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Introduction

The development of miniaturized electrodes has been the subject of intense interest for the past decade, in particular for bio-implantable electro-devices. [1] In order to reduce their size, micro-or nanoporous materials are particulary attractive due to their high specific surface area available for the heterogeneous redox reactions, hence producing a much larger current than a flat electrode of the same size. [2] An abundant literature has been dedicated to the study of these devices, both from theoretical and experimental points of view. Many different operating conditions can be envisaged for these electrodes [3,4,5,6] , namely without any catalyst [7,8] or with an embedded enzyme to catalyze the redox reactions which may occur in the direct electron transfer [9] or mediated electron 1 transfer mode. [10] A classical procedure to obtain a porous material relies on a Langmuir-Blodgett templating method related to self-assembly of particles. This is followed by electrodeposition of a conducting material. After dissolving the particles, a synthetic porous electrode composed of interconnected pores is obtained which porosity and internal architecture can be tuned. [11,12,2] The coupled process of transport and electrochemical reaction occurring during voltammetry experiments for porous electrodes has been modelled in both cases with or without catalysis. [13,14,15] Recently, a multiscale model for a porous electrode operating a single reaction was developed [7] , providing a macroscopic model and a closure problem which solution allows to determine the effective parameter (effective diffusion coefficient). Such a model was validated by comparing its predictions with 3D direct numerical simulations at the pore scale similar to those reported recently. [16] It was also successfully compared with experimental data. The advantage of such an approach is that the ensuing macroscale model, which contains the necessary information from the microscale, is much simpler to solve than the original one at the scale of the microstructure, avoiding cumbersome direct numerical simulations at this scale. Further, an optimization procedure, based on the macroscopic model to estimate the optimal thickness of cylindrical porous electrodes, has been investigated. [17] It was derived under the assumption that the electrode thickness is much smaller than its inner radius, although the diffusion layer thickness surrounding the electrode is not. This yielded the so-called hybrid model. However, such an assumption can fail in practice and it is hence of major interest to derive a prediction of the optimal thickness in the general case.

In the present work, an accurate complete solution of the upscaled model in its general form is proposed in order to predict the current delivered by a cylindrical electrode in the steady regime and to estimate its optimal thickness and optimal inner radius without any assumption on its microstructure and dimensions. This solution is expressed in terms of the Bessel's functions of the first and second kinds; it is valid whatever the thickness to inner radius ratio and is hence general.

Predictions of this model are compared to those obtained from the hybrid model in the case of a face-centered cubic, cubic and body-centered cubic structures of the porous material. Moreover, an analytical solution is also derived for planar electrodes which conveniently matches the complete solution for cylindrical electrodes in the limit of an extremely large radius compared to the thickness.

Finally, the optimal radius of the supporting wire that leads to the minimum volume of the electrode is derived. This represents a very important result, leading to a complete optimization process of the macroscopic dimensions of the electrode.

The paper is organized as follows. In Section 2, the upscaled model for the coupled electrochemical reaction and transport in a porous micro-electrode is briefly recalled. A complete analytical solution of the macroscopic model for a cylinrical geometry is proposed in Section 3 without any restriction on the electrode dimensions. Such a solution is compared to that of the hybrid model developed in [17] to predict the optimal electrode thickness. In Section 4, an analytical solution of the macroscopic model and for the optimal thickness of a planar electrode is proposed. Section 5 is dedicated to the derivation of the optimal radius of the cylindrical wire supporting the electrode, which, along with its optimal thickness, provides a complete framework for its macroscopic optimization. Concluding remarks are drawn in Section 6.

Recall of the upscaled model

In this section, the upscaled model for a porous electrode operating a single reduction reaction, as proposed in previous works [7,17] , is briefly recalled to further develop its solution. This model is derived from the pore-scale initial boundary value problem (IBVP) describing the coupled diffusion and heterogeneous reaction of the species of interest. Diffusion of this species, A, (of molar concentration c A ) dissolved in the solution saturating the electrode's pore space, denoted Ω f , is governed by Fick's law. [18] It is beyond the scope of this article to provide the details for this governing law to apply here. The reader is referred to [19] for the assumptions and constraints that support it. At the pore solid/fluid interfaces, I sf , a single reaction reducing A to B is considered for which the electron transfer mechanism is described by the Butler-Volmer's relation [20] (see Fig. 1). The IBVP at the pore scale can be formulated as follows Figure 1 -Pore-scale configuration.

∂c A ∂t = ∇ • (D A ∇c A ) in Ω f (1a) B.C.1 -n • D A ∇c A = k 0 α A c A at I sf (1b) B.C.2 c A = G A (r, t) r ∈ A f e , ∀ t (1c) I.C. c A = F A (r) r ∈ Ω f , t = 0 (1d)
In these equations, D A is the molecular diffusion coefficient of species A, n denotes the unit normal vector at I sf , pointing out of Ω f , and k 0 is the standard rate constant of the reaction. Moreover,

α A = exp( -αnF (E -E 0 ) RT ) where α,
n, E and E 0 are the electron transfer coefficient, the number of transferred electrons, the electrode potential and the standard potential respectively, F , R and T representing the Faraday's constant, ideal gas constant and temperature.

In this work, T is assumed to be constant and the conduction of electrons in the solid phase is supposed to be extremely fast so that the potential in this phase can be readily considered as uniform. It should be noted that in the boundary condition B.C.2, A f e = Ω f ∩ Ω e is the entrance and/or exit boundaries of the fluid phase, Ω f , from/into the diffusion layer surrounding the electrode, denoted

Ω e .
The above pore-scale IBVP can be upscaled using the volume averaging method [START_REF] Whitaker | The Method of Volume Averaging[END_REF] to obtain a model at the macroscopic scale. To do so, a separation of length-scales is assumed between the characteristic pore length-scale, p , and the characteristic macroscopic length scale, L, of the system. In addition, it is assumed that an intermediate scale r 0 can be exhibited satisfying p r 0 L such that an averaging domain, V, of measure V and size r 0 can be used to average the pore-scale IBVP. The domain V is usually chosen so as to contain all the necessary microstructural information in order to be a representative elementary volume (REV) of the porous medium and the physical process at play. In this way, the macroscopic model is expressed in terms of the intrinsic average concentration of species A, denoted c A f . It is defined in V in which the fluid phase occupies a domain V f , of measure V f , as

c A f = 1 V f V f (x) c A dV (2)
The averaging procedure is then carried out in three main steps. The averaging operator of Eq. ( 2) is first applied to the pore-scale IBVP, and in order to interchange time and space derivations with integration, the general transport theorem [START_REF] Slattery | Advanced Transport Phenomena (Cambridge Series in Chemical Engineering[END_REF] and the averaging theorem [START_REF] Howes | [END_REF] are employed. When the porous medium is rigid and homogeneous, they can be respectively expressed as

∂ψ ∂t f = ∂ ψ f ∂t (3a) ∇ψ f = ∇ ψ f + 1 V f A sf nψ dA (3b)
In the latter, A sf , of measure A sf , represents the portion of I sf contained in V.

In a second step, the physical variables ψ (here ψ = c A ) are spatially decomposed under the form ψ = ψ f + ψ [24] , ψ representing the spatial fluctuations of ψ with respect to its average ψ f . This decomposition is introduced in the averaged equations which can be usually simplified on the basis of the scale hierarchy.

This yields an unclosed model in which both ψ f and ψ are present. In a third step, the (initial) boundary value problem for ψ is derived and this is obtained by subtracting the unclosed macroscopic equations from their porescale analogues. The equations for ψ are then simplified on the basis of the length scale constraints. These constraints further allow obtaining a formal solution expressed in terms of closure variables by making the problem on ψ periodic over a periodic unit cell, at least as large as the REV. For simplicity, this periodic unit cell is identified as the REV in the remainder of this work.

The formal solution for ψ is introduced in the unclosed macroscopic equations, on the one hand, and in the problem for ψ, on the other hand, yielding the closed macroscopic model and the closure problem(s) for the closure variables, respectively. The closed model involves effective coefficients that are determined from the solution of the closure problem(s).

When the procedure described above is applied to the IBVP in Eqs. (1), the following macroscopic mass conservation equation is obtained [7,17] 

ε f ∂ c A f ∂t = ∇ • ε f D eff • ∇ c A f -k 0 α A a v c A f in Ω (4)
Here, Ω denotes the macroscopic domain occupied by the electrode whereas ε f and a v are the porosity and specific area, respectively defined by

f = V f V ; a v = A sf V (5)
In addition, in Eq. ( 4), D eff is the effective diffusion tensor which is computed from the solution of an intrinsic closure problem in a periodic REV (see Eqs. (16) reported in a previous work. [7] ) An example of a REV, of size R ≡ r 0 , is depicted in Fig. 2 for a FCC structure constitutive of a porous electrode. It should be noted that the second term on the right hand side of Eq. ( 4) originates from the heterogeneous reduction reaction of species A indicated in the porescale boundary condition in Eq. (1b) that is now reflected in the macroscopic mass conservation equation. The current delivered by the electrode can then be expressed from the average concentration as [7] 

I = -nk 0 F α A a v Ω c A f dV (6)
To obtain the solution on c A f in Ω, macroscopic boundary and initial conditions corresponding to the pore-scale analogues in Eqs. (1c) and (1d) must be specified. In practice, the electrode is immersed in the fluid saturating the pores. The mass transfer of species A in the surrounding bulk fluid, which is assumed to obey Fick's second law (Eq. ( 1a)), gives rise to a diffusion layer, of thickness L N , next to the fluid-electrode boundary. The concentration at the outer edge of this boundary layer remains constant over time and is denoted c 0 A which is assumed to be the uniform concentration value in the whole system at t = 0. At the boundary between the electrode and the diffusion layer, continuity of both the concentration and the flux can be reasonably assumed as was investigated earlier. [7] A resistance to mass transfer may be considered at the fluid-electrode boundary. However, this mechanism would contribute to hinder the penetration of species A inside the electrode and would hence lead to predict an optimal thickness smaller than that in the absence of this mechanism. In the following the existence of mass transfer resistance is ignored with the idea that this leads to the maximum expected value of the optimal electrode thickness.

Moreover, in order to determine this optimal thickness, the stationnary regime is to be considered for which the penetration depth of the diffusion/reaction front has settled down inside the electrode.

The solution of the coupled diffusion-reaction macroscopic equation ( 4), considering the diffusion layer in the bulk fluid next to Ω, was proposed for a cylindrical electrode in the stationary regime. [17] However, this solution was restricted to the case where the thickness of the electrode remains small compared to its inner radius, although this assumption may not apply to the outer boundary layer thickness. This led to a so-called hybrid model. In practice, the electrode can be thick enough for this assumption to fail and it is hence of major importance to reconsider the problem in a more general case by deriving a solution referred to as the complete solution (or Bessel's solution). This is the purpose of the following section.

Cylindrical electrode

The cylindrical electrode under consideration is made of a porous material deposited on a conducting cylindrical wire of radius R 1 . Its thickness is L e and its external radius

R 2 = R 1 + L e .
The diffusion layer outside the electrode is supposed to have an external radius R 3 = R 2 +L N . A schematic cross section of the configuration, with the normalized characteristic radial dimensions denoted with the superscript * , is depicted in Fig. 3. The reference dimension used to normalize the radial coordinate is the characteristic size, R , of the periodic unit cell (the REV) of the porous medium. The wire center is positioned at r * = 0.

Using the initial concentration c 0 A , that is supposed to be uniform in the whole system at t = 0, as the reference concentration, and assuming that steady state is reached, the macroscale problem takes the following form 3 ) where the initial concentration, c 0 A , is imposed. In Eq. (7c),

0 r * R * 1 R * 2 R *
r * 2 d 2 c * A f dr * 2 + r * d c * A f dr * = ϕ 2 r * 2 c * A f R * 1 ≤ r * ≤ R * 2 (7a) d dr * r * dc * A dr * = 0 R * 2 ≤ r * ≤ R * 3 (7b) 
D * eff = ε f D eff /D A , (D eff = D *
eff I for an isotropic structure) and in Eq. (7a), ϕ is the Thiele modulus defined as

ϕ = Ki a * v D * eff ( 8 
)
where Ki is the kinetic number

Ki = k 0 α A R D A (9)

Hybrid model

When L * e /R * 1 1, Eq. (7a) can be simplified to the following form

d 2 c * A f dr * 2 -ϕ 2 c * A f = 0, R * 1 ≤ r * ≤ R * 2 (10) 
In the absence of any other assumption (in particular if L * e + L * N is not assumed to be exceedingly small compared to R * 1 ), Eqs. (7b) to (7f) remain unchanged. This yields the hybrid model which solution is given by [17] 

c * A f = a 1 cosh(ϕ (r * -R * 1 )) R * 1 ≤ r * ≤ R * 2 (11a) c * A = b 1 ln r * + c 1 R * 2 ≤ r * ≤ R * 3 (11b)
with

a 1 = D * eff ϕ sinh(ϕL * e )R * 2 ln (R * 3 /R * 2 ) + cosh(ϕL * e ) -1 (12a) b 1 = coth(ϕL * e ) D * eff R * 2 ϕ + ln(R * 3 /R * 2 ) -1 (12b) c 1 = 1 -b 1 ln(R * 3 ) (12c) 
Moreover, the current per unit volume can be expressed as

I V e = - nF k 0 α A a v c 0 A ϕL * e coth(ϕL * e ) + D * eff ϕR * 2 ln(R * 3 /R * 2 ) (13) 
where V e is the volume of the electrode immersed in the reactive solution, i.e., the active electrode volume.

Complete solution

At this point, no special hypothesis is made on the electrode dimensions and Eqs. (7) are kept as such. The solution of Eq. (7a) is given by a linear combination of the modified zeroth order Bessel's functions of the first and second kinds, I 0 and K 0 , as [START_REF] Polyanin | Handbook of Exact Solutions for Ordinary Differential Equations[END_REF] c

* A f = A 1 I 0 (ϕr * ) + B 1 K 0 (ϕr * ), R * 1 ≤ r * ≤ R * 2 (14) 
The coefficients A 1 and B 1 can be determined by making use of the boundary conditions (7c), (7d), (7e) and (7f). When this conditions are used, one obtains

A 1 = - K 1 (ϕR * 1 ) I 1 (ϕR * 1 ) B 1 (15a) B 1 = - K 1 (ϕR * 1 ) I 1 (ϕR * 1 ) I 0 (ϕR * 2 ) + K 0 (ϕR * 2 ) +D * eff ϕR * 2 ln R * 3 R * 2 - K 1 (ϕR * 1 ) I 1 (ϕR * 1 ) I 1 (ϕR * 2 ) -K 1 (ϕR * 2 ) -1 (15b) 
where I 1 and K 1 are the first order modified Bessel's functions of the first and second kinds, respectively.

In the external diffusion layer, the concentration is given by

c * A = A 2 ln r * + B 2 , R * 2 ≤ r * ≤ R * 3 ( 16 
)
with

A 2 = 1 ln(R * 2 /R * 3 ) (A 1 I 0 (ϕR * 2 ) + B 1 K 0 (ϕR * 2 ) -1) (17a) B 2 = 1 -A 2 ln R * 3 ( 17b 
)
When the solution given in Eq.( 14) is introduced in Eq. ( 6), the current per unit active electrode volume, V e , takes the following expression

I V e = - C R * 2 2 -R * 1 2 R * 2 R * 1 [A 1 I 0 (ϕr * ) + B 1 K 0 (ϕr * )] r * dr * = - C R * 2 2 -R * 1 2 (A 1 F 1 + B 1 F 2 ) ( 18 
)
with C, F 1 and F 2 respectively given by

C =2nk 0 F a v α A c 0 A (19a) F 1 = R * 2 R * 1 I 0 (ϕr * )r * dr * = 1 ϕ (R * 2 I 1 (ϕR * 2 ) -R * 1 I 1 (ϕR * 1 )) (19b) F 2 = R * 2 R * 1 K 0 (ϕr * )r * dr * = 1 ϕ (R * 1 K 1 (ϕR * 1 ) -R * 2 K 1 (ϕR * 2 )) (19c) 
In the following, numerical evaluation of the above solution on the current versus the scanning potential is compared to that of the hybrid model. The parameters used to compute these solutions are given in Table . 1. They correspond to those used for the validation of the macroscopic model with direct numerical simulations of the microscale model and experimental data. [7,17] The electrochemical reaction considered here is typically the reduction of H 2 O 2 to H 2 O. Moreover, the face-centered cubic (FCC) structure is assumed as the periodic REV of the porous medium constitutive of the electrode (see Fig. 2).

This structure is uniquely defined by the sphere diameter, d s ≡ p , and the pore connection window size, d c . [7] The REV of the FCC structure corresponds to 4 half-layers (HL) of spherical pores.

The current versus the potential obtained from both the hybrid model and Bessel's solution is represented in Fig. 4(a) for three different electrodes made of 5HL, 15HL and 30HL of pores. As can be observed from this figure, the two solutions are almost identical when the potential is sufficiently large, although the hybrid model tends to underestimate the magnitude of the current. The discrepancy between the two models becomes significant below a threshold value of the potential which increases with the electrode thickness. This is made clear Table 1 -Parameters used for the solutions of the hybrid and complete models.

Parameter [7,17] Symbol Value Unit Numerical simulations on other microstructures, namely cubic (C) and bodycentered cubic (BCC) which unit cells are represented in Fig. 5, are also carried out using the parameters given in Table 1. The resulting values of ε, a v , D * eff and R are reported in Table 2. In Fig. 6, the current versus the scanning potential obtained for different electrode thicknesses computed with the complete solution and the hybrid model are represented for the C (Fig. 6(a)) and BCC (Fig. 6(b)) structures. As already observed for the FCC structure, a significant difference between the two models exists in particular for a thick electrode, and this is a general feature for any microstructure. Again, the hybrid model accuracy fails when the thickness to inner radius ratio is not small enough compared to 1.

Ideal
The analysis can now be focused on the optimal electrode thickness using the same approach as the one recently investigated. [17] To begin with, it is instructive to illustrate the electrode efficiency with the reagent concentration profile. In Fig. 7 c * A f obtained from Eq. ( 14) with L * e and parameters of Table (about half of it in Fig. 7 for Ki = 10 -3 ), in the region far enough from this interface, does not contribute much to the current production. This observation is an evidence that an optimal thickness can be determined and this is carried out as follows.

The current per unit volume expressed in Eq. ( 18) decreases with the electrode thickness, L * e , in two characteristic regimes (see Fig. Parameter [7] Symbol Value Unit The derivative of the current per unit volume with respect to L * e involved in this last relationship can be determined analytically from Eq. (18). It is given

0 0.1 0.2 0.3 0.4 0.5 -4 -3 -2 -1 0 •10 -4 5HL 15HL 30HL
Potential vs E Ag/AgCl (V)

I (A) C Bessel's solution Hybrid model 1 (a) 0 0.1 0.2 0.3 0.4 0.5 -5 -4 -3 -2 -1 0 •10 -4 5HL 15HL 30HL
Potential vs E Ag/AgCl (V) by decreases. This is due to the fact that a thinner diffusion layer (i.e. imposing a Dirichlet boundary condition closer to the fluid porous layer interface) allows a more efficient penetration of the reagent inside the porous electrode so that a thicker active layer is permitted. In addition, the optimal thickness obtained with the hybrid model reported elsewhere [17] is also represented in this figure.

I (A) BCC Bessel's solution Hybrid model 1 (b)
∂(|I/V e |) ∂L * e = 2R * 2 R * 2 2 -R * 1 2 I V e + C R * 2 2 -R * 1 2 ∂A 1 ∂L * e F 1 + ∂B 1 ∂L * e F 2 + R * 2 c * A f R * 2 ( 21 
As can be observed on this figure, the difference between the predictions of the two models remains very small. This is highlighted in Fig. 9(b) representing the relative error between the two predictions, taking the Bessel's solution as the reference. Indeed, the largest difference is for the smallest values of Ki (i.e.

for the largest values of E) and small values of the diffusion layer thickness. For the case under study, this difference does not exceed 6%.

These results show that the hybrid model remains robust if one is willing to estimate the optimal thickness of the electrode although it can significantly underestimate the current, in particular for the smallest values of the potential

when the condition 2L * e /(R * 1 + R * 2 )
1 is not satisfied.

The normalized optimal thickness predicted for the other microstructures (C and BCC), compared to the FCC structure, is represented in Fig. 10. Clearly, the dependence of L * e op on Ki is similar whatever the structure. This brings to the general conclusion that, whatever the microstructure, the optimal thickness decreases rapidly with the kinetic number and tends to a constant value for large values of Ki. Quantitatively, the comparison of the optimal thickness of the three structures must be made with care as L * op e and Ki are based on R which is not the same from one structure to another. For this purpose, a representation where p = d s (identical for C, BCC and FCC) is used as the reference length is given in the inset of Fig. 10. It shows that the optimal thickness for the BCC and FCC structures is almost the same (it is slightly larger for the former), but is larger for the C structure. The physical explanation of this behavior can be deduced after examining the reduced sensibility of L * between the three structures can be interpreted only considering a v . Since a v is not markedly different for the BCC and FCC structures (although slightly smaller for the former) but significantly smaller for the C structure (see Tables 1 and2), the expected variation of L * op e with respect to the structure is exactly that observed in Fig. 10 and mentioned above.

Finally, it is of interest to investigate which structure, among the three considered here, is the most efficient in terms of current production. Results of the current per unit length, L, of the electrode at its optimal thickness are represented in Fig. 12 for the C, BCC and FCC structures versus Ki. From this 0 0.5 1 1.5 2 

•

Ki

Relative error (%) 1.

L N = 100µm L N = 200µm 1 (b)
figure, it can be readily concluded that the FCC structure produces the largest current per unit length. In addition to the fact that it also allows the thinner optimal thickness, this structure is the most advantageous one among the three for the three structures. 1.

Planar electrode 266

For the sake of completeness, the case of a planar electrode is now investigated by providing the analytical solution for the current and optimal thickness. In this situation, the porous material is deposited onto a plane solid surface, as in the cases envisaged by Barnes et al. [15] and and Cai et al. [START_REF] Cai | [END_REF] , for instance.

Assuming that the extension of the electrode in both directions of the plane are much larger than the electrode thickness, the model reduces to one dimension, in the z-direction orthogonal to the plane. Using the same dimensionless variables as in section 4, the problem can be formulated as follows

∂ 2 c * A f ∂z * 2 -ϕ 2 c * A f = 0 0 ≤ z * ≤ L * e (22a) ∂ ∂z * ∂c * A ∂z * = 0 L * e ≤ z * ≤ L * e + L * N (22b) B.C.1 ∂ c * A f ∂z * = 0 z * = 0 (22c) B.C.2 c * A f = c * A z * = L * e (22d) B.C.3 D * eff ∂ c * A f ∂z * = ∂c * A ∂z * z * = L * e (22e) B.C.4 c * A = 1 z * = L * e + L * N (22f)
The analytical solution to the above system of equations is given by

c * A f =a 2 cosh(ϕz * ) 0 ≤ z * ≤ L * e (23a) c * A =b 2 z * + c 2 L * e ≤ z * ≤ L * e + L * N (23b)
where the coefficients a 2 , b 2 and c 2 have the following expressions

a 2 = cosh(ϕL * e ) + D * eff ϕL * N sinh(ϕL * e ) -1 (24a) b 2 = coth(ϕL * e ) D * eff ϕ + L * N -1 (24b) c 2 =1 -b 2 (L * e + L * N ) (24c) 
Using Eq. (23a) in Eq. ( 6), the current per unit volume, V e , can be written as

I/V e = - nF k 0 α A a v c 0 A ϕL * e coth(ϕL * e ) + D * eff ϕL * N ( 25 
)
Its derivative with respect to L * e can then be expressed as

∂ |I/V e | ∂L * e = - nF k 0 α A a v c 0 A ϕ ϕ(1 -coth 2 (ϕL * e ))L * e + coth(ϕL * e ) + D * eff ϕL * N coth(ϕL * e )L * e + D * eff ϕL * N L * e 2 (26) 
From these two last relationships, the optimal thickness can be determined by making use of Eq. (20). The results of this prediction is represented in Fig. 13 considering a FCC structure, L N = 100µm, L * e 0 = 1 and Ki up to 2 × 10 -3 , all the other parameters being those reported in Table 1. As a validation, 1.

the solution of the complete model in the limit R 1 → ∞ is also reported in this figure, showing that, in this limit, the two predictions perfectly match, as expected. This confirms that the complete solution is a general one, whatever the electrode dimensions. On the basis of this general result, the analysis can be carried on to determine the optimal radius, R * 1 op , of the supporting wire and this is the objective of the following section.

6 Optimal wire radius, R * 1 op A comparison of the results reported in Fig. 13 with those in Fig. 9(a) indicates that, all parameters being the same, the optimal thickness of the planar electrode is smaller than that of a cylindrical electrode having a finite radius. The contrast between the two is more significant when Ki decreases. This suggests to further analyze the dependence of L * op e upon the wire radius, R * 1 , for a given set of the physico-chemical parameters. More particularly, it is of interest to investigate the variation of the volume (per unit length, L) of the electrode at its optimal thickness, V op e /L, with respect to R * 1 . Such a variation is illustrated in Fig. 14, considering two values of Ki, namely Ki = 5 10 -4 and Ki = 10 -3 , taking L N = 100µm, all other parameters being those reported in Table 1 and a FCC structure. 1 for the other parameters). FCC structure. This figure clearly shows that V op e /L exhibits a minimum which means that there exists a particular value of R * 1 , denoted R * 1 op , which minimizes the volume of material necessary to achieve the optimal thickness. This is extremely important keeping in mind that the porous medium is usually made of expensive materials using complex procedures. In Fig. 15, 1 for the other parameters). FCC structure. the optimal wire radius decreases when Ki increases. Moreover, R * 1 for the other parameters). FCC structure.

suggests that the value of R * 1 op can be determined regardless the value of L N , i.e. as only a function of Ki when the microstructural parameters are fixed. This last analysis completes the optimization procedure of the electrode macroscopic dimensions as its thickness and supporting wire diameter can be predicted in order to obtain the optimal current per unit volume when the operating conditions and the microstructure of the porous material are known. This represents a major result of this work.

Conclusion

In this work, steady-state solutions of the macroscopic model describing the coupled process of electrochemical heterogeneous reaction and diffusion are developed for cylindrical and planar porous micro-electrodes.

The complete solution developed here provides a more accurate prediction of the current delivered by the electrode versus the applied potential than the hybrid model reported earlier which is recovered in the limit of a thickness to inner radius ratio much smaller than unity and which remains valid in this limit. Moreover, the complete solution also matches the one developed in the case of a planar electrode in the limit of exceedingly large radii. This makes the complete solution a general one, whatever the dimensions and microsctructure of the electrode, the characteristics of the latter being reflected in the porosity, specific area and effective diffusion coefficient. The use of this complete solution is strongly recommended particularly when the constraint on the dimensions is not satisfied.

More importantly, it is shown that an optimal radius of the supporting wire exists for a given set of the physico-chemical parameters defining the operating conditions of the electrode. This optimal radius is derived as to satisfy the minimum volume of the porous material required to ensure the optimal current per unit volume. This represents a salient result of the present work.

Together with the prediction of the current delivered by the electrode, the solution derived here allows for the determination of the electrode optimal dimensions in terms of its thickness and inner radius. This provides a complete and effective operational procedure of optimization of the macroscopic characteristics of cylindrical electrodes operating a single reduction reaction as a predictive tool for their practical design. As a final remark, it should be noticed that the approach developed here may be advantageously employed for the optimal design of other electrochemical devices devoted to energy production which architecture and operating conditions share similarities with those envisaged in this work.
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 2 Figure 2 -Unit cell of a FCC structure with the characteristic dimensions. The gray area corresponds to the fluid domain while the solid phase is not represented. Sperical pores are connected through windows of diameter d c .
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 33 Figure 3 -Cross section of a cylindrical electrode of external dimensionless radius R * 2 made of a porous material (gray area) deposited on a cylindrical wire of dimensionless radius R * 1 and surrounded by the diffusion layer which external dimensionless radius is R * 3 .
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  .4: c * A = 1 r * = R * 3 (7f) In B.C.1 and B.C.2, continuity of both the flux and the concentration is assumed at the porous electrode-diffusion layer interface (r * = R * 2 ). At the electrodewire interface, r * = R * 1 , a zero flux is considered whereas a Dirichlet boundary condition is used at the external boundary of the diffusion layer (r * = R *

in Fig. 4 (

 4 b) representing the absolute value of the relative error between the two models (the Bessel's solution is taken as the reference) showing that this relative error can reach about 12 % for the thickest electrode under consideration when the potential is close to 0V .

( 1 )Figure 4 -

 14 Figure 4 -(a) Current versus the scanning potential obtained from the hybrid model and Bessel's solution for the 5HL, 15HL and 30 HL electrodes. (b) Absolute value of the relative error between the two solutions taking the Bessel's solution as the reference.
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 5 Figure 5 -Unit cell of the C and BCC structures.

  at small electrode thicknesses followed by a slow convergence to zero at very large values of L * e . This suggests defining the optimal thickness, L * e op , as the crossover between these two regimes. Practically, this value is obtained at the intersecting point of the tangent to |I/V e | at L * e 0 with |I/V e |=0. The value of L * e 0 should be taken as the minimum thickness that is experimentally achievable, i.e., L * e 0 ≥ 1. The value of L * e op can hence be obtained from the following expression
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 6 Figure 6 -Current versus the scanning potential obtained from the hybrid model and Bessel's solution for the 5HL, 15HL and 30 HL electrodes: (a) cubic structure (C) (b) body-centered cubic structure (BCC).

Ki = 10 - 4 Ki = 10 - 3 1Figure 7 -

 1041037 Figure 7 -Normalized concentration profile of species A in the electrode for two values of the kinetic number. The dimensionless electrode thickness is L * e = 30 the other parameters being those in Table1.
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 318 Figure 8 -Variation of the current per unit volume, |I/V e |, obtained from Eq. (18) versus the electrode's dimensionless thickness, L * e , in the case of a FCC microstructure for Ki = 10 -3 and L N = 100µm. The other parameters used to compute the current per unit volume are provided in Table 1. The optimal thickness, L * e op , is obtained from the intersection of the tangent to this graph at L * e = L * 0 e with the axis |I/V e | = 0. See text for the details.
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  op to a v and D * eff that are reported in Fig. 11. It should be noted that the reduced sensibility of L * e op to the parameter u is defined as u∂L * e op /∂u. This figure shows that the reduced sensibility to a v is negative (i.e. L * e op increases when a v decreases) and is much larger in magnitude than that to D * eff . Consequently, the contrast on L * op e
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 9 Figure 9 -(a) Optimal thickness versus the kinetic number for two values of the diffusion layer thickness, obtained from the Bessel's solution and hybrid model (b) Absolute relative error between the two approaches taking the values obtained with the Bessel's solution as the reference. FCC structure. Parameters are those reported in Table1.
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 110 Figure 10 -Optimal thickness versus the kinetic number for C, BCC and FCC structures. L N = 100µm. For all structures, d c and d s are the same (seeTable 1) featuring different values of ε, a v , D * eff and R (see the values in Table 1 for the FCC and in Table 2 for the C and BCC structures respectively). All other parameters are the same and are reported in Table 1. Inset: L op e made dimensionless by the spherical pore diameter, p = d s , versus the pore kinetic number, Ki p =
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 11112 Figure 11 -Reduced sensibility of L * e op to a) a v and b) D * eff for the three structures C, BCC and FCC.
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 113 Figure 13 -Optimal thickness versus the kinetic number obtained for planar electrode and cylindrical electrode taking R 1 → ∞. L N = 100µm. FCC structure. All the parameters are those reported in Table1.

Ki = 5 × 10 - 4 Ki = 10 - 3 1Figure 14 -

 510410314 Figure14-Variation of the volume (per unit length, L) of the electrode at its optimal thickness, V op e /L, versus the dimensionless wire radius, R * 1 , for Ki = 5 10 -4 and Ki = 10 -3 , taking L N = 100µm (see Table1for the other parameters). FCC structure.

R * 1 op is represented versus Ki 20 in the range 10 - 4 ≤ 1 opL N = 100µm 1 Figure 15 -

 1201041115 Figure 15 -Variation of the dimensionless optimal wire radius, R * 1 op , versus Ki for L N = 100µm (see Table1for the other parameters). FCC structure.

1 1 opKi = 5 × 10 - 4 Ki = 10 - 3 1Figure 16 -

 1510410316 Figure16 -Variation of the dimensionless optimal wire radius, R * 1 op , versus L N for Ki = 5 10 -4 and Ki = 10 -3 (see Table1for the other parameters). FCC structure.
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 1 Porous micro-electrode, Optimal thickness, Optimal radius, Analytical solution, Normalized optimal thickness, L * e op , and optimal supporting wire radius, R * 1 op , of a cylindrical electrode as a function of the kinetic number, Ki (diffusion layer thickness: L N = 100µm).
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 2 Properties of C and BCC structures used in the simulations.
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 1 featuring different values of ε, a v , D * eff and R (see the values in Table1for the FCC and in Table2for the C and BCC structures respectively). All other parameters are the same and are reported in Table1. Inset: L op e made dimensionless by the spherical pore diameter, p = d s , versus the pore kinetic number, Ki p =
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