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Current and optimal dimensions predictions for a1

porous micro-electrode2

Tien D. Le ∗ Didier Lasseux†
3

1 Abstract4

The expression of the current delivered by a cylindrical porous micro-electrode5

operating a single heterogeneous reaction and mass diffusion of the reagent is an-6

alytically derived in this work from a complete solution of the diffusion/reaction7

macroscopic problem. This solution is valid regardless of the aspect (thickness8

to inner radius) ratio. It encompasses the hybrid solution reported elsewhere,9

valid only when this ratio remains small compared to unity, and, consequently,10

the case of a planar electrode as well. The asymptotic form of the solution in11

this latter case is also provided. The complete solution is used to predict the12

optimal thickness of the electrode and its optimal inner radius (i.e. the sup-13

porting wire radius) corresponding to the best compromise between a minimum14

electrode volume and a maximum current per unit volume. This work hence15

provides a complete optimization procedure that can be used as predictive tools16

for the design of porous electrodes.17

2 Introduction18

The development of miniaturized electrodes has been the subject of intense in-19

terest for the past decade, in particular for bio-implantable electro-devices. [1]
20

In order to reduce their size, micro- or nanoporous materials are particulary21

attractive due to their high specific surface area available for the heterogeneous22

redox reactions, hence producing a much larger current than a flat electrode23

of the same size. [2] An abundant literature has been dedicated to the study of24

these devices, both from theoretical and experimental points of view. Many dif-25

ferent operating conditions can be envisaged for these electrodes [3,4,5,6], namely26

without any catalyst [7,8] or with an embedded enzyme to catalyze the redox re-27

actions which may occur in the direct electron transfer [9] or mediated electron28
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transfer mode. [10] A classical procedure to obtain a porous material relies on29

a Langmuir-Blodgett templating method related to self-assembly of particles.30

This is followed by electrodeposition of a conducting material. After dissolving31

the particles, a synthetic porous electrode composed of interconnected pores is32

obtained which porosity and internal architecture can be tuned. [11,12,2]
33

The coupled process of transport and electrochemical reaction occurring34

during voltammetry experiments for porous electrodes has been modelled in35

both cases with or without catalysis. [13,14,15] Recently, a multiscale model for36

a porous electrode operating a single reaction was developed [7], providing a37

macroscopic model and a closure problem which solution allows to determine38

the effective parameter (effective diffusion coefficient). Such a model was val-39

idated by comparing its predictions with 3D direct numerical simulations at40

the pore scale similar to those reported recently. [16] It was also successfully41

compared with experimental data. The advantage of such an approach is that42

the ensuing macroscale model, which contains the necessary information from43

the microscale, is much simpler to solve than the original one at the scale of44

the microstructure, avoiding cumbersome direct numerical simulations at this45

scale. Further, an optimization procedure, based on the macroscopic model to46

estimate the optimal thickness of cylindrical porous electrodes, has been inves-47

tigated. [17] It was derived under the assumption that the electrode thickness is48

much smaller than its inner radius, although the diffusion layer thickness sur-49

rounding the electrode is not. This yielded the so-called hybrid model. However,50

such an assumption can fail in practice and it is hence of major interest to derive51

a prediction of the optimal thickness in the general case.52

In the present work, an accurate complete solution of the upscaled model53

in its general form is proposed in order to predict the current delivered by a54

cylindrical electrode in the steady regime and to estimate its optimal thickness55

and optimal inner radius without any assumption on its microstructure and56

dimensions. This solution is expressed in terms of the Bessel’s functions of the57

first and second kinds; it is valid whatever the thickness to inner radius ratio58

and is hence general.59

Predictions of this model are compared to those obtained from the hybrid60

model in the case of a face-centered cubic, cubic and body-centered cubic struc-61

tures of the porous material. Moreover, an analytical solution is also derived for62

planar electrodes which conveniently matches the complete solution for cylindri-63

cal electrodes in the limit of an extremely large radius compared to the thickness.64

Finally, the optimal radius of the supporting wire that leads to the minimum65

volume of the electrode is derived. This represents a very important result,66

leading to a complete optimization process of the macroscopic dimensions of67

the electrode.68

The paper is organized as follows. In Section 2, the upscaled model for the69

coupled electrochemical reaction and transport in a porous micro-electrode is70

briefly recalled. A complete analytical solution of the macroscopic model for71

a cylinrical geometry is proposed in Section 3 without any restriction on the72

electrode dimensions. Such a solution is compared to that of the hybrid model73

developed in [17] to predict the optimal electrode thickness. In Section 4, an74
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analytical solution of the macroscopic model and for the optimal thickness of75

a planar electrode is proposed. Section 5 is dedicated to the derivation of the76

optimal radius of the cylindrical wire supporting the electrode, which, along77

with its optimal thickness, provides a complete framework for its macroscopic78

optimization. Concluding remarks are drawn in Section 6.79

3 Recall of the upscaled model80

In this section, the upscaled model for a porous electrode operating a single
reduction reaction, as proposed in previous works [7,17], is briefly recalled to
further develop its solution. This model is derived from the pore-scale initial
boundary value problem (IBVP) describing the coupled diffusion and heteroge-
neous reaction of the species of interest. Diffusion of this species, A, (of molar
concentration cA) dissolved in the solution saturating the electrode’s pore space,
denoted Ωf , is governed by Fick’s law. [18] It is beyond the scope of this article
to provide the details for this governing law to apply here. The reader is re-
ferred to [19] for the assumptions and constraints that support it. At the pore
solid/fluid interfaces, Isf , a single reaction reducing A to B is considered for
which the electron transfer mechanism is described by the Butler-Volmer’s re-
lation [20] (see Fig. 1). The IBVP at the pore scale can be formulated as follows

Figure 1 – Pore-scale configuration.

∂cA
∂t

= ∇ · (DA∇cA) in Ωf (1a)

B.C.1 − n · DA∇cA = k0αAcA at Isf (1b)
B.C.2 cA = GA(r, t) r ∈ Afe, ∀ t (1c)
I.C. cA = FA (r) r ∈ Ωf , t = 0 (1d)

In these equations, DA is the molecular diffusion coefficient of species A, n81

denotes the unit normal vector at Isf , pointing out of Ωf , and k0 is the standard82

rate constant of the reaction. Moreover, αA = exp(−αnF (E − E0)
RT

) where α,83
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n, E and E0 are the electron transfer coefficient, the number of transferred84

electrons, the electrode potential and the standard potential respectively, F , R85

and T representing the Faraday’s constant, ideal gas constant and temperature.86

In this work, T is assumed to be constant and the conduction of electrons in the87

solid phase is supposed to be extremely fast so that the potential in this phase88

can be readily considered as uniform. It should be noted that in the boundary89

condition B.C.2, Afe = Ωf ∩ Ωe is the entrance and/or exit boundaries of the90

fluid phase, Ωf , from/into the diffusion layer surrounding the electrode, denoted91

Ωe.92

The above pore-scale IBVP can be upscaled using the volume averaging
method [21] to obtain a model at the macroscopic scale. To do so, a separation
of length-scales is assumed between the characteristic pore length-scale, `p, and
the characteristic macroscopic length scale, L, of the system. In addition, it is
assumed that an intermediate scale r0 can be exhibited satisfying `p � r0 � L
such that an averaging domain, V, of measure V and size r0 can be used to
average the pore-scale IBVP. The domain V is usually chosen so as to contain
all the necessary microstructural information in order to be a representative
elementary volume (REV) of the porous medium and the physical process at
play. In this way, the macroscopic model is expressed in terms of the intrinsic
average concentration of species A, denoted 〈cA〉f . It is defined in V in which
the fluid phase occupies a domain Vf , of measure Vf , as

〈cA〉f = 1
Vf

∫
Vf (x)

cAdV (2)

The averaging procedure is then carried out in three main steps. The averaging
operator of Eq. (2) is first applied to the pore-scale IBVP, and in order to
interchange time and space derivations with integration, the general transport
theorem [22] and the averaging theorem [23] are employed. When the porous
medium is rigid and homogeneous, they can be respectively expressed as〈

∂ψ

∂t

〉f
= ∂〈ψ〉f

∂t
(3a)

〈∇ψ〉f = ∇〈ψ〉f + 1
Vf

∫
Asf

nψ dA (3b)

In the latter, Asf , of measure Asf , represents the portion of Isf contained in V.93

In a second step, the physical variables ψ (here ψ = cA) are spatially decomposed94

under the form ψ = 〈ψ〉f+ψ̃ [24], ψ̃ representing the spatial fluctuations of ψ with95

respect to its average 〈ψ〉f . This decomposition is introduced in the averaged96

equations which can be usually simplified on the basis of the scale hierarchy.97

This yields an unclosed model in which both 〈ψ〉f and ψ̃ are present. In a98

third step, the (initial) boundary value problem for ψ̃ is derived and this is99

obtained by subtracting the unclosed macroscopic equations from their pore-100

scale analogues. The equations for ψ̃ are then simplified on the basis of the101
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length scale constraints. These constraints further allow obtaining a formal102

solution expressed in terms of closure variables by making the problem on ψ̃103

periodic over a periodic unit cell, at least as large as the REV. For simplicity,104

this periodic unit cell is identified as the REV in the remainder of this work.105

The formal solution for ψ̃ is introduced in the unclosed macroscopic equations,106

on the one hand, and in the problem for ψ̃, on the other hand, yielding the107

closed macroscopic model and the closure problem(s) for the closure variables,108

respectively. The closed model involves effective coefficients that are determined109

from the solution of the closure problem(s).110

When the procedure described above is applied to the IBVP in Eqs. (1), the111

following macroscopic mass conservation equation is obtained [7,17]
112

εf
∂ 〈cA〉f
∂t

= ∇ ·
(
εfDeff ·∇ 〈cA〉f

)
− k0αAav 〈cA〉f in Ω (4)

Here, Ω denotes the macroscopic domain occupied by the electrode whereas εf
and av are the porosity and specific area, respectively defined by

εf = Vf
V

; av = Asf
V

(5)

In addition, in Eq. (4), Deff is the effective diffusion tensor which is computed
from the solution of an intrinsic closure problem in a periodic REV (see Eqs.
(16) reported in a previous work. [7]) An example of a REV, of size `R ≡ r0, is
depicted in Fig. 2 for a FCC structure constitutive of a porous electrode. It

 

ds= ℓp 

dc 

ℓR 

Figure 2 – Unit cell of a FCC structure with the characteristic dimensions.
The gray area corresponds to the fluid domain while the solid phase is not
represented. Sperical pores are connected through windows of diameter dc.

should be noted that the second term on the right hand side of Eq. (4) originates
from the heterogeneous reduction reaction of species A indicated in the pore-
scale boundary condition in Eq. (1b) that is now reflected in the macroscopic
mass conservation equation. The current delivered by the electrode can then be
expressed from the average concentration as [7]

I = −nk0FαAav

∫
Ω
〈cA〉fdV (6)
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To obtain the solution on 〈cA〉f in Ω, macroscopic boundary and initial con-113

ditions corresponding to the pore-scale analogues in Eqs. (1c) and (1d) must114

be specified. In practice, the electrode is immersed in the fluid saturating the115

pores. The mass transfer of species A in the surrounding bulk fluid, which is116

assumed to obey Fick’s second law (Eq. (1a)), gives rise to a diffusion layer, of117

thickness LN , next to the fluid-electrode boundary. The concentration at the118

outer edge of this boundary layer remains constant over time and is denoted c0A119

which is assumed to be the uniform concentration value in the whole system at120

t = 0. At the boundary between the electrode and the diffusion layer, continu-121

ity of both the concentration and the flux can be reasonably assumed as was122

investigated earlier. [7] A resistance to mass transfer may be considered at the123

fluid-electrode boundary. However, this mechanism would contribute to hinder124

the penetration of species A inside the electrode and would hence lead to predict125

an optimal thickness smaller than that in the absence of this mechanism. In the126

following the existence of mass transfer resistance is ignored with the idea that127

this leads to the maximum expected value of the optimal electrode thickness.128

Moreover, in order to determine this optimal thickness, the stationnary regime129

is to be considered for which the penetration depth of the diffusion/reaction130

front has settled down inside the electrode.131

The solution of the coupled diffusion-reaction macroscopic equation (4), con-132

sidering the diffusion layer in the bulk fluid next to Ω, was proposed for a133

cylindrical electrode in the stationary regime. [17] However, this solution was134

restricted to the case where the thickness of the electrode remains small com-135

pared to its inner radius, although this assumption may not apply to the outer136

boundary layer thickness. This led to a so-called hybrid model. In practice,137

the electrode can be thick enough for this assumption to fail and it is hence of138

major importance to reconsider the problem in a more general case by deriving139

a solution referred to as the complete solution (or Bessel’s solution). This is140

the purpose of the following section.141

4 Cylindrical electrode142

The cylindrical electrode under consideration is made of a porous material de-143

posited on a conducting cylindrical wire of radius R1. Its thickness is Le and144

its external radius R2 = R1 + Le. The diffusion layer outside the electrode is145

supposed to have an external radius R3 = R2 +LN . A schematic cross section of146

the configuration, with the normalized characteristic radial dimensions denoted147

with the superscript ∗, is depicted in Fig. 3. The reference dimension used to148

normalize the radial coordinate is the characteristic size, `R, of the periodic unit149

cell (the REV) of the porous medium. The wire center is positioned at r∗ = 0.150

Using the initial concentration c0A, that is supposed to be uniform in the
whole system at t = 0, as the reference concentration, and assuming that steady
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0 r∗

R∗
1R∗

2 R∗
3

1

Figure 3 – Cross section of a cylindrical electrode of external dimensionless
radius R∗2 made of a porous material (gray area) deposited on a cylindrical wire
of dimensionless radius R∗1 and surrounded by the diffusion layer which external
dimensionless radius is R∗3.

state is reached, the macroscale problem takes the following form

r∗2
d2 〈c∗A〉

f

dr∗2
+ r∗

d 〈c∗A〉
f

dr∗ = ϕ2r∗2 〈c∗A〉f R∗1 ≤ r∗ ≤ R∗2 (7a)

d
dr∗

(
r∗

dc∗A
dr∗

)
= 0 R∗2 ≤ r∗ ≤ R∗3 (7b)

B.C.1: D∗eff
d 〈c∗A〉

f

dr∗ = dc∗A
dr∗ r∗ = R∗2 (7c)

B.C.2: 〈c∗A〉f = c∗A r∗ = R∗2 (7d)

B.C.3: d 〈c∗A〉
f

dr∗ = 0 r∗ = R∗1 (7e)

B.C.4: c∗A = 1 r∗ = R∗3 (7f)

In B.C.1 and B.C.2, continuity of both the flux and the concentration is assumed
at the porous electrode-diffusion layer interface (r∗ = R∗2). At the electrode-
wire interface, r∗ = R∗1, a zero flux is considered whereas a Dirichlet boundary
condition is used at the external boundary of the diffusion layer (r∗ = R∗3)
where the initial concentration, c0A, is imposed. In Eq. (7c), D∗eff = εfDeff/DA,
(Deff = D∗effI for an isotropic structure) and in Eq. (7a), ϕ is the Thiele modulus
defined as

ϕ =
√

Ki a∗v
D∗eff

(8)

where Ki is the kinetic number

Ki = k0αA`R
DA

(9)
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4.1 Hybrid model151

When L∗e/R∗1 � 1, Eq. (7a) can be simplified to the following form

d2 〈c∗A〉
f

dr∗2
− ϕ2 〈c∗A〉f = 0, R∗1 ≤ r∗ ≤ R∗2 (10)

In the absence of any other assumption (in particular if L∗e +L∗N is not assumed
to be exceedingly small compared to R∗1), Eqs. (7b) to (7f) remain unchanged.
This yields the hybrid model which solution is given by [17]

〈c∗A〉f = a1 cosh(ϕ (r∗ −R∗1)) R∗1 ≤ r∗ ≤ R∗2 (11a)
c∗A = b1 ln r∗ + c1 R∗2 ≤ r∗ ≤ R∗3 (11b)

with

a1 =
(
D∗eff ϕ sinh(ϕL∗e)R∗2 ln (R∗3/R∗2) + cosh(ϕL∗e)

)−1 (12a)

b1 =
(

coth(ϕL∗e)
D∗effR∗2 ϕ

+ ln(R∗3/R∗2)
)−1

(12b)

c1 = 1− b1 ln(R∗3) (12c)

Moreover, the current per unit volume can be expressed as

I

Ve
= − nFk0αAavc

0
A

ϕL∗e
[
coth(ϕL∗e) + D∗eff ϕR∗2 ln(R∗3/R∗2)

] (13)

where Ve is the volume of the electrode immersed in the reactive solution, i.e.,152

the active electrode volume.153

4.2 Complete solution154

At this point, no special hypothesis is made on the electrode dimensions and Eqs.155

(7) are kept as such. The solution of Eq. (7a) is given by a linear combination156

of the modified zeroth order Bessel’s functions of the first and second kinds, I0157

and K0, as [25]
158

〈c∗A〉f = A1I0(ϕr∗) +B1K0(ϕr∗), R∗1 ≤ r∗ ≤ R∗2 (14)

The coefficients A1 and B1 can be determined by making use of the boundary159

conditions (7c), (7d), (7e) and (7f). When this conditions are used, one obtains160

161

A1 = −K1(ϕR∗1)
I1(ϕR∗1) B1 (15a)

B1 =
[
−K1(ϕR∗1)
I1(ϕR∗1) I0(ϕR∗2) +K0(ϕR∗2)

+D∗eff ϕR∗2 ln R
∗
3

R∗2

(
−K1(ϕR∗1)
I1(ϕR∗1) I1(ϕR∗2)−K1(ϕR∗2)

)]−1
(15b)
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where I1 and K1 are the first order modified Bessel’s functions of the first and162

second kinds, respectively.163

In the external diffusion layer, the concentration is given by

c∗A = A2 ln r∗ +B2, R∗2 ≤ r∗ ≤ R∗3 (16)

with
A2 = 1

ln(R∗2/R∗3) (A1I0(ϕR∗2) +B1K0(ϕR∗2)− 1) (17a)

B2 = 1−A2 lnR∗3 (17b)

When the solution given in Eq.(14) is introduced in Eq. (6), the current per164

unit active electrode volume, Ve, takes the following expression165

I

Ve
= − C

R∗2
2 −R∗12

∫ R∗
2

R∗
1

[A1I0(ϕr∗) +B1K0(ϕr∗)] r∗dr∗

= − C

R∗2
2 −R∗12 (A1F1 +B1F2) (18)

with C, F1 and F2 respectively given by

C =2nk0FavαAc
0
A (19a)

F1 =
∫ R∗

2

R∗
1

I0(ϕr∗)r∗dr∗ = 1
ϕ

(R∗2I1(ϕR∗2)−R∗1I1(ϕR∗1)) (19b)

F2 =
∫ R∗

2

R∗
1

K0(ϕr∗)r∗dr∗ = 1
ϕ

(R∗1K1(ϕR∗1)−R∗2K1(ϕR∗2)) (19c)

In the following, numerical evaluation of the above solution on the current166

versus the scanning potential is compared to that of the hybrid model. The167

parameters used to compute these solutions are given in Table. 1. They cor-168

respond to those used for the validation of the macroscopic model with direct169

numerical simulations of the microscale model and experimental data. [7,17] The170

electrochemical reaction considered here is typically the reduction of H2O2 to171

H2O. Moreover, the face-centered cubic (FCC) structure is assumed as the pe-172

riodic REV of the porous medium constitutive of the electrode (see Fig. 2).173

This structure is uniquely defined by the sphere diameter, ds ≡ `p, and the pore174

connection window size, dc. [7] The REV of the FCC structure corresponds to 4175

half-layers (HL) of spherical pores.176

The current versus the potential obtained from both the hybrid model and177

Bessel’s solution is represented in Fig. 4(a) for three different electrodes made178

of 5HL, 15HL and 30HL of pores. As can be observed from this figure, the two179

solutions are almost identical when the potential is sufficiently large, although180

the hybrid model tends to underestimate the magnitude of the current. The181

discrepancy between the two models becomes significant below a threshold value182

of the potential which increases with the electrode thickness. This is made clear183
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Table 1 – Parameters used for the solutions of the hybrid and complete models.

Parameter [7,17] Symbol Value Unit

Ideal gas constant R 8.314 J.mol−1.K−1

Faraday’s constant F 96485 C.mol−1

Number of electron transferred n 2 −
Electron transfer coefficient α 0.482 −
Standard rate constant k0 1.7 ×10−17 cm.s−1

Standard potential vs. E0
Ag/AgCl E0 1.56 V

Temperature T 298 K
Bulk concentration c0A 10 mol.m−3

Diffusion coefficient DA 10−9 m2.s−1

Spherical pore diameter ds = `p 1.17 µm
Pore connection window size dc 0.15ds m
Size of the periodic unit cell `R 1.64 µm
Porosity εf 0.763 −
Specific surface area av 3.567 ×106 m−1

Normalized effective coefficient D∗eff 0.364 −
Wire radius R1 25 µm
Diffusion layer thickness LN 100 µm

in Fig. 4(b) representing the absolute value of the relative error between the two184

models (the Bessel’s solution is taken as the reference) showing that this relative185

error can reach about 12 % for the thickest electrode under consideration when186

the potential is close to 0V .187

Numerical simulations on other microstructures, namely cubic (C) and body-188

centered cubic (BCC) which unit cells are represented in Fig. 5, are also carried189

out using the parameters given in Table 1. The resulting values of ε, av, D∗eff and190

`R are reported in Table 2. In Fig. 6, the current versus the scanning potential191

obtained for different electrode thicknesses computed with the complete solution192

and the hybrid model are represented for the C (Fig. 6(a)) and BCC (Fig. 6(b))193

structures. As already observed for the FCC structure, a significant difference194

between the two models exists in particular for a thick electrode, and this is a195

general feature for any microstructure. Again, the hybrid model accuracy fails196

when the thickness to inner radius ratio is not small enough compared to 1.197

The analysis can now be focused on the optimal electrode thickness using198

the same approach as the one recently investigated. [17] To begin with, it is199

instructive to illustrate the electrode efficiency with the reagent concentration200

profile. In Fig. 7 〈c∗A〉f obtained from Eq. (14) with L∗e and parameters of Table201

(1) is represented within the electrode (R∗1 < r∗ < R∗2) for Ki = 10−4 and Ki =202

10−3. This figure clearly shows that the penetration depth of the concentration203

front inside the electrode decreases as the kinetic number increases, i.e. when204

reaction becomes more significant so that species A is consumed in the vicinity of205

the electrode/diffusion layer interface. As a result, a large part of the electrode206

10
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Figure 4 – (a) Current versus the scanning potential obtained from the hybrid
model and Bessel’s solution for the 5HL, 15HL and 30 HL electrodes. (b)
Absolute value of the relative error between the two solutions taking the Bessel’s
solution as the reference.

(about half of it in Fig. 7 for Ki = 10−3), in the region far enough from this207

interface, does not contribute much to the current production. This observation208

is an evidence that an optimal thickness can be determined and this is carried209

out as follows.210

The current per unit volume expressed in Eq. (18) decreases with the elec-
trode thickness, L∗e, in two characteristic regimes (see Fig. 8): a rapid decrease
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C BCC 

Figure 5 – Unit cell of the C and BCC structures.

Table 2 – Properties of C and BCC structures used in the simulations.

Parameter [7] Symbol Value Unit

C
Porosity εf 0.541 −
Specific surface area av 2.68 ×106 m−1

Normalized effective diffusion coefficient D∗eff 0.142 −
Size of the periodic unit cell `R 1.16 µm

BCC
Porosity εf 0.703 −
Specific surface area av 3.44 ×106 m−1

Normalized effective diffusion coefficient D∗eff 0.236 −
Size of the periodic unit cell `R 1.34 µm

at small electrode thicknesses followed by a slow convergence to zero at very
large values of L∗e. This suggests defining the optimal thickness, L∗eop, as the
crossover between these two regimes. Practically, this value is obtained at the
intersecting point of the tangent to |I/Ve| at L∗e0 with |I/Ve|=0. The value of
L∗e

0 should be taken as the minimum thickness that is experimentally achiev-
able, i.e., L∗e0 ≥ 1. The value of L∗eop can hence be obtained from the following
expression

L∗e
op = −

|I/Ve|L∗
e

0

∂ |I/Ve|
∂L∗e

∣∣∣∣
L∗

e
0

+ L∗e
0 (20)

The derivative of the current per unit volume with respect to L∗e involved in
this last relationship can be determined analytically from Eq. (18). It is given

12
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Figure 6 – Current versus the scanning potential obtained from the hybrid
model and Bessel’s solution for the 5HL, 15HL and 30 HL electrodes: (a) cubic
structure (C) (b) body-centered cubic structure (BCC).

by

∂(|I/Ve|)
∂L∗e

= 2R∗2
R∗2

2 −R∗12
I

Ve
+ C

R∗2
2 −R∗12

(
∂A1

∂L∗e
F1 + ∂B1

∂L∗e
F2 + R∗2 〈c∗A〉f

∣∣∣
R∗

2

)
(21)

As a result, the optimal electrode thickness can be estimated analytically once211

the electrode features are provided, namely `R, a∗v, D∗eff and R∗1. Once these212
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Figure 7 – Normalized concentration profile of species A in the electrode for two
values of the kinetic number. The dimensionless electrode thickness is L∗e = 30
the other parameters being those in Table 1.
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Figure 8 – Variation of the current per unit volume, |I/Ve|, obtained from Eq.
(18) versus the electrode’s dimensionless thickness, L∗e, in the case of a FCC
microstructure for Ki = 10−3 and LN = 100µm. The other parameters used
to compute the current per unit volume are provided in Table 1. The optimal
thickness, L∗eop, is obtained from the intersection of the tangent to this graph
at L∗e = L∗0e with the axis |I/Ve| = 0. See text for the details.

porous medium properties are fixed, the value of L∗eop can be computed as it213

only depends on the conditions at which it is supposed to operate, i.e., Ki214
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and L∗N . In the case of the FCC structure considered so far, and with the215

parameters reported in Table 1, together with L∗e
0 = 1, L∗eop was computed216

from Eq. (20) for Ki values up to 2 × 10−3. The corresponding results are217

reported in Fig. 9(a) considering two values of the diffusion layer thickness,218

namely LN = 100µm and LN = 200µm. As expected, L∗eop increases when LN219

decreases. This is due to the fact that a thinner diffusion layer (i.e. imposing220

a Dirichlet boundary condition closer to the fluid porous layer interface) allows221

a more efficient penetration of the reagent inside the porous electrode so that222

a thicker active layer is permitted. In addition, the optimal thickness obtained223

with the hybrid model reported elsewhere [17] is also represented in this figure.224

As can be observed on this figure, the difference between the predictions of225

the two models remains very small. This is highlighted in Fig. 9(b) representing226

the relative error between the two predictions, taking the Bessel’s solution as227

the reference. Indeed, the largest difference is for the smallest values of Ki (i.e.228

for the largest values of E) and small values of the diffusion layer thickness. For229

the case under study, this difference does not exceed 6%.230

These results show that the hybrid model remains robust if one is willing231

to estimate the optimal thickness of the electrode although it can significantly232

underestimate the current, in particular for the smallest values of the potential233

when the condition 2L∗e/(R∗1 +R∗2)� 1 is not satisfied.234

The normalized optimal thickness predicted for the other microstructures (C235

and BCC), compared to the FCC structure, is represented in Fig. 10. Clearly,236

the dependence of L∗eop on Ki is similar whatever the structure. This brings to237

the general conclusion that, whatever the microstructure, the optimal thickness238

decreases rapidly with the kinetic number and tends to a constant value for large239

values of Ki. Quantitatively, the comparison of the optimal thickness of the three240

structures must be made with care as L∗ope and Ki are based on `R which is not241

the same from one structure to another. For this purpose, a representation242

where `p = ds (identical for C, BCC and FCC) is used as the reference length is243

given in the inset of Fig. 10. It shows that the optimal thickness for the BCC244

and FCC structures is almost the same (it is slightly larger for the former),245

but is larger for the C structure. The physical explanation of this behavior246

can be deduced after examining the reduced sensibility of L∗eop to av and D∗eff247

that are reported in Fig. 11. It should be noted that the reduced sensibility of248

L∗e
op to the parameter u is defined as u∂L∗eop/∂u. This figure shows that the249

reduced sensibility to av is negative (i.e. L∗eop increases when av decreases) and250

is much larger in magnitude than that to D∗eff. Consequently, the contrast on251

L∗ope between the three structures can be interpreted only considering av. Since252

av is not markedly different for the BCC and FCC structures (although slightly253

smaller for the former) but significantly smaller for the C structure (see Tables254

1 and 2), the expected variation of L∗ope with respect to the structure is exactly255

that observed in Fig. 10 and mentioned above.256

Finally, it is of interest to investigate which structure, among the three257

considered here, is the most efficient in terms of current production. Results258

of the current per unit length, L, of the electrode at its optimal thickness are259

represented in Fig. 12 for the C, BCC and FCC structures versus Ki. From this260
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Figure 9 – (a) Optimal thickness versus the kinetic number for two values of
the diffusion layer thickness, obtained from the Bessel’s solution and hybrid
model (b) Absolute relative error between the two approaches taking the values
obtained with the Bessel’s solution as the reference. FCC structure. Parameters
are those reported in Table 1.

figure, it can be readily concluded that the FCC structure produces the largest261

current per unit length. In addition to the fact that it also allows the thinner262

optimal thickness, this structure is the most advantageous one among the three263

simple cases envisaged here. In what follows, results are only illustrated for a264
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Figure 10 – Optimal thickness versus the kinetic number for C, BCC and FCC
structures. LN = 100µm. For all structures, dc and ds are the same (see Table
1) featuring different values of ε, av, D∗eff and `R (see the values in Table 1
for the FCC and in Table 2 for the C and BCC structures respectively). All
other parameters are the same and are reported in Table 1. Inset: Lope made
dimensionless by the spherical pore diameter, `p = ds, versus the pore kinetic
number, Kip = k0αA`p
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Figure 11 – Reduced sensibility of L∗eop to a) av and b) D∗eff for the three
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FCC structure.265
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Figure 12 – Current per unit length, L, of the electrode at its optimal thickness
for the three structures C, BCC and FCC versus Ki. Parameters are those
reported in Table 1.

5 Planar electrode266

For the sake of completeness, the case of a planar electrode is now investigated
by providing the analytical solution for the current and optimal thickness. In
this situation, the porous material is deposited onto a plane solid surface, as
in the cases envisaged by Barnes et al. [15] and and Cai et al. [26], for instance.
Assuming that the extension of the electrode in both directions of the plane are
much larger than the electrode thickness, the model reduces to one dimension, in
the z-direction orthogonal to the plane. Using the same dimensionless variables
as in section 4, the problem can be formulated as follows

∂2 〈c∗A〉
f

∂z∗2
− ϕ2 〈c∗A〉f = 0 0 ≤ z∗ ≤ L∗e (22a)

∂

∂z∗

(
∂c∗A
∂z∗

)
= 0 L∗e ≤ z∗ ≤ L∗e + L∗N (22b)

B.C.1 ∂ 〈c∗A〉
f

∂z∗
= 0 z∗ = 0 (22c)

B.C.2 〈c∗A〉f = c∗A z∗ = L∗e (22d)

B.C.3 D∗eff
∂ 〈c∗A〉

f

∂z∗
= ∂c∗A
∂z∗

z∗ = L∗e (22e)

B.C.4 c∗A = 1 z∗ = L∗e + L∗N (22f)
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The analytical solution to the above system of equations is given by

〈c∗A〉f =a2 cosh(ϕz∗) 0 ≤ z∗ ≤ L∗e (23a)
c∗A =b2z∗ + c2 L∗e ≤ z∗ ≤ L∗e + L∗N (23b)

where the coefficients a2, b2 and c2 have the following expressions

a2 =
[
cosh(ϕL∗e) + D∗eff ϕL∗N sinh(ϕL∗e)

]−1 (24a)

b2 =
[

coth(ϕL∗e)
D∗eff ϕ

+ L∗N

]−1
(24b)

c2 =1− b2(L∗e + L∗N ) (24c)

Using Eq. (23a) in Eq. (6), the current per unit volume, Ve, can be written as

I/Ve = − nFk0αAavc
0
A

ϕL∗e
[
coth(ϕL∗e) + D∗eff ϕL∗N

] (25)

Its derivative with respect to L∗e can then be expressed as

∂ |I/Ve|
∂L∗e

= −nFk0αAavc
0
A

ϕ

ϕ(1− coth2(ϕL∗e))L∗e + coth(ϕL∗e) + D∗effϕL∗N[
coth(ϕL∗e)L∗e + D∗eff ϕL∗NL∗e

]2
(26)

From these two last relationships, the optimal thickness can be determined267

by making use of Eq. (20). The results of this prediction is represented in Fig.268

13 considering a FCC structure, LN = 100µm, L∗e0 = 1 and Ki up to 2× 10−3,269

all the other parameters being those reported in Table 1. As a validation,
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Figure 13 – Optimal thickness versus the kinetic number obtained for planar
electrode and cylindrical electrode taking R1 → ∞. LN = 100µm. FCC struc-
ture. All the parameters are those reported in Table 1.
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the solution of the complete model in the limit R1 → ∞ is also reported in271

this figure, showing that, in this limit, the two predictions perfectly match, as272

expected. This confirms that the complete solution is a general one, whatever273

the electrode dimensions. On the basis of this general result, the analysis can274

be carried on to determine the optimal radius, R∗1
op, of the supporting wire and275

this is the objective of the following section.276

6 Optimal wire radius, R∗1
op

277

A comparison of the results reported in Fig. 13 with those in Fig. 9(a) indicates278

that, all parameters being the same, the optimal thickness of the planar electrode279

is smaller than that of a cylindrical electrode having a finite radius. The contrast280

between the two is more significant when Ki decreases. This suggests to further281

analyze the dependence of L∗ope upon the wire radius, R∗1, for a given set of the282

physico-chemical parameters. More particularly, it is of interest to investigate283

the variation of the volume (per unit length, L) of the electrode at its optimal284

thickness, V ope /L, with respect to R∗1. Such a variation is illustrated in Fig.285

14, considering two values of Ki, namely Ki = 5 10−4 and Ki = 10−3, taking286

LN = 100µm, all other parameters being those reported in Table 1 and a FCC287

structure.
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Figure 14 – Variation of the volume (per unit length, L) of the electrode at its
optimal thickness, V ope /L, versus the dimensionless wire radius, R∗1, for Ki = 5
10−4 and Ki = 10−3, taking LN = 100µm (see Table 1 for the other parameters).
FCC structure.

288

This figure clearly shows that V ope /L exhibits a minimum which means that289

there exists a particular value of R∗1, denoted R∗1
op, which minimizes the volume290

of material necessary to achieve the optimal thickness. This is extremely im-291

portant keeping in mind that the porous medium is usually made of expensive292

materials using complex procedures. In Fig. 15, R∗1
op is represented versus Ki293
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in the range 10−4 ≤ Ki ≤ 10−3 for LN = 100µm. As can be seen on this graph,
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Figure 15 – Variation of the dimensionless optimal wire radius, R∗1
op, versus Ki

for LN = 100µm (see Table 1 for the other parameters). FCC structure.
294

the optimal wire radius decreases when Ki increases. Moreover, R∗1
op seems to295

very weakly depend on LN , as indicated by Fig. 16 where R∗1
op is represented296

versus LN ranging from 100µm to 400µm for Ki = 5 10−4 and Ki = 10−3. This
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Figure 16 – Variation of the dimensionless optimal wire radius, R∗1
op, versus LN

for Ki = 5 10−4 and Ki = 10−3 (see Table 1 for the other parameters). FCC
structure.

297

suggests that the value of R∗1
op can be determined regardless the value of LN ,298

i.e. as only a function of Ki when the microstructural parameters are fixed.299

This last analysis completes the optimization procedure of the electrode300

macroscopic dimensions as its thickness and supporting wire diameter can be301

predicted in order to obtain the optimal current per unit volume when the302
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operating conditions and the microstructure of the porous material are known.303

This represents a major result of this work.304

7 Conclusion305

In this work, steady-state solutions of the macroscopic model describing the306

coupled process of electrochemical heterogeneous reaction and diffusion are de-307

veloped for cylindrical and planar porous micro-electrodes.308

The complete solution developed here provides a more accurate prediction309

of the current delivered by the electrode versus the applied potential than the310

hybrid model reported earlier which is recovered in the limit of a thickness to311

inner radius ratio much smaller than unity and which remains valid in this312

limit. Moreover, the complete solution also matches the one developed in the313

case of a planar electrode in the limit of exceedingly large radii. This makes the314

complete solution a general one, whatever the dimensions and microsctructure315

of the electrode, the characteristics of the latter being reflected in the porosity,316

specific area and effective diffusion coefficient. The use of this complete solution317

is strongly recommended particularly when the constraint on the dimensions is318

not satisfied.319

More importantly, it is shown that an optimal radius of the supporting wire320

exists for a given set of the physico-chemical parameters defining the operating321

conditions of the electrode. This optimal radius is derived as to satisfy the322

minimum volume of the porous material required to ensure the optimal current323

per unit volume. This represents a salient result of the present work.324

Together with the prediction of the current delivered by the electrode, the325

solution derived here allows for the determination of the electrode optimal di-326

mensions in terms of its thickness and inner radius. This provides a complete327

and effective operational procedure of optimization of the macroscopic char-328

acteristics of cylindrical electrodes operating a single reduction reaction as a329

predictive tool for their practical design. As a final remark, it should be noticed330

that the approach developed here may be advantageously employed for the opti-331

mal design of other electrochemical devices devoted to energy production which332

architecture and operating conditions share similarities with those envisaged in333

this work.334
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Graphical abstract385
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Normalized optimal thickness, L∗eop, and optimal supporting wire
radius, R∗1op, of a cylindrical electrode as a function of the kinetic

number, Ki (diffusion layer thickness: LN = 100µm).

A complete solution of the diffusion/reaction macroscopic problem govern-386

ing the current production of a cylindrical porous electrode is developed. The387

solution is used to predict the optimal thickness of the electrode and its op-388

timal inner radius corresponding to the best compromise between a minimum389

electrode volume and a maximum current per unit volume. This work provides390

a complete optimization procedure that can be used as predictive tools for the391

design of porous electrode.392
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