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Abstract

Due to traffic conditions that are very context dependent, the computation of optimized or shortest paths is a very complex
problem for both drivers and autonomous vehicles. In this paper, we introduce a learning mechanism that is able to efficiently
evaluate path durations based on an abstraction of the available traffic information. We demonstrate that a cache data structure
allows a permanent access to the results whereas a lazy politics taking new data into account is used to increase the viability of
those results. Our measures highlight the performance of each mechanism, according to different learning strategies.
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1. Introduction

One of today’s most sensitive and hot topic of current industrial and academic research is smart and autonomous
vehicles. This domain gave rise to numerous works and technological innovations, all concurring to assist the driver,
relieve him from the stress of an environment that heavily depends on varying traffic conditions and improve his
comfort. In this context, road map guidance applications like Google Maps or Waze, which compute in real-time an
estimation of an optimized path to a given destination (e.g. [7]), are of paramount importance.

In this paper, we propose a method for estimating the time duration of a destination path with respect to a varying
spatio-temporal context with partial information. As a use case of a rolling robot which must react rapidly to what-
ever road purpose event, it is about to approximate the computation time of the path estimations while ensuring the
relevance. In fact, the most popular navigation engines use various traffic information to estimate the duration of a
path [1, 7], however, in the case the access to some traffic information is only partial or missing, this analysis does not
yield to a correct anticipation of future traffic situations. For instance, when day at school is over, the presence of a

∗ Corresponding author. Tel.: +33-678-139-432 ; fax: +33-144-277-495.
E-mail address: jean-michel.ilie@lip6.fr

1877-0509 c© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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traffic officer warranting the security of pupils and causing the vehicle traffic to slow down is for the moment hardly
taken into account by Google and Waze algorithms.

It has been proven that traffic congestions are likely to occur and repeat themselves according to similar traffic and
ambient conditions. In this paper, we propose a method to estimate path duration that takes advantage of past events
and activities to model a pattern that can reliably used to represent future traffic and time delays. Thus, past experiences
and their associated contexts are smoothly aggregated and jointly consolidate the model for a driving agent. The whole
difficulty lies in a good use of accumulated experiences to estimate the durations and other performance indicators
of the path to be taken. For instance, the accumulation of daily experiences for the previous school example will
automatically make visible the impact of the presence of a traffic officer.

We are also interested in the problem of system responsiveness. In order to make the results available as quickly as
possible, we propose to develop a highly competitive software architecture with pre-processing mechanisms.

This paper is organized as follows: Section 2 details the modular architecture if our approach. In Section 3, we
develop a learning mechanism and discuss different strategies for estimating durations. In section 4, we evaluate the
efficiency of our approach, from a qualitative and quantitative viewpoints. Section 5 concludes the paper and gives
some perspectives.

2. Context Learning Architecture

Our software architecture is composed of several interactive and concurrent processes, that communicate altogether
as clients or servers for other processes. The distributed processes communicate over TCP/IP and can run on separate
hardware. The two essential components of the architecture are the Context process and the Learning process, which
respectively allow to have access to the recorded experiments and to process them. So, any process of the architecture
that wishes to obtain estimation on a given destination path sends a request the Learning process [2].

2.1. The Context Process

The Context process that manages the agent database makes extensive use of a Neo4j server1, a NoSQL Database
Management System (DBMS) allowing one a fast extraction of graph data. The provided data represents the road map
(Map) and the past driving experiences, which are attached to two major models of roads:

• Track: typically represents a part of a road or an avenue in an urban context, independently of its global shape
(straight line, curves, ...),

• Intersection: represents a crossroad, allowing tracks to cross each other.

In the rest of the paper, we generically note vertex, a track or an intersection of the Map. Moreover, each experience
is situated, linked to an entity of the Map in the database. The experiences are not only spatially specified but also
temporally, thus defining a global spatio-temporal context for each experience. An experience has the following global
shape:

"actionType": "move",
"beginTime" : "16/10/2019 09:13:00",
"duration" : 20

where,

• actionType is the action type that generated the experience,
• beginTime is the starting date of this experience,
• duration means the effective duration of the action in minute.

1 https://neo4j.com/

https://neo4j.com/
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2.2. The Learning process

The Learning process achieves the computation of duration and other performance indicators, with regards to some
situated Map elements (vertex). Further, different strategies are highlighted in Section 3.2.

2.3. The Client Processes

Any client process can ask the Learning process to get information about some road path [3]. Here, we concentrate
on the driving request message GetPathMessage, which has the following parameters:

messageParams = {
"messageType": "GetPathMessage",
"actionType" : "move"
"at" : "09/08/2019 10:25:00",
"source" : "0-0",
"target" : "2-2",

}

actionType represents the kind of action to be realized. source and target respectively represent the start-
ing and ending points of a apth, and at corresponds to the selected date and time at which the path duration must be
estimated. For instance, the message described above illustrates a move path request, starting from the intersection
"0-0" and ending in "2-2", knowing that the path duration should be estimated at 10h, on the 09/08/2019.

3. Learning Mechanism for Delay Estimations

Context	Process Learning	Process	

Learning
Strategy

Path	Search
AlgorithmContext

DB

Extraction Treatment Exploitation

BUFFER

CACHE

Fig. 1. Phases of the learning mechanism

Figure 1 represents the different processing phases performed by the Learning process, such that:

• Extraction: concerns the Map which can evolve over time as well as the located experiences which are also
dynamically added in a BUFFER,

• Process: consists in estimating durations according to a learning strategy on the managed experiences,
• Exploitation: uses the computed duration values that have been put in a CACHE, to evaluate global path

durations on the Map.

For sake of responsiveness and temporal efficiency, these three phases are each executed by a dedicated threads,
thus offering a real parallelism of execution on a multicore hardware architecture.

3.1. Extraction Phase

In this part, we show how to manage data in order to extract contextually useful experiences. In addition, we
propose a buffering mechanism to achieve efficiency and yield the results:
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Data extraction. Our approach consists in estimating the quality of the experiences according to their beginTime. This
allows us to introduce a time interval from a given time (further denoted T IME). As they are created, the experiences
of a given action are firstly sorted spatially according to their location vertex, then sorted temporally with respect to
the date beginTime of the experience. As a result, a queue of sorted experiences is defined for each vertex such that
the stored experiences are organized according to a given periodic classification C (like daily, monthly, yearly, ...).

The selection of experiences from a queue can rely on the thorough study of the experiences temporally close to
T IME with respect to C. For instance, according to the daily classification, we can extract the closest experiences
around 10 AM. We now introduce the function mod : C×R+→R+, such that modC(date) is the current date modulo
the period C. A concept of proximity is introduced with the last parameter Delta setting a time bound around T IME,
hence the formula to select the appropriate experiences (exp) of a queue is: |T IME−modC(exp.beginTime)|< Delta

Day

Day	–	1

Day	–	2

Day	–	3

TIME

1

m

beginTime	of	expK

Delta

exp7 exp8

expK

exp5exp4exp3exp2exp1

exp6 exp9

exp10

Fig. 2. Graphical view of past-experiences

As illustrated by Figure 2, the application of the modulo operation on an experiences queue seems as a “spiral
ribbon” such that the ribbon rings correspond to successive periods. In a daily consideration and giving Delta, the
selected experiences are {exp2,exp3,exp4,exp5,exp7,exp8,expK}, while the experiences {exp1,exp6,exp9,exp10}
are not considered because their beginTime is beyond the selectable area.

Input Buffering. The input buffer illustrated in Figure 1 plays an important role to ensure the existing computed
data (the vertex transition durations) are always usable. This consists in postponing the use of the (too recent) newly
created experiences so that to decrease the moments where the CACHE is render unreachable for writing duration
values purposes.

In order to maintain the soundness of the results, this also requires to concentrate on the computations which bring
significant changes on the results. This involves the analysis of data of the newly experiences against the existing
stored data [8]. However, for the sake of simplicity, we define a trigger effect ratio based on the respective numbers of
newly created experiences NEXP and the already selected by the extraction mechanism EXP, as follows:

|NEXP|
|EXP|

> T RIG, where T RIG ∈ R+

So, a new computation of vertex durations is triggered for a value NEXP bigger than T RIG ∗ |EXP|. Moreover
when EXP is empty, we force EXP to the values in NEXP.
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3.2. Treatment Phase

To be able to estimate the duration of a path, we must estimate first the transit duration of each vertex contained in
that path. We have investigated four different computation strategies to reach this objective. All these strategies have
the same inputs: a set of experiences named EXP coming from the data extraction concerning some vertex at a giving
time (T IME) and with a daily periodic classification.

Mean Learning Strategy. The first strategy consists in a single average over the duration of EXP and results in a
mean duration:

RESULT (vertex, time) =
∑

n
i=0 EXP.durationi

|EXP|

This simplistic strategy has some advantages, in particular a polynomial complexity on EXP size and a rapid
computation.

Nevertheless, it should be noticed that this approach may present an overestimated bias of the actual vertex duration,
because the relevance of one experience over another is not considered. Typically, an experience added 10 years ago
has the same relevance as an experience recorded two days ago, which is not sound.

Weighted Mean Learning Strategy. With this strategy, a weight is associated to each experience so that the expe-
riences closest to T IME are more relevant than the others. The weight is computed based on the distance between
beginTime of the experience and T IME. This distance is normalized and multiplied by the duration of the experience:

distance(vertex, time) = |T IME− exp(vertex, time).beginTime|, ∀exp ∈ EXP

weights(vertex, time) =
distance(vertex, time)

∑ distance(vertex, time)

RESULT (vertex, time) =
∑

n
i=0 EXP.durationi ∗weights(vertex, time)i

n

Compared to the first strategy, results are more reliable while keeping a polynomial complexity. However, this
strategy does not take the time distribution of the experiences into account. For example, some isolated experiences,
with long durations (produced by a temporary traffic jam) and close to the beginning of the experiences queue, so with
high weights, indeed hide other more relevant experiences.

Least Square Polynomial Fit Learning Strategy. From [4], we know that a linear regression can be computed over
some set of distributed points, by applying the least squares method. For this strategy, we specify a linear regression
over the experiences in order to better describe the distribution of the transit durations for any given vertex. Then,
We can generate a formula having a 3rd degree polynomial, that is used to estimate the transit duration starting from
T IME on vertex:

f (vertex, time) =W0+W1∗ time+W2∗ time2 +W3∗ time3

e =
n

∑
i=0

( f (vertex,EXP.beginTimei)−EXP.durationi)
2

argmine = [W0∗,W1∗,W2∗,W3∗]

RESULT (vertex,T IME) = f ∗(vertex,T IME)

This strategy seems efficient for future estimates, moreover, uncontrollable isolated events are no longer a problem
because the polynom strategy and its least squares method lets them ignored. The complexity is quadratic in the num-
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ber of experiences. Nevertheless, we have noticed from our experiments that a set of experiences is not systematically
correctly approximated by a linear model.

Trust Learning Strategy. Since the distribution of data may be arbitrary, we propose in this strategy to use a generic
model based on an unsupervised learning method, the K-means algorithm which consists in partitioning the data into
a number of k clusters. Combined with the ”average silhouette” method we can evaluate the optimal k [6, 5].

To estimate the duration of a vertex, the centroid of each cluster is weighted by its size. Normalized then summed,
this gives us an estimate of the duration at T IME. This method is relatively more complex than the previous ones ,
but as far as accuracy is concerned it is the more representative of the considered data in the general case.

3.3. Cached Duration Mechanism

The cached duration mechanism stores the duration of a given action and for each vertex of the Map over several
time slots. The use of slots is necessary due to the impossibility of considering a continuous set of time values. Next,
the stored structure (CACHE) is defined by the bijective function Dur : ACT×LOC×CRE→R+ where ACT is a finite
set of possible actions, LOC is a finite set of locations and CRE is a finite set of 〈date,Delta〉 pairs of T IME×T IME,
which respectively represent a date (with respect to a periodic classification C) and a time offset (like t and Delta in
Figure 2). Dur function gives the duration estimate as a result.

For each entry 〈a,v,c〉 of the Dur function, we apply a durations computation strategy (among the strategies dis-
cussed in Section 3.2), to the subset of experiences EXP (defined by the extraction method presented in Section 3.1)
for classification C. The CACHE structure allows us to quickly find these results hence to efficiently estimate the
duration of a path in the Map.

3.4. Exploitation Phase

Since the durations of each vertex are now evaluated, we can compute the duration of the shortest path from a
source position to a target destination. This evaluation is done on the Map where each vertex is tagged by the set of
durations returned by the Dur function of the cached duration mechanism.

The algorithm 1 returns the shortest path of the Map, considering it as a graph described by the surrounding
neighbor nodes:

Graph = 〈V,Neighbour(v ∈V )⊂ 2V 〉

It also takes into account the values that have been evaluated in the CACHE. The latter is a three-dimensional
dictionary contextualizing the durations:

Action×TimePeriod×Location

The other inputs of (beginTime, source, target, actionType) come from the GetPathMessage request parameters
and explore parameter is an exploration probability. This algorithm is a variant of the classic Dijkstra one, consisting
in the incremental development of a path on-the-fly, from source to the destination target. It is characterized by the
three following points:

• The knowledge of the destination makes it possible to stop the course of the graph as soon as it is processed.
The Dijkstra properties guarantee that at the end of processing with the target node, the computed path will be
the shortest one,

• The weights of the graph nodes are contextually dynamic. Indeed, the weight of each node in the path is tem-
porally relative to the date of departure from his father node and the duration to reach it,

• An exploration mechanism is included in the case where a vertex does not need any experience; if the duration
of a vertex in the CACHE has a zero value, this vertex can be explored according to the explore parameter.
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Algorithm 1 Compute-path
1: Require:
2: Closed := [ ]
3: Open := [source]
4: Dist := [(0,null,source)]
5: min := Integer.min

6: while target ∈/ Closed do
7: for all node ∈ Open do
8: if min > Dist(node) then
9: min := Dist(node)

10: select := node
11: end if
12: end for
13: for all node ∈ Neighbour(select) do
14: if cache[actionType,select,beginTime+Dist(select)]< 0 then
15: if random.normal(0,1)> explore then
16: cache[actionType,select,beginTime+Dist(select)] := 0
17: else
18: continue
19: end if
20: end if
21: if Dist(node)> Dist(select)+ cache[actionType,select,beginTime+Dist(select)] then
22: Dist(node) := (Dist(select)+ cache[actionType,select,beginTime+Dist(select)],node)
23: Open := Open+node
24: end if
25: end for
26: Closed :=Closed + select
27: Open := Open− select
28: end while

4. Experiments and Results

We evaluate the specific advantages of the four mechanisms proposed in this paper. Plots of Figure 3 compare the
calculation times of the four learning strategies, tested independently of the other structures, according to the size of
data. For this purpose, new experiments are added iteratively (1000 packets at a time). The Trust strategy (K-means)
is the most reliable but it has a cost compared to the other strategies, the calculation time of which seems negligible.

Figure 4 represents the response time of Learning process to 300 messages sent by some client process2. It is
clear that the response time is negligible (less than 10ms) even if the Trust Learning Strategy is used. Actually, the
three phases extraction-process-exploitation are supported by threads allowing a concurrent management of data. In
particular, the exploitation by the algorithm 1 of some durations values in the CACHE is only constrained when
the durations are actually written in the CACHE. As this write operations are limited, the CACHE is almost always
available, hence the response to a client depends only on the exploration phase.

The two peaks that appear on the 100th and 200th messages each correspond to the computation and writing of
the duration values in the CACHE. For this, 1000 experiments are added at the 100th message so as to saturate the
buffer and restart the cached duration computation mechanism, then 1000 others experiences are added at the 200th
message. When the buffer is saturated, the response time to a client message does not only depend on the exploration
phase but also on the process one due to the fact the CACHE is not accessible during its update.

2 Our approach is evaluated on a computer whose configuration is: CPU: Intel i7-6600U @ 2.60Ghz, RAM: DDR4-2133Mhz 16GB, GPU: Intel
HD 520, Disk: SSD 512GB M.2 SATA - Max. Read/Write Transfer Rate 510MB/s
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The interest of having an input buffer is to make the occurrences of such peaks as scarce as possible by postponing
the inputs of new experiences. This has the effect of reducing the rate of launching the cached duration mechanism.
From a qualitative point of view, it makes it possible to lengthen the durability and the viability of the calculated
results. On the contrary, without buffer, the addition of an experience would restart the mechanism, without necessarily
changing the estimate durations. It is worth noticing that the addition of many new experiences at the 100th and 200th
messages, causes a new calculation of durations but the impact on the response time of the Learning process to the
client remains very localized comparing to the strategy used.

5. Discussion and Conclusion

The search of a best path over a road map submitted to an ambient traffic is an interesting challenge that we have
investigated according to a learning approach. The proposed mechanism exploits the past experiences durations of the
driver agents in order to abstract the traffic fluctuation and estimate the overall duration of such paths.

By focusing on the move aspects over the road tracks, the corner point of our approach is not only to benefit from
the parallelism of execution, used to reduce the response time of our learning mechanism impacted by the computation
of the section durations, but also to qualify these durations according to a spatio-temporal classification directly usable
in several time slots in the day.

Among the immediate perspectives, we will test different trigger functions for the input buffer in order to optimize
the relevance of results. Moreover, it would be worth comparing our approach against existing road map guidance
applications, typically Google Maps and Waze which exploit both traffic and user information. In case of long distance
travels where such information cannot be end-to-end guaranteed, we guess we can obtain better duration accuracy.
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