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This paper studies RANS turbulence modelling for a linear compressor cascade corner separation flow, using large-eddy simulation results as reference. The Boussinesq and the quadratic constitutive relations are investigated with two versions of Wilcox's k -ω turbulence model through a priori and a posteriori analyses. In the a priori analysis the quadratic constitutive relation shows improvement on the alignment between the rate-of-strain tensor and the Reynolds stress tensor for the inlet region, compared to the Boussinesq constitutive relation. But the improvement is less significant in the highly vortical region. Using the turbulent kinetic energy and the specific dissipation rate provides a fairly good estimate of the turbulent viscosity. The turbulent kinetic energy budget is also investigated. Large-eddy simulation results present non-equilibrium turbulence, i.e. the production and dissipation are not balanced, whereas the RANS models predicts equilibrium turbulence.

Introduction

The world aircraft fleet is expected to double within the next thirty years [START_REF] Tucker | Unsteady computational fluid dynamics in aeronautics[END_REF].

The resulting traffic increase will lead to economical and environmental challenges. The operation costs of jet engines have to be reduced. One strategy to reduce the operation costs and emissions of turbojet engines lies in the control of the secondary flows that develop within the compressor blade passages. These three-dimensional highly-vortical flows limit the blade loading and the efficiency, and affect the stability of the compressor. The control of these flows requires a fine understanding of their physics and the ability to accurately simulate their behaviour.

Corner separation is one of these secondary flows. It occurs where two orthogonal boundary-layers interact. For a compressor, it occurs at the junction of the end-wall (hub or casing) and the blade suction side. The presence of a strong pressure gradient in the compressor further complicates its behaviour.

Extensive efforts has been devoted to compressor corner separation through experiment [START_REF] Yocum | Separated flow in a low-speed twodimensional cascade: part I-flow visualization and time-mean velocity measurements[END_REF][START_REF] Yocum | Separated flow in a low-speed twodimensional cascade: part II-cascade performance[END_REF][START_REF] Gbadebo | Influence of surface roughness on three-dimensional separation in axial compressors[END_REF][START_REF] Gbadebo | Three-dimensional separations in axial compressors[END_REF][START_REF] Gbadebo | Interaction of tip clearance flow and three-dimensional separations in axial compressors[END_REF][START_REF] Ma | Intermittent corner separation in a linear compressor cascade[END_REF] and numerical simulations [START_REF] Hah | Development of hub corner stall and its influence on the performance of axial compressor blade rows[END_REF], but its physics is neither entirely understood nor mastered.

Computational fluid dynamics (CFD) is essential in modern turbomachinery development. Reynolds-averaged Navier-Stokes (RANS) is the most common type of methods used in industry. RANS provides a 3D viscous description of the averaged flow, where the effects of turbulence are modelled, and its computational cost is affordable in a design cycle. However, it tends to over-predict the size and intensity of the corner separation [START_REF] Liu | Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity[END_REF][START_REF] Liu | Modified k-ω model using kinematic vorticity for corner separation in compressor cascades[END_REF][START_REF] Gao | Largeeddy simulation of 3-D corner separation in a linear compressor cascade[END_REF]. Bordji et al. [START_REF] Bordji | Investigation of a nonlinear Reynolds-averaged Navier-Stokes closure for corner flows[END_REF] reported that the quadratic constitutive relation (QCR) [START_REF] Spalart | Strategies for turbulence modelling and simulations[END_REF] yielded better results, for external aerodynamics. Regarding internal flows, Su and Yuan [START_REF] Su | Improved compressor corner separation prediction using the quadratic constitutive relation[END_REF] report an improvement on the simulation of corner separation with the QCR. Both Bordji et al. and Su and Yuan applied the QCR to the Spalart-Allmaras turbulence model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF]. Beside RANS, large-eddy simulation (LES) is a different approach that relies on a direct description of the large turbulent eddies [START_REF] Sagaut | Large Eddy Simulation for Incompressible Flows: An Introduction[END_REF]. It can simulate highly vortical flows [START_REF] You | Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow[END_REF][START_REF] Boudet | Zonal large-eddy simulation of a fan tip-clearance flow, with evidence of vortex wandering[END_REF], including corner separation [START_REF] Gao | Advanced numerical simulation of corner separation in a linear compressor cascade[END_REF][START_REF] Gao | Largeeddy simulation of 3-D corner separation in a linear compressor cascade[END_REF][START_REF] Gao | Unsteady behavior of corner separation in a compressor cascade: Large eddy simulation and experimental study[END_REF], better than RANS simulations but at a much greater computational cost.

In the present paper the turbulence characteristics, including Reynolds stresses and turbulent kinetic energy (TKE) budget, are analysed on a plane downstream of a corner separation, using LES [START_REF] Gao | Largeeddy simulation of 3-D corner separation in a linear compressor cascade[END_REF], and compared with RANS results. Beforehand, the extraction of the TKE budget for LES is validated on a flatplate boundary-layer test case against a direct numerical simulation (DNS) by Jiménez et al. [START_REF] Jiménez | Turbulent boundary layers and channels at moderate Reynolds numbers[END_REF]. The Boussinesq hypothesis, underlying many common RANS approaches, along with the QCR, are analysed using LES as reference.

Test-case and solver

The corner separation test-case represents a passage of a NACA65 linear compressor cascade experimentaly studied by Ma [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF] (see also [START_REF] Ma | Experimental Study of Corner Stall in a Linear Compressor Cascade[END_REF][START_REF] Ma | Intermittent corner separation in a linear compressor cascade[END_REF]) and Zambonini [START_REF] Zambonini | Corner separation dynamics in a linear compressor cascade[END_REF] (see also [START_REF] Zambonini | Unsteady pressure investigations of corner separated flow in a linear compressor cascade[END_REF][START_REF] Zambonini | Unsteady dynamics of corner separation in a linear compressor cascade[END_REF]).

The corner separation case has been numerically studied by Gao [START_REF] Gao | Advanced numerical simulation of corner separation in a linear compressor cascade[END_REF] (see also [START_REF] Gao | Largeeddy simulation of 3-D corner separation in a linear compressor cascade[END_REF][START_REF] Gao | Unsteady behavior of corner separation in a compressor cascade: Large eddy simulation and experimental study[END_REF][START_REF] Gao | Parameter study on numerical simulation of corner separation in LMFA-NACA65 linear compressor cascade[END_REF]). The LES simulation (in ref [START_REF] Gao | Advanced numerical simulation of corner separation in a linear compressor cascade[END_REF]) is used as a reference database for the present work.

All simulations have been carried out with Turb'Flow , an in-house compressible solver that allows LES and RANS simulations. Readers are referred to ref. [START_REF] Boudet | Numerical studies towards practical large-eddy simulation[END_REF] for further information about Turb'Flow .

Geometry and dimensions of the computational domain

The experimental compressor cascade is composed of 13 identical NACA 65-009 blades, whose camber angle has been modified to 23.22 • . The original geometry and the modifications can be found in the theses of Zambonini [START_REF] Zambonini | Unsteady dynamics of corner separation in a linear compressor cascade[END_REF] and Gao [START_REF] Gao | Advanced numerical simulation of corner separation in a linear compressor cascade[END_REF]. The blade chord length is c = 150mm, the stagger angle γ = 42.7 • , the pitch length s = 134.0mm and the span length h = 370.0mm. The passage is simulated up to one and a half chord length upstream of the blade leading edge and two chord length downstream of the blade trailing edge. In order to restrain the computational cost in LES, only a half of the channel span was simulated (h/2 = 185.0mm), with a symmetry condition. The same half channel is simulated in RANS, in order to be comparable. The stream-wise direction is denoted x 1 , the pitch-wise direction x 2 and the span-wise direction x 3 , as shown in figure 1.

Flow characteristics

The free-stream velocity is set to the same value as for the experiment, i.e. u e = 40m.s -1 . It yields a Mach number M ≈ 0.12, and the flow can be considered as incompressible. The reference density is ρ e = 1.177kg.m -3 , and the dynamic viscosity is µ = 1.81 × 10 -5 kg.m -1 s -1 , yielding a chord based Reynolds number Re c = 3.82 × 10 5 . All simulations are carried out at the incidence angle 4 • .

Mesh

Two different meshes are considered, a wall-resolved LES mesh and a RANS mesh.

The LES uses an HOH blade-to-blade mesh duplicated 481 times along the span-wise direction. A 2D representation (blade-to-blade plane) of the mesh (truncated upstream and downstream) is shown in figure 1. The cell dimensions at the walls (blade and end-wall) satisfy: less than 60 in the flow direction, ∆y + 2 in the wall-normal direction on the blades and the end-wall, and less than 30 in the cross-flow direction near the blade and the end-wall. The a posteriori calculated ∆y + values on the blade and the end-wall are shown in figure 2. This allows resolving of the main turbulent structures near the walls. The tripping bands used to force the laminar/turbulent transition in the experiment (3.0mm wide by 0.3mm thick, located at 6.0mm from the leading edge, more details in [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF]) are reproduced in the LES by steps (removal of some grid points) at the same locations. The total grid point number is about 2 × 10 8 .

The RANS uses a similar but coarser mesh as used in the LES. The 2D blade-to-blade mesh is duplicated 77 times along the span-wise direction. The refinement is chosen to yield a wall-normal cell size ∆y + 2 [START_REF] Gao | Advanced numerical simulation of corner separation in a linear compressor cascade[END_REF]. The values of ∆y + on the blade and the end-wall are given in figure 2. The RANS simulations are fully turbulent, and the tripping bands are discarded. The total number of points is about 2.8 × 10 6 , which is consistent with other RANS studies on corner separation [START_REF] Su | Improved compressor corner separation prediction using the quadratic constitutive relation[END_REF]. 
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Boundary conditions

Generating a turbulent inflow for LES is a burning issue. In order to provide a physically-sound turbulent boundary layer to the LES, a flat-plate boundary layer simulation using three-dimensional, wall resolved LES is realised in parallel with the passage simulation. The instantaneous density and velocity vector are extracted on a plane from this simulation at the location where the timeaveraged displacement thickness equals the experimental value at the inlet of the blade passage. The flat-plate simulation has a limited pitch-wise extension (∼ δ, with δ the boundary-layer thickness at the blade passage inlet) which is repeated periodically to feed the blade passage inlet. In the free-stream region, due to the weak intensity of turbulence, the quantities are averaged in space and imposed at the inlet plane of the blade passage. This ensures consistent inflow conditions between the LES and the experiment. An illustration of the inflow generation is given in figure 3. The flat-plate domain is ∼ 76δ long, its width is 1/4s (∼ δ) and its height is ∼ 2δ. The total number of points in the flat-plate domain is around 1 × 10 8 . The turbulent transition for the flat plate is triggered by a tripping band represented by a step in the grid. The band is located at Re x = 1.3 × 10 6 , and measures 4.8mm long by 0.673mm thick, and it is modelled by removing cells from the smooth mesh. For the inflow of the RANS simulations, a two dimensional steady RANS simulation of a flat-plate boundary-layer is carried out. As for the LES, profiles are extracted at the location where the displacement thickness matches the experimental value. The density, the three components of velocity, and the two turbulent variables are imposed as inlet profiles.

Tripping band

The pitch-wise boundary condition is set to periodic for all simulations. The boundary condition at mid-span is set as symmetric, in all simulations. All walls are set as no-slip adiabatic.

The outlet boundary condition is set to a partially non-reflective pressure condition for all simulations. In LES, a particular attention has been paid to the correct evacuation of the numerical acoustic waves at the outlet. In order to damp the unwanted numerical reflections, the mesh is stretched in the streamwise direction and an explicit filter [START_REF] Bogey | Three-dimensional non-reflective boundary conditions for acoustic simulations: far field formulation and validation test cases[END_REF] is implemented for the last 20 grid planes (whose normals are in the stream-wise direction). The filter is also used near the blade leading and trailing edges over five grid points in the whole span, in order to smooth the oscillations present close to stagnation points.

Numerical schemes

The spatial scheme used for the inviscid fluxes is a four-point centred scheme from Jameson [START_REF] Jameson | Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[END_REF], with a fourth-order artificial viscosity (coefficient: 0.002 for the LES, 0.02 for the RANS simulations, see [START_REF] Boudet | Implementation of a roughness element to trip transition in large-eddy simulation[END_REF] for its definition). The spatial scheme for the viscous fluxes is a two-point centred scheme for all simulations.

For the LES, the temporal scheme is a three-step Runge-Kutta scheme with a constant time step of 2.5 × 10 -8 s, yielding a Courant-Friedrichs-Lewy (CFL) number of 0.95 based on the minimum grid size 1.0 × 10 -5 m, the reference velocity 40 m.s -1 and the speed of sound 340 m.s -1 . For RANS simulations, a five-step Runge-Kutta scheme is used for the time discretisation with a local variable time step at a CFL number 0.7 (based on local grid size, local velocity and local speed of sound). Given that the simulations are realised at a low Mach number, a low-Mach preconditioning [START_REF] Weiss | Preconditioning applied to variable and constant density flows[END_REF] is applied for all RANS simulations.

Subgrid-scale/Turbulence models

The SISM subgrid-scale (SGS) model [START_REF] Lévêque | Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows[END_REF] is used in the LES. The characteristic frequency of the exponential averaging used in the model is calculated based on the free-stream velocity u e and the chord length c, as 2u e /c = 533Hz.

For RANS simulations, three turbulence models are used: the original Wilcox k -ω turbulence model [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF] (referenced as 'original k -ω' thereafter), the quadratic Wilcox k -ω turbulence model [START_REF] Spalart | Strategies for turbulence modelling and simulations[END_REF] 1 ('QCR k -ω'), and the modified Wilcox k -ω turbulence model [START_REF] Liu | Modified k-ω model using kinematic vorticity for corner separation in compressor cascades[END_REF] ('modified k -ω').

In the modified k -ω turbulence model, the production of ω is multiplied by a factor f r 1 defined as follows:

f r 1 = - 1 2π arctan 5 Ω S -1.2 + 0.75 (1) 
with S being the modulus of the mean strain-rate tensor and Ω the modulus of the mean rotation tensor.

Grid independence

In order to assess the grid independence of the RANS simulations, a finer mesh has been tested for the original k -ω simulation. For this new mesh, referenced to as the 'refined mesh', the number of grid points is doubled in each direction, compared to the original mesh. The total number of points of the refined mesh is about 16 × 10 6 points. The wall-normal cell size is halved (y + 1, and y + 0.4 in the corner separation area) compared to the original mesh.

The grid convergence is assessed for the mean pressure coefficient (whose formulation is given in equation ( 2) around the blade. Figure 4 plots the blade mean pressure coefficient from mid-span to near the end-wall. The span-wise locations where the mean pressure coefficient is extracted are presented thereafter, in figure 8.

For all the span-wise positions, the pressure coefficient show very little difference between the simulations with the original mesh and the refined mesh.

The original mesh is sufficiently refined to yield the correct physics. From this point on, all the results presented are based on the original mesh.
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Statistics

For LES, which is naturally unsteady, the transient regime at the beginning of the computation corresponds to the phase of numerical convergence. Additional ten flow-through periods (defined as the ratio between the chord length c and the free-stream velocity u e ) have been simulated to collect statistics, after the transient regime. These generates during 40.25ms, with one sample every 50µs (2000 iterations), 805 samples.

For the RANS simulations, convergence is assessed by the residuals. The mean values of the conservative variables are directly provided by the steady solution.

Mean flow results

This section presents the mean flow characteristics. Prior to this, a visualisation of the corner separation (using Q-criterion and pressure coefficients) is presented in figure 5 with the LES solution.

First, the flow is visualised through limiting streamlines over the blade and endwall surfaces. Some results on the mean values, such as the static pressure coefficient around the blade or the total pressure losses, are presented to evaluate the overall performance of the LES and RANS simulations. Then, the Reynolds stresses are analysed on a plane downstream of the blade trailing edge.

Another more detailed characterisation of the LES can be found in ref. [START_REF] Gao | Largeeddy simulation of 3-D corner separation in a linear compressor cascade[END_REF],

with, for instance, the ratio of the SGS dissipation to the total dissipation (lying between 0.0 and 0.85 for the entire domain).

Limiting streamlines

The limiting streamlines over the blade suction side surface and the passage endwall are presented in figure 6 

Static and total pressure coefficient

In order to gauge the performance of the simulations, the mean static and total pressure coefficients calculated with the LES and RANS solutions are compared with the experimental results [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF]. The mean static pressure coefficient is defined as:

Cp = p -p e 0.5ρ e u 2 e (2) 
with p the local mean static pressure, p e the inflow mean static pressure, ρ e the inflow freestream density and u e the inflow freestream velocity. The mean total pressure loss coefficient is defined as: A sudden and important static pressure drop is visible at the trailing edge. This is a known feature of steady simulations, reported by Denton [START_REF] Denton | Some limitations of turbomachinery CFD[END_REF] as the difficulty to capture the separation at the trailing edge.

Cp t = p te -p t p te -p e (3) 
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The total pressure loss coefficients on the plane 'outlet 1' are shown in figure 10. The experimental and LES total pressure losses are very similar, differ-
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x 3 /h = 13.5% improves the intensity of the losses compared to the original Wilcox model, but not the size or the shape of the loss region. The corner separation wake remains too wide and too curved compared with the experimental or LES results.
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Reynolds stresses

The RANS turbulence models affect the Navier-Stokes equations through the Reynolds stresses. Their accurate description is important for reliable and accurate simulations. The Reynolds stresses are defined as :

∀(i, j) ∈ [[ 1 ; 3 ]] 2 , τ tij = -ρu i u j (4)
with u the fluctuation of the velocity u and ρ its local density. The Reynolds stresses are modelled in the RANS simulations via the Boussinesq constitutive relation (for the original and modified k -ω simulations) presented in eq. ( 5), and the QCR presented in eq. ( 6). All the constitutive relations use a turbulent viscosity, denoted µ t , calculated as

µ t = ρ [k] / [ω].
Note that for a given quantity ϕ, the ensemble average is denoted ϕ and The differences between the LES and RANS Reynolds stresses remain significant. In order to explain this mismatch, the RANS turbulence modelling is investigated in two steps. First, the hypotheses of alignment and proportionality for both the Boussinesq and the QCR formulations are analysed. Then, the TKE budget modelled in the RANS is compared to that resolved by the LES.

Constitutive relation analysis

Alignment criterion and turbulent viscosities

Constitutive relations

The Boussinesq constitutive relation, used in both the original and modified k -ω models, assumes the Reynolds stress tensor satisfies:

τ t + 2 3 ρ [k] I 3 = µ t σ (5) 
with τ t the Reynolds stress tensor, I 3 the identity tensor and σ the mean zerotrace strain rate tensor. In LES, both the Reynolds stress tensor and the mean zero-trace strain rate tensor3 ([ σ]) are known independently, so the relation in eq. ( 5) can be tested.

The other constitutive relation tested, the QCR, relies also on a tensorial relation:

τ t + 2 3 ρ [k] I 3 = µ t σ + c QCR ( σ O -O σ ) (6) 
with O being the normalised rotation tensor.

The evaluation is carried out in two steps: first the alignment of the lefthand side and the right-hand side tensors is evaluated, then the magnitude are compared.

Alignment criterion

The alignment between the tensors of the Boussinesq constitutive relation is measured using an indicator, as given in eq.( 7). The present indicator is similar to that of Schmitt [START_REF] Schmitt | About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity[END_REF], but is able to discriminate aligned and antialigned tensors. Two tensors are anti-aligned if they are aligned with opposite

directions. An example of anti-aligned vectors is given in figure 13.

Υ = τ k t : σ τ k t σ (7) 
with:

τ k t = -ρu i u j + 2 3 ρ k I 3 (8) 
and

[ k] = -0.5τ tii / ρ .
Similarly 13, with vectors in place of tensors. The alignment indicator is adapted to the QCR as follows:

A B C D E Υ Schmitt (A,B) = 1.00 Υ Schmitt (A,C) = 0.86 Υ Schmitt (A,D) = 0.00 Υ Schmitt (A,E) = 1.00 Υ(A,B) = 1.00 Υ(A,C) = 0.86 Υ(A,D) = 0.00 Υ(A,E) = -1.00 π/6
Υ QCR = τ k t : σ QCR τ k t σ QCR (9) 
with: Given the LES data available, a first approach is to reconstruct a reference turbulent viscosity as the ratio of the tensor norms:

σ QCR = σ + c QCR ( σ O -O σ ) (10 
µ (0) t = τ k t σ ; µ (0)QCR t = τ k t σ QCR (11) 
If the tensors are aligned, i.e. Υ = 1.0 (resp. Υ QCR = 1.0), this value is the turbulent viscosity that verifies the Boussinesq constitutive relation (resp.

QCR).

The turbulent viscosity is estimated by the RANS k-ω models as:

µ (1) t = ρ k [ ω] (12) 
The turbulent viscosity µ t can also be computed from the LES results with

[ ω] = [ ε]([ k]C µ ) -1
, C µ = 0.09, and [ ε] derived from the turbulent kinetic energy budget equation as:

ρ [ ε] = τ ij ∂u i ∂x j Viscous dissipation + Π ij ∂u i ∂x j SGS dissipation (13) 

Alignment analysis

The alignment is evaluated by the Υ indicator (resp. Υ QCR indicator), plotted as probability density functions (PDF) and cumulative distribution functions (CDF). Concerning the PDF (for instance, in Fig. 15), there are two sets of bars, a left black bar with a right green bar for each Υ value. A pair of bars occupies a range of 0.05. The black one (resp. green one) represents the mass weighted percentage of points with Υ (resp. Υ QCR ) in the given 0.05 range.

The CDF is the integration of the PDF made from -1 upward. Practically, the ordinate corresponding to the abscissa Υ = 0.86 (resp. Υ QCR = 0.86) represents the mass weighted percentage of points for which the Boussinesq constitutive relation (resp. QCR) is not valid.

The analysis focuses on the regions where turbulence is significant. Only the points whose turbulence intensity (defined as

(2/3[ k]/([ u i ][ u i ])) 1/2
) is superior to 5% contribute to the PDF and CDF. This value is chosen so that the corner separation wake and the blade wake are included in the analysis. In order to be grid independent, each point considered is weighted by its mass, calculated as the Jacobian determinant at that point (homogeneous in a control volume) times the density. The analysis focuses first on the entire domain, which includes the inlet domain, the passage domain and the outlet domain, as presented in figure 14. Then, each individual domain is analysed separately.

Inlet

Outlet P a s s a g e point number of the inlet domain represents 6% of that of the entire domain.

The PDF and CDF of the inlet domain are plotted in figure 16. Contrary to expectations, the Boussinesq constitutive relation does not perform better on this canonical flow in the inlet domain. The distribution is similar to the one of the entire domain, with a peak in the interval [0.7, 0.75], except there is no negative alignment. The CDF shows that the overall alignment is even worse, with 97% of the points invalid for the Boussinesq constitutive relation.

In comparison, the QCR presents a significant improvement in this area. The peak of the PDF is in the interval [0.95, 1.0], and the CDF shows that the constitutive relation is valid, in terms of alignment, for 76% of the points. The QCR has an important effect on this canonical flow. This may be partly due to the fact that the coefficient was calibrated in the outer region of a simple boundary layer [START_REF] Spalart | Strategies for turbulence modelling and simulations[END_REF].

The passage domain, located in-between the blades, presents three boundary layers: at the end-wall and on both sides of the blades. The interaction of the end-wall and suction-side boundary layers under adverse pressure gradient forms the corner separation. The flow is three dimensional and vortical, and is more complex than the inlet domain boundary layer. The mass-weighted point number of this domain accounts for 48% of that of the entire domain, considering turbulence intensity greater than 5%. Around 2% of the points are anti-aligned, for both the Boussinesq and the quadratic constitutive relations.

The Boussinesq constitutive relation yields similar results to the inlet domain.

Inspecting the CDF, the Boussinesq hypothesis is valid for 7% of the points. The QCR yields better results in terms of tensor alignment, but the improvement is limited compared to the inlet domain. The peak of the PDF is inside the area where the alignment hypothesis is valid, but the CDF indicates that the QCR is valid for only 43% of the points.

The last domain is located at the outlet, where the wake of the corner separation develops. The flow is again three-dimensional and highly vortical. The number of points from this domain, weighted by the mass, represents 46% of that of the entire domain. The Boussinesq constitutive relation gives similar results, with slight improvement. Almost all the anti-aligned points of the entire domain are located in the outlet part, in the corner separation wake.

Concerning the QCR, the improvement is visible compared to the Boussinesq constitutive relation, but is less significant than for the upstream domains. In this complex wake region, the QCR behaviour, in terms of tensor alignment, is much closer to the Boussinesq constitutive relation. The CDF shows that the amount of aligned points with QCR is comparable to the Boussinesq results: 25% of aligned points for Υ QCR , close to the value 12% for Υ. This result is counter-intuitive. Given that the formulation of the QCR explicitly contains 415 a normalised rotation tensor, it was expected to be more effective in highly vortical areas. It is first remarkable that the LES turbulent viscosity computed as µ 

Turbulent viscosity comparisons
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Turbulent kinetic energy budget

The turbulent kinetic energy (TKE) budget, also called turbulence budget, allows to understand the distribution of the TKE terms, between production, dissipation and transport. However, due to the difficulty to measure the combined statistics, it is impossible to directly obtain the TKE budget with the experiment. In this regard, DNS and LES offer an interesting alternative for such an in-depth physical analysis of turbulence.

The LES momentum equation is rearranged to obtain the Reynolds stress budget equation, following the method of Bogey and Bailly [START_REF] Bogey | Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation[END_REF]. Then the diagonal terms are summed to achieve the following TKE budget formulation:

0 = ∂ ρk ∂t = - ∂ ∂x j ( ρk [ u j ]) Advection -ρu i u j ∂ [ u i ] ∂x j Production - ∂ ρku j ∂x j Turbulent diffusion - ∂ u i p ∂x i Pressure Diffusion + p ∂u i ∂x i Pressure dilatation -u i ∂ p ∂x i
Fluctuating velocitypressure gradient correlation

+ ∂ τ ij u i ∂x j Viscous diffusion -τ ij ∂u i ∂x j Viscous dissipation + ∂ Π ij u i ∂x j SGS diffusion -Π ij ∂u i ∂x j SGS dissipation +Ξ Numerical residual (14) 
with Π the sub-grid scale stress tensor [START_REF] Boudet | Numerical studies towards practical large-eddy simulation[END_REF] and Ξ the numerical residual term, computed as the opposite value of the sum of all the other terms.

In RANS with a k -ω model, the TKE budget is modelled by the k equation [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF]. The Wilcox k -ω model is known to over-predict k production where anisotropy is important [START_REF] Strahle | Stagnation point flows with freestream turbulence -The matching condition[END_REF]. Consequently, a k-production limiter [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF] is implemented in the solver, in the form of a clipping of the k-production term, when the k-production term is superior to ten times the k-dissipation term. This limiter does not usually appear in the k equation, but it is explicitly introduced in the budget, as a dissipative term Λ. Moreover, the k equation being directly solved in RANS, the sum of all the other terms except the production limiter is negligible. Thus, the numerical residual represents directly the opposite of the production limiter.

∂ ρ [k] ∂t = τ t,ij ∂ [u i ] ∂x j Production - ∂ ρ [k] [u j ] ∂x j Advection + ∂ ∂x j µ ∂ [k] ∂x j Molecular diffusion + ∂ ∂x j µ t σ k ∂ [k] ∂x j Turbulent transport & pressure diffusion -c k ρ [k] [ω] Dissipation +Λ k production limiter +Ξ Numerical residual (15) 
Note that τ t,ij is computed with either the Boussinesq constitutive relation (for the original and modified k -ω models) or the QCR (for the QCR k -ω model).

Validation on a flat plate case

The implementation of the budget extraction for LES is validated on a flatplate boundary layer simulation, against DNS results from Jiménez et al. [START_REF] Jiménez | Turbulent boundary layers and channels at moderate Reynolds numbers[END_REF].

The characteristics of flow, mesh and numerical schemes are chosen as similar as possible to those of the corner separation case, and the simulations are realised with the same solver. The boundary-layer is described up to Re the sum of all budget terms. The budget terms are normalised by (ρ 2 e u 2 e )/µ. The budget evolution is analysed against the sample time used for its calculation, to check its convergence. For a given sample time, a term is calculated by the integral of its absolute value over the height, and divided by the production term computed with the maximal sample time. Figure 19 shows the budget evolution terms remains unchanged with sample time, indicating the statistical convergence is satisfactory. However, a non null numerical residual is observed. This term is stationary, indicating that the numerical residual is not due to an insufficient statistical convergence, but a stationary numerical dissipation.

Sample duration [ms]

The budget computed over the maximal sample duration is compared to the DNS results from Jimenez et al. [START_REF] Jiménez | Turbulent boundary layers and channels at moderate Reynolds numbers[END_REF]. The results are presented on the left subplot of figure 20. The comparison with DNS shows that the LES is able to describe the TKE budget. The production and transport terms of the LES are very close to the DNS, and the difference on the dissipation term remains moderate. The viscous diffusion term is slightly over estimated, whereas the pressure dilatation and turbulent diffusion term is slightly underestimated. The numerical residual is negative, thus acting as a numerical dissipation. The numerical dissipation is maximal at x + 2 ≈ 10, but remains smaller than the other terms. In order to summarise the physical meaning of the terms, the pressure dilatation and turbulent diffusion term, the advection term and the viscous diffusion term are grouped into a single transport term. The results are presented on the right subplot of figure 20. The sum of the dissipation term and the numerical residual term is also plotted. The transport term presents very good agreement with the DNS. This means that the transport mechanisms of the TKE is appropriately predicted. When the dissipation and the numerical dissipation are summed, the resulting term is very close to the DNS dissipation term. The numerical residual represents various numerical effects that are not taken into account by the viscous and SGS dissipation. Among these effects, we can cite the effects of the numerical schemes, the effects of the mesh, or the effects of the computational method (finite difference) used to compute the TKE budget. These effects arise partly because the TKE budget equation is not directly solved, but reconstructed. Consequently, non-conservative effects can develop.

Finally, the LES gives excellent results close to the wall (x + 2 3), where the three physical terms agree well with the DNS.

Although the LES results present more numerical dissipation than the DNS, the prediction of the different terms is considered correct enough to be exploited for a physical analysis. This behaviour is common for LES TKE budget extraction. For example, a similar amount of numerical dissipation can be found in the work of Schiavo et al. [START_REF] Schiavo | Turbulent kinetic energy budgets in wall bounded flows with pressure gradients and separation[END_REF].

Application to the corner separation case

The TKE budget terms are extracted on the 'outlet 1' plane. In order to facilitate the comparison, the terms are grouped by their physical meaning, as done during the flat-plate validation: the production term and the numerical residual term are left isolated, while the dissipation is the sum of the viscous and SGS dissipations and the transport is the sum of the remaining terms (among which the SGS diffusion). Thus, the SGS terms are included in the group terms that are plotted. For the RANS simulations, the numerical residual presents directly the opposite of the production limiter. The numerical residual is presented first, in order to gauge the quality of the budget extraction.

LES

Original k-𝜔 Modified k-𝜔 QCR k-𝜔 The numerical residual term on the 'outlet 1' plane is presented in figure 21.

It is negative, thus corresponding to a dissipative effect. For the LES, this term is not negligible compared to the other budget terms (in Figs 22, 23 and 24) but remains moderate. Its amplitude is smaller than a quarter of the amplitude of the production and dissipation, thus its impact on the budget does not modify the physical analysis.

The three RANS simulations show a significant numerical residual corresponding to the activation of the k-production limiter, which clips the production if it is more than ten times the dissipation. This behaviour is expected,

given that the limitation is to occur in areas of high anisotropy. The three RANS simulations show a similar activation of the k-production limiter, inside the wake of the corner separation, where the flow is highly vortical. does not show such a strong improvement.

LES Original k-𝜔 Modified k-𝜔 QCR k-𝜔

Conclusion

The main objective of the present work was to characterise in detail the behaviour of classic RANS models in a corner separation flow. The characterisation has been made through various aspects, from the analysis of the Reynolds stress tensor to the term-to-term comparison of the modelled TKE budget equation, using LES results as reference.

The three RANS models fail to accurately predict the Reynolds stresses.

Both the topology and intensity are wrongly estimated. Among the three mod- 

Figure 1 :

 1 Figure 1: LES mesh around the blade. Every fourth point in each direction is plotted.

Figure 2 :

 2 Figure 2: ∆y + on the blade and the end-wall surfaces for LES and RANS, extracted from Gao [19].

Figure 3 :

 3 Figure 3: Corner separation inflow configuration, from Gao[19].

Figure 4 :

 4 Figure 4: Mean static pressure coefficient around the blade at various span-wise positions.

Figure 5 :

 5 Figure 5: Visualisation of the LES flow field. Left: instantaneous Q criterion iso-surface (Q = 1 × 10 7 s -2 ). Right: Mean pressure coefficient on the blade and the end-wall, and mean total pressure coefficient at the outlet of the blade passage. The same scale and colourmap are used for Cpt in both figures.

  for all the simulations. These indicate the extent of the corner separation over the blade surface. For the LES, the separation occurs around mid-chord, and covers around one third of the half-span presented here. Compared to the LES, all RANS simulations over-estimate the corner separation. The separation occurs further upstream, and covers about one half of the half-span presented. The simulation with the original k -ω model predicts the largest corner separation region. The modified k -ω model gives a slightly reduced corner separation compared to the original k -ω but still larger than the LES. The QCR k -ω model gives a better estimation of the node-saddle (NS) point position, but the extent of the corner separation is over-predicted over the span. The focus points predicted by the QCR k -ω model are slightly upstream of those predicted by the original k -ω one. The position the end-wall focus point indicates that the corner separation in the QCR k -ω is smaller than in the other RANS simulations. A direct comparison of the topologies by all simulations is given in figure 7.

Figure 6 :

 6 Figure 6: Limiting streamlines of the mean flow for the LES and the RANS simulations. For the RANS simulations, focus points (F) of the blade and the endwall are shown. For each simulation, the node-saddle (N-S) point at the junction of the blade and the end-wall, where the corner separation begins, is marked. The green line represents the edge of the separation on the blade suction side.

Figure 7 :Figure 8 :

 78 Figure 7: Comparison of the size of the corner separations. 'F' indicates the focus points. 'N-S' represents the node-saddle points at the junction of the blade and the end-wall, where the corner separation begins.

Figure 9 :Figure 10 :

 910 Figure 9: Mean static pressure coefficient around the blade at various span-wise positions. The vertical bars on the experimental results indicate the measurement uncertainties.

Figure 11 :Figure 12 :

 1112 Figure 11: τ t11 on the plane 'outlet 1', normalised by ρeu 2 e .

Figure 13 :

 13 Figure 13: Illustration of the tensor alignment criterion. The grey cone represents the area where the Boussinesq constitutive relation is considered valid.

)

  Magnitude assessment: turbulent viscosityThe second step of the constitutive relation assessment compares the magnitude of the tensors. The turbulent viscosity represents the proportionality coefficient between the Reynolds stress tensor and the constitutive relation tensor (i.e. σ for the Boussinesq constitutive relation and σ QCR for the QCR).

Figure 14 :Figure 15 :Figure 16 :

 141516 Figure 14: Domains used for the alignment criterion analysis.

Figure 17 :

 17 Figure 17: Turbulent viscosities on the 'outlet 1' plane. The a priori values from the LES results, defined by eqs. 11 and 12, are presented in the first row. The a posteriori values obtained with the RANS simulations are presented in the second row. All the turbulent viscosities (a priori and a posteriori) are normalised by the reference molecular viscosity µ.

  turbulent viscosities ob-420 tained directly with the RANS simulations (a posteriori values). The turbulent viscosities are plotted on the 'outlet 1' plane, and normalised by the reference dynamic viscosity µ = 1.81 × 10 -5 kg.m -1 .s -1 .

ρ

  [ k]/[ ω] is of a comparable order of magnitude as the RANS turbulent viscosities computed as µ t = ρ [k]/[ω], where [k] and [ω] are provided by the transport equations of the models. As already observed with the Reynolds stresses, RANS simulations are unable to correctly predict the size of the corner separation, where the turbulent viscosity is maximal. The reference turbulent viscosities µ (0) t are of the same order of magnitude as the RANS turbulent viscosities µ t . The similarity between µ (0) t and µ (0)QCR t values indicates the QCR bears no significant modification on the norm of the constitutive relation tensor. Finally, the µ (1) t estimate yields high values inside the corner separation wake (near x 2 /s = 1.1 and x 3 /h = 0.05) whereas the reference µ (0) t is more concentrated around the separation border (x 2 /s ≈ 1.3 and x 3 /h ≈ 0.15). This is a deficiency of estimating µ t as ρ [ k]/[ ω].

x = 1 . 3 × 1 60, ∆x + 2 2 and ∆x + 3 30 .

 131230 scheme for the inviscid fluxes is a 4-point Jameson centred scheme, with a fourthorder artificial viscosity (coefficient: 0.002, see[START_REF] Boudet | Implementation of a roughness element to trip transition in large-eddy simulation[END_REF] for its definition). A 2-point centred scheme is used for the viscous fluxes. The temporal discretisation uses

Figure 19 :

 19 Figure 19: TKE budget terms against duration time. The terms are normalised by the production term computed with the maximal sample duration.

Figure 20 :

 20 Figure 20: TKE budget in a flat-plate boundary layer, extracted at Re δ 2 = 1968. Left : the terms are presented separately. Right : the pressure dilatation and turbulent diffusion term, the advection term and the viscous diffusion term are grouped into a single transport term.

Figure 21 :

 21 Figure 21: Numerical residual of the TKE budget on the 'outlet 1' plane, normalised by (ρ 2 e u 4 e )/µ.

Figure 22 :Figure 23 :

 2223 Figure 22: TKE production on the 'outlet 1' plane, normalised by (ρ 2 e u 4 e )/µ.

Figure 24 :

 24 Figure 24: TKE transport on the 'outlet 1' plane, normalised by (ρ 2 e u 4 e )/µ.

Figure 24 presents

 24 Figure24presents the transport term at 'outlet 1'. The LES transport develops in the blade and corner separation wakes. The TKE is taken from areas of production to be transported to dissipative places, close to the walls and downstream. With regard to RANS, the amplitude of the transport term is moderate compared with the production or dissipation terms. This is the

Turbulence model constant f r 1 p

 1 els, the QCR k -ω model gives the best agreement with the LES. The incorrect estimation of the Reynolds stresses can be a consequence of a defect of the constitutive relation, a defect of the modelled turbulence equations, or a coupling of the two. The alignment hypothesis between the Reynolds stresses and the velocity gradient tensor is generally not valid. The Boussinesq constitutive relation relies on an alignment that is not valid even on canonical flows, such as a developing boundary layer. The quadratic constitutive relation, which accounts for the local vorticity of the flow, gives much better results in the inlet and corner separation domain. Its improvement to the corner separation wake domain is, however, limited. Concerning the estimate of the eddy-viscosity, the use of k and ω gives fairly good results. The modelled TKE budget (k equation) presents almost the same behaviour for the three RANS turbulence models. The production term is not accurately Reynolds stresses. The transport term is weak compared to the other terms in the RANS simulations, while it is not negligible in the LES. The dissipation term is locally opposite to the production term in the RANS simulations, while the LES TKE dissipation is not located in the same areas as the production. This superimposition is typical of the RANS turbulence models that rely implicitly 630 on the strong hypothesis of equilibrium turbulence, i.e. a local equilibrium between production and dissipation with little transport. Nomenclature c Blade chord length [m] c a Chord length projection in the x 1 direction [m] c QCR Constant of the quadratic constitutive relation Cp Mean static-pressure coefficient Cp t Mean total-pressure loss coefficient C µ Factor in the modified k -ω model h Blade span [m] k Turbulent kinetic energy [m -2 .s -2 ] L x1 Length of the flat-plate domain [m] L x2 Height of the flat-plate domain [m] L x3 Width of the flat-plate domain [m] Local mean static pressure [Pa] p e Inflow (reference) mean static-pressure [Pa] p t Local mean total-pressure [Pa] p te Inflow (reference) mean total pressure [Pa] Re c Chord based Reynolds number Re δ2 Momentum thickness based Reynolds number Υ QCR Alignment indicator for the QCR ω Specific turbulence dissipation rate [s -1 ] Ω Modulus of the mean rotation tensor [s -1 ]

  

  to Schmitt's indicator, when this indicator is equal to 1, the tensors are aligned, and the Boussinesq hypothesis is valid. When this indicator

310

is equal to 0, the tensors are orthogonal, and the Boussinesq hypothesis is invalid. Contrary to Schmitt's indicator, this indicator can be negative. In this case, the tensors are anti-aligned, which means that the Boussinesq constitutive relation would lead to non-physical results. Schmitt suggested that the alignment hypothesis is considered valid as this indicator is greater than 0.86. The 315 same alignment criterion is kept for the present Υ indicator, i.e. the alignment hypothesis is considered valid if Υ 0.86. An illustration is given in figure

The QCR is originally presented for the Spalart-Allmaras turbulence model. In the present case, it has been adapted to the the Wilcox k -ω turbulence model.

Note that the same notation ϕ is used for the ensemble-averaged fluctuating part and the large-scale filtered fluctuating part. Moreover, the same notation ϕ is used for the Favre averaged fluctuating part and the Favre filtered fluctuating part.

Note that even though [ σ] = [σ], the first notation is kept, in order to distinguish clearly in the equations what comes from LES.

Acknowledgements

This study was supported by the Franco-Chinese project VortexFlowCFD, co-funded by Safran Aircraft Engines and the French National Research and Technology Agency (ANRT). The simulations were performed using HPC resources from GENCI-CINES (Grant c2015-2a5039).

a three-step Runge-Kutta scheme, with a global constant time step of 10 -8 s, corresponding to CFL = 0.95 (based on the inflow velocity, the speed of sound, and the minimal grid size). The simulation is carried out with the SISM SGS model [START_REF] Lévêque | Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows[END_REF]. The exponential average used to extract the mean flow for the SISM 495 [START_REF] Cahuzac | Smoothing algorithms for mean-flow extraction in large-eddy simulation of complex turbulent flows[END_REF] is calibrated with a frequency of 13, 340Hz. This value corresponds to the ratio between a characteristic velocity (the stream-wise friction velocity at the transition point) and a characteristic length (the boundary-layer displacement thickness at the transition point).

The TKE budget is extracted at a constant x 1 position where Re δ2 = 1968, 500 with δ 2 the momentum thickness. The sampling period is 10 -2 µs (= LES time step). The total duration of 12.0ms is used for the calculation of the statistics.