → N, Ws(i) represents the scheduling weights of i and Wr(i) represents its relevance weights.
The corresponding weighted intention is denoted i(Ws,Wr). In our motivating example, we have I = {Order1(2,2),
Order2(2,2),Order3(2,2),Back(1,3), Recharge(2,1)}, such that the intentions Order1, Order2 and Order3 correspond
to 3 pharmacy orders to be delivered, Back means returning to the depot and Recharge to fill up the robot battery. The
three Order intentions and both the Recharge intentions have the same Ws value, hence can be achieved concurrently,
whereas, the Back intention must be scheduled after all the other intentions. Due to the Wr weight, the Back intention
is more relevant than all the Order intentions which are themselves more relevant than the Recharge intention.

The core difficulty to build a plan of a daily tour is to predict traffic jams that would slow down the delivery
dramatically and try avoiding them, taking into account the context. Actually, it is interesting to anticipate and compute
the best plan according to the expected durations of the actions.

3. From Reasonning to Scheduled Actions

The activity of the Planning process starts with a preliminary stage, which consists in formalizing a modular plan
expression, called agent plan (P). It is derived from the weighted set of intentions selected by the Mental process and
their associated plans, named intention plans (P̂). According to the scheduling weights of the intentions, the agent
plan is specified as an algebraic expression over the action plans attached to the intentions, namely the intention plans.
This can be formally done by using the AgLOTOS algebraic language [4]. In reference of our frame example, the
agent plan corresponding to the intentions of Table 1 has the following shape: P ::= (P̂1|||P̂2|||P̂3|||P̂R)� P̂B, where
’|||’ is the parallel operator and ’�’ is the sequential one. Hence, all but one of the mentioned intention plans are
considered concurrently by the planning process and only P̂B, which is the intention plan for Back, will be executed
after the 4 former one. Further for sake of simplicity, we consider that each intention plan is an elementary action plan

4 A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000

kept simple as this is described in the last column of Table 1, In fact, only the prefexing operator ‘;’ is used to specify
that the actions must be performed in sequence.

Contextual Planning System. Then, based on the formal semantics of AgLOTOS, the Planning process is able to
build a predictive tree structure called Contextual Planning System (CPS). This is used to express the evolution of the
agent plan upon the different interleavings of the actions in plans respecting contextual constraints, mainly pre- and
post-conditions bound to actions. Figure 2 illustrates a part of the CPS construction exploited in our frame pharmacy
example. States are labelled by the predicted evolution of a given context. Here, the context merely focuses on a
spatio-temporal information (�, t), i.e. a location and a time value, since this seems at first glance a good abstraction
of a real context. Spatially, the context evolves according to the move actions and the temporal evolution is deduced
with respect to the duration of actions estimated by the Learning process. The notation δ (a,ctx) will represent such a
duration value for any action a to be performed from some context ctx. Formally, the CPS construction exhibits a set
of transitions representing the possible evolution from an initial contextual planning state. It is assumed to be finite.

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠4 𝑠𝑠5
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑝𝑝) 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑(𝑝𝑝𝑝𝑝) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑝𝑝) 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑(𝑝𝑝𝑝𝑝) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑚𝑚𝑝𝑝) 𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝(𝑑𝑑𝑚𝑚𝑝𝑝)

𝑠𝑠6

𝑠𝑠7𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑝𝑝) 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑(𝑝𝑝𝑝𝑝) 𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝(𝑑𝑑𝑚𝑚𝑝𝑝)

[8h00, dep] [8h46, ph2] [9h15, ph2] [10h05, ph1] [10h31, ph1] [11h16, dep] [11h22, dep]

[8h33, ph1]

× ×

Fig. 2: Example of CPS traces

Definition 3.1. (Contextual planning state)
Let CT X be a set of the possible contexts managed by the Context process and P̂ be the set of all the possible intention
plans. A contextual planning state is a tuple ([P],ctx,T), where [P] is any planning state, ctx ∈ CT X is the current
context in this state and T ⊆ P̂ is the set of terminated intention plans.

Let ACT be the set of symbolic actions. The spatio-temporal derivation of a contextual planning state
([P1],ctx1,T1) caused by an action a ∈ ACT of duration value δ (a,ctx1) where ctx1 = (�1, t1), leads to the transi-
tion ([P1],(�1, t1),T1)

a−→ ([P2],(�2, t2),T2), such that [P1]
a−→ [P2], pre(a) |= (�1, t1), (a = move(�) =⇒ �2 = �) ∧ (a /=

move(�) =⇒ �2 = �1), t2 = t1 +δ (a,(�1, t1)), (a = exit) ∧ (P̂ = exit) =⇒ T2 = T1 ∪{P̂}, and post(a) |= (�2, t2).

The initial contextual planning state of our scenario is ([P],(dep,8h), /0), standing for the robot starts its round
tour at 8 AM from the depot, considering the agent plan [P] as the daily mission. Back to Figure 2, the CPS trace
s0 → s1 → s2 → s3 → s4 → s5 → s6, viewed as an execution plan, is reachable from the initial context. This trace
specifies that there are two pharmacy deliveries, for ph1 and ph2, before coming back to the depot to park the robot.
Observe also that from the state s7, a temporal constraint avoids the action deliver(ph1) since this action is assumed
not to be possible before 9h. From the state s4, the park action is not valid due to a spatial constraint expressing that
the robot ought to be in the depot location.

Plan Relevance. To guide the agent efficiently, the Planning process can select an execution trace which maximizes
the number of intentions that can be achieved. This can be captured over all the possible traces of the CPS. We propose
to select interesting traces from the CPS by exploiting the relevance weights of the achieved intentions. Further, the
mapping end(σ) yields the set of achieved intentions for the trace σ . It is deduced from the set of terminated intention
plans (T), declared within the final contextual planning state of σ . Based on this mapping, we compare the traces on
their respective relevances, featured by their (normalized) relevant configurations.

Definition 3.2. (Relevant configuration)
A relevant configuration Rσ is a map indexed over I, such that Rσ (i) =Wr(i) if i ∈ end(σ), and Rσ (i) = 0 otherwise.
A normalized relevance configuration Rσ is a sorted map directly deduced from Rσ , by considering a decreasing order
of the intention relevance values.

Corollary 3.1. (Maximum relevance trace)
Consider any two traces σ1 and σ2 of a CPS, σ1 is more relevant than σ2 iff Rσ1 > Rσ2 . A maximum relevance trace
is defined for the CPS as a trace having the maximum normalized relevance configuration over the traces of the CPS.

216 Ahmed-Chawki Chaouche et al. / Procedia Computer Science 177 (2020) 212–219
A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000 5

Table 2: Examples of relevant traces

Trace σ end(σ) Rσ Rσ δ (σ)

σ1 {Back,Order1,Order2} 322000 322000 3h22
σ2 {Back,Order2,Order3} 302200 322000 3h47
σ3 {Order1,Order2,Order3,Recharge} 022201 222100 3h13

Table 2 demonstrates how 3 traces of a same finite CPS can be associated with a normalized relevance configuration
based on the end analyses of their final contextual planning states. Notice that both the traces σ1 and σ2 have the
same maximum normalized configuration (i.e. Rσ1 = Rσ2), hence cannot be distinguished, but the trace σ3 will not
be considered any more since having a lesser relevance. Moreover, many multi criteria could be used in order to
distinguish the optimal trace in between maximum traces. In this paper, we simply consider the expected duration
of the traces. In the table, σ1 must be selected as the optimal trace. By considering that any trace σ is ordered,
the notation f irst(σ) and last(σ) are the first and last transitions in σ , tr.act is the action of tr, and tr.src, tr.dest
respectively represent the source and destination contextual planning states of tr. Thus, the expected duration of any
σ is defined as δ (σ) = last(σ).dest.ctx.t − f irst(σ).src.ctx.t.

4. Concrete Execution of Actions

When the Mental process gets an optimal trace σ from the Planning process, it delegates the Execution process to
execute it under global constraints and subscribe to the progress information. In fact, it must be aware that some of
the represented intentions fail as the trace is executed. This offers the way for the Mental process to take high-level
decisions that may involve both the Planning and Execution processes.

Execution Plan. An execution plan is a pair 〈σ ,cond〉, where the first parameter is an optimal trace to execute and
the second one represents global contextual conditions to apply on σ . For instance, this offers a way to check whether
the depot is reached when the working-day is overpassed, e.g. t ≥ 12h =⇒ � = dep. The execution of the trace σ
consists in requesting the performance of each action in σ . cond allows the Mental process to constrain the execution
of σ , which is possible since the action performances are monitored by taking care of the robot contextual evolution.

Furthermore, we mention the notion of execution state of the Execution process: [σ] = 〈σtodo, cur, σdone,
σ f ailed , σaborted〉, where σtodo represents the transitions of σ whose action are not yet performed, cur represents the
transition which action is in progress, whereas σdone, σ f ailed and σaborted are respectively the successful transitions, the
failed transitions and the ones aborted. Initially to any trace σ to execute, the execution state is 〈σ , f irst(σ), /0, /0, /0〉.
Action Constraints. The performance of each action in the trace is contextually constrained by the checking of
predicates associated with the action. In the paper, we distinguish between pre-, invariant and post- conditions, which
mean spatio-temporal conditions that respectively must hold before, during and at the end of the action. Actions are
not only constrained by predicates put on them directly, but also by constraints inherited from the intentions they refer
to or more generally from the Mental process on the trace. We assume that cond for σ is expressed as 3 predicates
pre(σ), inv(σ) and post(σ). Next, all the action constraints are specified at the action level and with respect to any
action a mentioned in σ , knowing that a contributes to the execution of the intention i (we call that i is behind a). We
denote σ(i) the subset of the transitions in σ whose actions are behind the intention i and more generally, we use the
notation end(σ) already presented to specify the set of intentions that are behind the transitions of σ . Observe that
the behind relation is properly defined from the CPS semantical considerations, making transitions with respect to the
intention plans. The following formulas express the symbolic action constraints formally:

• preσ (a) := pre(a)∧ pre(i | a = f irst(σ(i)).act)∧ pre(σ | a = f irst(σ).act)
• postσ (a) := post(a)∧ post (i | a = last(σ(i)).act)∧ post (σ | a = last(σ).act)
• invσ (a) := inv(a)∧ inv(i | a = tr.act, tr ∈ σ(i))∧ inv(σ | a = tr.act, tr ∈ σ))∧ inv(σ �a)

Temporal Control of Actions. In order to enforce the monitoring of the Action process, we define a finite deadline for
each action in σ , over which the action is considered as failed. This is why we augment invσ (a) with the last conjunct

6 A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000

term inv(σ �a). So, for each current transition cur extracted from σtodo, this is a highly dynamical constraint put on
the action cur.act which is computed from the learned duration δ (cur)=δ (cur.act,cur.src.ctx) and an extra time called
extraσtodo(cur). We exploit the expected duration of σtodo, denoted δ (σtodo), to share its value over the transitions in
σtodo. A smart sharing is proposed here, as a hybrid proportion of the learned duration of a transition and the relative
relevance of the intention behind this transition. So, the bigger these values, the larger the transition deadline.

The following formula expresses the contextual deadline value of any transition tr in σ , knowing the starting time
t of this transition and the fact that the intention i is behind tr. A reasonably monitoring assumption is that there must
be the expression of a formal finite deadline deadline(σ) declared in cond, in contrary the default deadline(σ) would
be considered as infinite, inducing no deadline whatever the transitions in σ .

deadlineσ (tr) := tr.src.ctx.t +δ (tr)+ extraσ (tr)

extraσ (tr) :=
(

δ (tr)
δ (σ) +

Wr(i)

∑Iσ
i Wr(i)

)
/2∗

(
deadline(σ)−

(
tr.src.ctx.t +δ (σ)

))
| a = tr.act, tr ∈ σ(i)

Algorithm 1 execute(σ)

1: Icur := end(σ)
2: σtodo := σ
3: σdone := σ f ailed := σaborted := /0
4: while σtodo � /0 do
5: cur := pop(σtodo)
6: a := cur.act
7: ctx := getCtx() /* from Context proc. */
8: if preσ (a) � ctx then
9: σ f ailed := σ f ailed ∪{cur}

10: Icur := Icur \{i} s.t. cur ∈ σ(i)
11: else
12: invσ (a) := invσ (a) ∧ inv(σ �a)
13: o := launch(a) /* send a to Action proc. */
14: if o = f ail ∨ (¬invσ (a) ∧¬postσ (a)) then
15: σ f ailed := σ f ailed ∪{cur}

16: Icur := Icur \{i} s.t. cur ∈ σ(i)
17: else
18: σdone := σdone ∪{cur}
19: if σtodo(i) = /0 s.t. cur ∈ σ(i) then
20: Icur := Icur \{i} s.t. cur ∈ σ(i)
21: end if
22: end if
23: end if
24: σ ′ := update(σtodo, Icur, ctx)
25: if σ ′ = /0 then
26: σ ′ := relevant reduce(σtodo, Icur, ctx)
27: end if
28: σaborted := σaborted ∪ (σtodo \σ ′)
29: σtodo := σ ′

30: end while

Handling Symbolic Action and Failures. The algorithm 1 develop the execution of a trace σ . Since the transitions
of σtodo are scheduled and considered one after one, it only iterates on the first of them, further called the current
transition cur. This transition is removed from σtodo (line 5) and is added to the end of σdone, provided to be executed
successfully by the Action process (line 18). More precisely, when preσ (a) holds true for the associated action, the
Action process is requested to launch it, under the predicates postσ (a) and the dynamical invariant invσ (a) attached
to a. Through this algorithm, the Execution process monitors 3 kinds of action failures:

• Logical failure. This means that the action prerequisites does not hold (line 8),
• Effective failure. This occurs when the Action process launches the action and cannot achieve its objectives

(often, for low-level reasons [6]), hence the worst case corresponds to the situation where the action post-
condition remains false up to obtain a false value for the invariant (line 14). We also assume that the Action
process possibly reacts earlier and informs the Execution process in real time, triggering the failure of the action,

• Controlled failure. This specifies that the invariant condition does not hold, and this includes a negative check-
ing of the dynamical constraint inv(σ �a) (line 14).

As the Execution process is informed by the Action process in real time, it can react and decide about the achieve-
ment of the action. A corner point of the algorithm is the updating of the set Icur of the intention not yet achieved. In
fact, a transition in σtodo which does not have an intention of Icur behind it, cannot be executed. In case the perfor-
mance of some action fails, the corresponding transition joins σ f ailed (line 15) and this could have the consequence
to abort some other transitions (line 28). In fact, in different parts of our algorithm, the set Icur can be reduced, in
particular in the cases of failure (lines 10 and 16).

 Ahmed-Chawki Chaouche et al. / Procedia Computer Science 177 (2020) 212–219 217
A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000 5

Table 2: Examples of relevant traces

Trace σ end(σ) Rσ Rσ δ (σ)

σ1 {Back,Order1,Order2} 322000 322000 3h22
σ2 {Back,Order2,Order3} 302200 322000 3h47
σ3 {Order1,Order2,Order3,Recharge} 022201 222100 3h13

Table 2 demonstrates how 3 traces of a same finite CPS can be associated with a normalized relevance configuration
based on the end analyses of their final contextual planning states. Notice that both the traces σ1 and σ2 have the
same maximum normalized configuration (i.e. Rσ1 = Rσ2), hence cannot be distinguished, but the trace σ3 will not
be considered any more since having a lesser relevance. Moreover, many multi criteria could be used in order to
distinguish the optimal trace in between maximum traces. In this paper, we simply consider the expected duration
of the traces. In the table, σ1 must be selected as the optimal trace. By considering that any trace σ is ordered,
the notation f irst(σ) and last(σ) are the first and last transitions in σ , tr.act is the action of tr, and tr.src, tr.dest
respectively represent the source and destination contextual planning states of tr. Thus, the expected duration of any
σ is defined as δ (σ) = last(σ).dest.ctx.t − f irst(σ).src.ctx.t.

4. Concrete Execution of Actions

When the Mental process gets an optimal trace σ from the Planning process, it delegates the Execution process to
execute it under global constraints and subscribe to the progress information. In fact, it must be aware that some of
the represented intentions fail as the trace is executed. This offers the way for the Mental process to take high-level
decisions that may involve both the Planning and Execution processes.

Execution Plan. An execution plan is a pair 〈σ ,cond〉, where the first parameter is an optimal trace to execute and
the second one represents global contextual conditions to apply on σ . For instance, this offers a way to check whether
the depot is reached when the working-day is overpassed, e.g. t ≥ 12h =⇒ � = dep. The execution of the trace σ
consists in requesting the performance of each action in σ . cond allows the Mental process to constrain the execution
of σ , which is possible since the action performances are monitored by taking care of the robot contextual evolution.

Furthermore, we mention the notion of execution state of the Execution process: [σ] = 〈σtodo, cur, σdone,
σ f ailed , σaborted〉, where σtodo represents the transitions of σ whose action are not yet performed, cur represents the
transition which action is in progress, whereas σdone, σ f ailed and σaborted are respectively the successful transitions, the
failed transitions and the ones aborted. Initially to any trace σ to execute, the execution state is 〈σ , f irst(σ), /0, /0, /0〉.
Action Constraints. The performance of each action in the trace is contextually constrained by the checking of
predicates associated with the action. In the paper, we distinguish between pre-, invariant and post- conditions, which
mean spatio-temporal conditions that respectively must hold before, during and at the end of the action. Actions are
not only constrained by predicates put on them directly, but also by constraints inherited from the intentions they refer
to or more generally from the Mental process on the trace. We assume that cond for σ is expressed as 3 predicates
pre(σ), inv(σ) and post(σ). Next, all the action constraints are specified at the action level and with respect to any
action a mentioned in σ , knowing that a contributes to the execution of the intention i (we call that i is behind a). We
denote σ(i) the subset of the transitions in σ whose actions are behind the intention i and more generally, we use the
notation end(σ) already presented to specify the set of intentions that are behind the transitions of σ . Observe that
the behind relation is properly defined from the CPS semantical considerations, making transitions with respect to the
intention plans. The following formulas express the symbolic action constraints formally:

• preσ (a) := pre(a)∧ pre(i | a = f irst(σ(i)).act)∧ pre(σ | a = f irst(σ).act)
• postσ (a) := post(a)∧ post (i | a = last(σ(i)).act)∧ post (σ | a = last(σ).act)
• invσ (a) := inv(a)∧ inv(i | a = tr.act, tr ∈ σ(i))∧ inv(σ | a = tr.act, tr ∈ σ))∧ inv(σ �a)

Temporal Control of Actions. In order to enforce the monitoring of the Action process, we define a finite deadline for
each action in σ , over which the action is considered as failed. This is why we augment invσ (a) with the last conjunct

6 A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000

term inv(σ �a). So, for each current transition cur extracted from σtodo, this is a highly dynamical constraint put on
the action cur.act which is computed from the learned duration δ (cur)=δ (cur.act,cur.src.ctx) and an extra time called
extraσtodo(cur). We exploit the expected duration of σtodo, denoted δ (σtodo), to share its value over the transitions in
σtodo. A smart sharing is proposed here, as a hybrid proportion of the learned duration of a transition and the relative
relevance of the intention behind this transition. So, the bigger these values, the larger the transition deadline.

The following formula expresses the contextual deadline value of any transition tr in σ , knowing the starting time
t of this transition and the fact that the intention i is behind tr. A reasonably monitoring assumption is that there must
be the expression of a formal finite deadline deadline(σ) declared in cond, in contrary the default deadline(σ) would
be considered as infinite, inducing no deadline whatever the transitions in σ .

deadlineσ (tr) := tr.src.ctx.t +δ (tr)+ extraσ (tr)

extraσ (tr) :=
(

δ (tr)
δ (σ) +

Wr(i)

∑Iσ
i Wr(i)

)
/2∗

(
deadline(σ)−

(
tr.src.ctx.t +δ (σ)

))
| a = tr.act, tr ∈ σ(i)

Algorithm 1 execute(σ)

1: Icur := end(σ)
2: σtodo := σ
3: σdone := σ f ailed := σaborted := /0
4: while σtodo � /0 do
5: cur := pop(σtodo)
6: a := cur.act
7: ctx := getCtx() /* from Context proc. */
8: if preσ (a) � ctx then
9: σ f ailed := σ f ailed ∪{cur}

10: Icur := Icur \{i} s.t. cur ∈ σ(i)
11: else
12: invσ (a) := invσ (a) ∧ inv(σ �a)
13: o := launch(a) /* send a to Action proc. */
14: if o = f ail ∨ (¬invσ (a) ∧¬postσ (a)) then
15: σ f ailed := σ f ailed ∪{cur}

16: Icur := Icur \{i} s.t. cur ∈ σ(i)
17: else
18: σdone := σdone ∪{cur}
19: if σtodo(i) = /0 s.t. cur ∈ σ(i) then
20: Icur := Icur \{i} s.t. cur ∈ σ(i)
21: end if
22: end if
23: end if
24: σ ′ := update(σtodo, Icur, ctx)
25: if σ ′ = /0 then
26: σ ′ := relevant reduce(σtodo, Icur, ctx)
27: end if
28: σaborted := σaborted ∪ (σtodo \σ ′)
29: σtodo := σ ′

30: end while

Handling Symbolic Action and Failures. The algorithm 1 develop the execution of a trace σ . Since the transitions
of σtodo are scheduled and considered one after one, it only iterates on the first of them, further called the current
transition cur. This transition is removed from σtodo (line 5) and is added to the end of σdone, provided to be executed
successfully by the Action process (line 18). More precisely, when preσ (a) holds true for the associated action, the
Action process is requested to launch it, under the predicates postσ (a) and the dynamical invariant invσ (a) attached
to a. Through this algorithm, the Execution process monitors 3 kinds of action failures:

• Logical failure. This means that the action prerequisites does not hold (line 8),
• Effective failure. This occurs when the Action process launches the action and cannot achieve its objectives

(often, for low-level reasons [6]), hence the worst case corresponds to the situation where the action post-
condition remains false up to obtain a false value for the invariant (line 14). We also assume that the Action
process possibly reacts earlier and informs the Execution process in real time, triggering the failure of the action,

• Controlled failure. This specifies that the invariant condition does not hold, and this includes a negative check-
ing of the dynamical constraint inv(σ �a) (line 14).

As the Execution process is informed by the Action process in real time, it can react and decide about the achieve-
ment of the action. A corner point of the algorithm is the updating of the set Icur of the intention not yet achieved. In
fact, a transition in σtodo which does not have an intention of Icur behind it, cannot be executed. In case the perfor-
mance of some action fails, the corresponding transition joins σ f ailed (line 15) and this could have the consequence
to abort some other transitions (line 28). In fact, in different parts of our algorithm, the set Icur can be reduced, in
particular in the cases of failure (lines 10 and 16).

218 Ahmed-Chawki Chaouche et al. / Procedia Computer Science 177 (2020) 212–219
A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000 7

Algorithm 2 update(σtodo, Icur, ctx) : σ ′

1: σ ′ := /0
2: ctxcur := ctx
3: while tr := pop(σtodo) � /0 do
4: if tr ∈ σ(i) | i ∈/ Icur then
5: continue
6: end if
7: if preσ (tr.act) � ctxcur then
8: return /0
9: end if

10: tr.dest.ctx.t := ctxcur.t +δ (a, ctxcur.t)

/* from Learning process */
11: if tr.act = move(�′) then
12: tr.dest.ctx.� := �′

13: else
14: tr.dest.ctx.� := ctxcur.�
15: end if
16: add(σ ′, tr)
17: ctxcur := tr.dest.ctx
18: end while
19: return σ ′

Contextual Replanning of Execution. At the end of each iteration in the execute algorithm, thus after the performing
of the action associated with the current transition, the update algorithm 2 is called in order to update σtodo. All the
transitions which do not have an intention of Icur behind them, are simply ignored and aborted (ligne 5). For the other
transitions, the expected starting context is iteratively updated. An empty set is returned whether the precondition
of the action associated to the transition tr does not prevail. In this case, Icur is reduced, causing the abortion of the
transitions of σ(i), such that i is behind tr.

When the update function fails to return an updated trace σtodo, by returning an empty set (line 8), a brute force
approach would consist to return a fail outcome to the Mental process, in order to compute a new execution plan from
scratch, despite the space and time complexity of a CPS building. In contrast, we consider that some transitions can be
removed from σtodo, provided to maintain a maximum relevance quality for the resulting reduced σtodo. In this case,
a call to the relevant reduce function is required, the behavior of which is represented by the algorithm 3. The key
point of this function consists in studying every non-empty and strict subset of the set Icur, defined as the set CONF .

Definition 4.1. Let CONF be an ordered set built from the order relation � over the configurations such that
∀ con f1,con f2 ∈CONF, con f1 � con f2 ⇔ Rcon f1 > Rcon f2 .

Algorithm 3 relevant reduce(σtodo, Icur, ctx) : σ

1: Rbest := 0
2: σbest := /0 σ ′ := /0
3: CONF := 2Icur \{ /0, Icur}
4: while con f := pop(CONF) =/ /0 do
5: if Rcon f < Rbest then
6: break /* Relevance optimization */
7: end if
8: ifσ ′ :=update(σtodo,conf ,ctx)= /0 then

9: continue
10: end if
11: if (Rbest = 0)∨ (δ (σ ′)< δ (σbest)) then
12: σbest := σ ′

13: end if
14: Rbest := Rcon f
15: end while
16: return σbest

In Algorithm 3, some intentions of Icur are necessarily no more represented. Then, an update of σtodo is realized with
respect to such a subset of intentions (line 8) and this causes the removal of transitions which have these intentions
behind, from σtodo. In fact, a reduced trace σ ′ could be the best reduced σtodo (line 16). In order to introduce the
relevance criterion, the algorithm takes advantage of the capacity of (partially) ordering the subsets of Icur according
to the relevance weights of the intentions. A normalized value Rcon f is assigned to each subset con f ∈CONF , so that
the various subsets of Icur are considered in the R decreasing order (line 3). As a consequence, as soon as the first
feasible trace is computed from the update function (line 8), we know that this trace is one of the best relevant traces.
In fact, when there are distinct sub-traces that have the same normalized relevance value, we again propose to select
the trace having the shortest duration as the optimal trace (line 11).

Complexity Discussion. The complexity of our development mainly depends on the complexity of the functions
update and relevant reduce. The first one is linear in the size of σ (|σ |) whereas the second depends on the size of

8 A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000

the set CONF , with a worst complexity of 2|end(σ)|. This is not a real drawback when there are few intentions beyond
σ . Moreover, we can estimate that this bound is rarely reached due to the ordering exploitation of CONF .

Application to the Scenario. We consider that the Mental process has selected an execution plan corresponding to
the main relevant trace in Figure 2, namely σ , such that δ (σ) = 3h22, and last(σ).dest.ctx.t = 11h22. We assume
now that the global deadline condition specified by the Mental process is deadline(σ) = 12h00, inducing a global
extra time over σ of extra(σ) = 0h38. For the Execution process, the first (current) transition to deal with is the
first transition of σ , cur = f irst(σ) such that cur.ctx = (dep,8h), cur.act = move(ph2) and the expected duration
for the action is δ (cur) = 0h46. By applying the extra formula, the computed extra time is extraσ (cur) = 7min. The
performance of the action move(ph2) requested to the Action process is expected to work under the invariant attached
to move(ph2), including the conjunct (ctx.t < 8h53).

Let us now consider that there is no specification of deadline in the execution plan. In this case, there is no dynam-
ical control for the performances of actions. According to this situation, we assume that the update function that runs
after the achievement of the action move(ph2) at state s1 detects that the prerequisite of move(dep) mentioned at the
state s4 does not match with the reached context. This triggers the function relevant reduce. Because the intention
behind move(dep) has a higher relevant value against the other intentions, the relevant reduce function will rather
remove the intention Order1 in order to maintain the intention Back.

5. Conclusion and Discussion

Dedicated to Autonomous vehicles, the E-HoA multi-process software architecture allows a BDI agent to build
its execution plan contextually and soundly react to unexpected situations. In this paper, we proposed to deal with
relevance weights bound to the selected intentions. Due to a nice coding of the intentions behind each execution plan,
we show how to efficiently compare the respective relevance of feasible traces proposed by the Planning process.
However, since this corresponds to defining a partial order on the feasible execution plans, the expected durations of
actions in traces are also exploited as a second criteria to define an optimal execution plan.

Facing unexpected events, this coding is also exploited by the execution process to contextually monitor the phys-
ical performance of the execution plan. Distinguishing between logical, effective and controlled failures of guarded
actions, the execution plan is reduced as the contextual failures occur, while maintaining the most relevant intentions
as much as possible. The fact to maintain as much as possible the feasible and relevant part of an execution plan is
an interesting approach from a practical point of view [10]. It is also an efficient alternative to a replanning of actions
from scratch, since the Planning process could suffer from combinatorial explosion problems due to the interlacing of
the possible actions.

Among the immediate perspectives, we aim at improving the proposed framework to better handle dynamic
changes in the execution plan. For instance, the suppression of transitions in case of failures could be advantageously
exploited to inject some sub-plan within the execution trace. Another concern is the capability to maintain an urgent
action or plan despite some unexpected failure.

References

[1] Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (Eds.), 2009. Multi-Agent Programming. Springer.
[2] Cashmore, M., Coles, A., Cserna, B., Karpas, E., Magazzeni, D., Ruml, W., 2019. Replanning for situated robots, in: ICAPS, pp. 665–673.
[3] Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Saı̈douni, D.E., 2014. A Higher-order Agent Model with Contextual Management for

Ambient Systems, in: TCCI XVI. volume 8780 of LNCS, pp. 146–169.
[4] Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Saı̈douni, E.D., 2016. Learning from situated experiences for a contextual planning

guidance. Journal of Ambient Intelligence and Humanized Computing 7, 555–566.
[5] El Fallah Seghrouchni, A., Ishikawa, F., Hérault, L., Tokuda, H. (Eds.), 2016. Enablers for Smart Cities. John Wiley & Sons, Inc.
[6] Ilié, J.M., Chaouche, A.C., Pêcheux, F., 2020. E-HoA: A Distributed Layered Architecture for Context-aware Autonomous Vehicles, in: Int.

Conf. ANT’20, Elsevier. p. 530–538.
[7] Kortenkamp, D., Simmons, R., Brugali, D., 2016. Robotic Systems Architectures and Programming. Springer. pp. 283–306.
[8] Tapia, D.I., Abraham, A., Corchado, J.M., Alonso, R.S., 2010. Agents and ambient intelligence: case studies. JAIHC 1, 85–93.
[9] Touazi, F., Cayrol, C., Dubois, D., 2015. Possibilistic reasoning with partially ordered beliefs. Journal of Applied Logic 13, 770 – 798.

[10] Zhao, Galland, Knapen, Bellemans, Yasar, 2018. Agent-based dynamic rescheduling of daily activities, in: Int. Conf. ANT’18, pp. 979 – 984.

 Ahmed-Chawki Chaouche et al. / Procedia Computer Science 177 (2020) 212–219 219
A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000 7

Algorithm 2 update(σtodo, Icur, ctx) : σ ′

1: σ ′ := /0
2: ctxcur := ctx
3: while tr := pop(σtodo) � /0 do
4: if tr ∈ σ(i) | i ∈/ Icur then
5: continue
6: end if
7: if preσ (tr.act) � ctxcur then
8: return /0
9: end if

10: tr.dest.ctx.t := ctxcur.t +δ (a, ctxcur.t)

/* from Learning process */
11: if tr.act = move(�′) then
12: tr.dest.ctx.� := �′

13: else
14: tr.dest.ctx.� := ctxcur.�
15: end if
16: add(σ ′, tr)
17: ctxcur := tr.dest.ctx
18: end while
19: return σ ′

Contextual Replanning of Execution. At the end of each iteration in the execute algorithm, thus after the performing
of the action associated with the current transition, the update algorithm 2 is called in order to update σtodo. All the
transitions which do not have an intention of Icur behind them, are simply ignored and aborted (ligne 5). For the other
transitions, the expected starting context is iteratively updated. An empty set is returned whether the precondition
of the action associated to the transition tr does not prevail. In this case, Icur is reduced, causing the abortion of the
transitions of σ(i), such that i is behind tr.

When the update function fails to return an updated trace σtodo, by returning an empty set (line 8), a brute force
approach would consist to return a fail outcome to the Mental process, in order to compute a new execution plan from
scratch, despite the space and time complexity of a CPS building. In contrast, we consider that some transitions can be
removed from σtodo, provided to maintain a maximum relevance quality for the resulting reduced σtodo. In this case,
a call to the relevant reduce function is required, the behavior of which is represented by the algorithm 3. The key
point of this function consists in studying every non-empty and strict subset of the set Icur, defined as the set CONF .

Definition 4.1. Let CONF be an ordered set built from the order relation � over the configurations such that
∀ con f1,con f2 ∈CONF, con f1 � con f2 ⇔ Rcon f1 > Rcon f2 .

Algorithm 3 relevant reduce(σtodo, Icur, ctx) : σ

1: Rbest := 0
2: σbest := /0 σ ′ := /0
3: CONF := 2Icur \{ /0, Icur}
4: while con f := pop(CONF) =/ /0 do
5: if Rcon f < Rbest then
6: break /* Relevance optimization */
7: end if
8: ifσ ′ :=update(σtodo,conf ,ctx)= /0 then

9: continue
10: end if
11: if (Rbest = 0)∨ (δ (σ ′)< δ (σbest)) then
12: σbest := σ ′

13: end if
14: Rbest := Rcon f
15: end while
16: return σbest

In Algorithm 3, some intentions of Icur are necessarily no more represented. Then, an update of σtodo is realized with
respect to such a subset of intentions (line 8) and this causes the removal of transitions which have these intentions
behind, from σtodo. In fact, a reduced trace σ ′ could be the best reduced σtodo (line 16). In order to introduce the
relevance criterion, the algorithm takes advantage of the capacity of (partially) ordering the subsets of Icur according
to the relevance weights of the intentions. A normalized value Rcon f is assigned to each subset con f ∈CONF , so that
the various subsets of Icur are considered in the R decreasing order (line 3). As a consequence, as soon as the first
feasible trace is computed from the update function (line 8), we know that this trace is one of the best relevant traces.
In fact, when there are distinct sub-traces that have the same normalized relevance value, we again propose to select
the trace having the shortest duration as the optimal trace (line 11).

Complexity Discussion. The complexity of our development mainly depends on the complexity of the functions
update and relevant reduce. The first one is linear in the size of σ (|σ |) whereas the second depends on the size of

8 A.-C. Chaouche et al. / Procedia Computer Science 00 (2018) 000–000

the set CONF , with a worst complexity of 2|end(σ)|. This is not a real drawback when there are few intentions beyond
σ . Moreover, we can estimate that this bound is rarely reached due to the ordering exploitation of CONF .

Application to the Scenario. We consider that the Mental process has selected an execution plan corresponding to
the main relevant trace in Figure 2, namely σ , such that δ (σ) = 3h22, and last(σ).dest.ctx.t = 11h22. We assume
now that the global deadline condition specified by the Mental process is deadline(σ) = 12h00, inducing a global
extra time over σ of extra(σ) = 0h38. For the Execution process, the first (current) transition to deal with is the
first transition of σ , cur = f irst(σ) such that cur.ctx = (dep,8h), cur.act = move(ph2) and the expected duration
for the action is δ (cur) = 0h46. By applying the extra formula, the computed extra time is extraσ (cur) = 7min. The
performance of the action move(ph2) requested to the Action process is expected to work under the invariant attached
to move(ph2), including the conjunct (ctx.t < 8h53).

Let us now consider that there is no specification of deadline in the execution plan. In this case, there is no dynam-
ical control for the performances of actions. According to this situation, we assume that the update function that runs
after the achievement of the action move(ph2) at state s1 detects that the prerequisite of move(dep) mentioned at the
state s4 does not match with the reached context. This triggers the function relevant reduce. Because the intention
behind move(dep) has a higher relevant value against the other intentions, the relevant reduce function will rather
remove the intention Order1 in order to maintain the intention Back.

5. Conclusion and Discussion

Dedicated to Autonomous vehicles, the E-HoA multi-process software architecture allows a BDI agent to build
its execution plan contextually and soundly react to unexpected situations. In this paper, we proposed to deal with
relevance weights bound to the selected intentions. Due to a nice coding of the intentions behind each execution plan,
we show how to efficiently compare the respective relevance of feasible traces proposed by the Planning process.
However, since this corresponds to defining a partial order on the feasible execution plans, the expected durations of
actions in traces are also exploited as a second criteria to define an optimal execution plan.

Facing unexpected events, this coding is also exploited by the execution process to contextually monitor the phys-
ical performance of the execution plan. Distinguishing between logical, effective and controlled failures of guarded
actions, the execution plan is reduced as the contextual failures occur, while maintaining the most relevant intentions
as much as possible. The fact to maintain as much as possible the feasible and relevant part of an execution plan is
an interesting approach from a practical point of view [10]. It is also an efficient alternative to a replanning of actions
from scratch, since the Planning process could suffer from combinatorial explosion problems due to the interlacing of
the possible actions.

Among the immediate perspectives, we aim at improving the proposed framework to better handle dynamic
changes in the execution plan. For instance, the suppression of transitions in case of failures could be advantageously
exploited to inject some sub-plan within the execution trace. Another concern is the capability to maintain an urgent
action or plan despite some unexpected failure.

References

[1] Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (Eds.), 2009. Multi-Agent Programming. Springer.
[2] Cashmore, M., Coles, A., Cserna, B., Karpas, E., Magazzeni, D., Ruml, W., 2019. Replanning for situated robots, in: ICAPS, pp. 665–673.
[3] Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Saı̈douni, D.E., 2014. A Higher-order Agent Model with Contextual Management for

Ambient Systems, in: TCCI XVI. volume 8780 of LNCS, pp. 146–169.
[4] Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Saı̈douni, E.D., 2016. Learning from situated experiences for a contextual planning

guidance. Journal of Ambient Intelligence and Humanized Computing 7, 555–566.
[5] El Fallah Seghrouchni, A., Ishikawa, F., Hérault, L., Tokuda, H. (Eds.), 2016. Enablers for Smart Cities. John Wiley & Sons, Inc.
[6] Ilié, J.M., Chaouche, A.C., Pêcheux, F., 2020. E-HoA: A Distributed Layered Architecture for Context-aware Autonomous Vehicles, in: Int.

Conf. ANT’20, Elsevier. p. 530–538.
[7] Kortenkamp, D., Simmons, R., Brugali, D., 2016. Robotic Systems Architectures and Programming. Springer. pp. 283–306.
[8] Tapia, D.I., Abraham, A., Corchado, J.M., Alonso, R.S., 2010. Agents and ambient intelligence: case studies. JAIHC 1, 85–93.
[9] Touazi, F., Cayrol, C., Dubois, D., 2015. Possibilistic reasoning with partially ordered beliefs. Journal of Applied Logic 13, 770 – 798.

[10] Zhao, Galland, Knapen, Bellemans, Yasar, 2018. Agent-based dynamic rescheduling of daily activities, in: Int. Conf. ANT’18, pp. 979 – 984.

