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Abstract

This paper studies RANS turbulence modelling for a linear compressor cascade

corner separation flow, using large-eddy simulation results as reference. The

Boussinesq and the quadratic constitutive relations are investigated with two

versions of Wilcox’s k − ω turbulence model through a priori and a posteriori

analyses. In the a priori analysis the quadratic constitutive relation shows im-

provement on the alignment between the rate-of-strain tensor and the Reynolds

stress tensor for the inlet region, compared to the Boussinesq constitutive rela-

tion. But the improvement is less significant in the highly vortical region. Using

the turbulent kinetic energy and the specific dissipation rate provides a fairly

good estimate of the turbulent viscosity. The turbulent kinetic energy budget is

also investigated. Large-eddy simulation results present non-equilibrium turbu-

lence, i.e. the production and dissipation are not balanced, whereas the RANS

models predicts equilibrium turbulence.
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1. Introduction

The world aircraft fleet is expected to double within the next thirty years[1].

The resulting traffic increase will lead to economical and environmental chal-

lenges. The operation costs of jet engines have to be reduced. One strategy to

reduce the operation costs and emissions of turbojet engines lies in the control of5

the secondary flows that develop within the compressor blade passages. These

three-dimensional highly-vortical flows limit the blade loading and the efficiency,

and affect the stability of the compressor. The control of these flows requires a

fine understanding of their physics and the ability to accurately simulate their

behaviour.10

Corner separation is one of these secondary flows. It occurs where two

orthogonal boundary-layers interact. For a compressor, it occurs at the junction

of the end-wall (hub or casing) and the blade suction side. The presence of a

strong pressure gradient in the compressor further complicates its behaviour.

Extensive efforts has been devoted to compressor corner separation through15

experiment [2, 3, 4, 5, 6, 7] and numerical simulations [8], but its physics is

neither entirely understood nor mastered.

Computational fluid dynamics (CFD) is essential in modern turbomachinery

development. Reynolds-averaged Navier-Stokes (RANS) is the most common

type of methods used in industry. RANS provides a 3D viscous description of20

the averaged flow, where the effects of turbulence are modelled, and its compu-

tational cost is affordable in a design cycle. However, it tends to over-predict the

size and intensity of the corner separation[9, 10, 11]. Bordji et al.[12] reported

that the quadratic constitutive relation (QCR) [13] yielded better results, for

external aerodynamics. Regarding internal flows, Su and Yuan [14] report an25

improvement on the simulation of corner separation with the QCR. Both Bordji

et al. and Su and Yuan applied the QCR to the Spalart-Allmaras turbulence

model [15]. Beside RANS, large-eddy simulation (LES) is a different approach

that relies on a direct description of the large turbulent eddies[16]. It can simu-

late highly vortical flows [17, 18], including corner separation[19, 11, 20], better30
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than RANS simulations but at a much greater computational cost.

In the present paper the turbulence characteristics, including Reynolds stresses

and turbulent kinetic energy (TKE) budget, are analysed on a plane downstream

of a corner separation, using LES[11], and compared with RANS results. Be-

forehand, the extraction of the TKE budget for LES is validated on a flat-35

plate boundary-layer test case against a direct numerical simulation (DNS) by

Jiménez et al.[21]. The Boussinesq hypothesis, underlying many common RANS

approaches, along with the QCR, are analysed using LES as reference.

2. Test-case and solver

The corner separation test-case represents a passage of a NACA65 linear40

compressor cascade experimentaly studied by Ma[22] (see also [23, 7]) and

Zambonini[24] (see also [25, 26]).

The corner separation case has been numerically studied by Gao[19] (see also

[11, 20, 27]). The LES simulation (in ref [19]) is used as a reference database

for the present work.45

All simulations have been carried out with Turb’Flow , an in-house com-

pressible solver that allows LES and RANS simulations. Readers are referred

to ref. [28] for further information about Turb’Flow .

2.1. Geometry and dimensions of the computational domain

The experimental compressor cascade is composed of 13 identical NACA50

65-009 blades, whose camber angle has been modified to 23.22◦. The original

geometry and the modifications can be found in the theses of Zambonini[26] and

Gao[19]. The blade chord length is c = 150mm, the stagger angle γ = 42.7◦,

the pitch length s = 134.0mm and the span length h = 370.0mm. The passage

is simulated up to one and a half chord length upstream of the blade leading55

edge and two chord length downstream of the blade trailing edge. In order

to restrain the computational cost in LES, only a half of the channel span was

simulated (h/2 = 185.0mm), with a symmetry condition. The same half channel
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is simulated in RANS, in order to be comparable. The stream-wise direction is

denoted x1, the pitch-wise direction x2 and the span-wise direction x3, as shown60

in figure 1.

2.2. Flow characteristics

The free-stream velocity is set to the same value as for the experiment,

i.e. ue = 40m.s−1. It yields a Mach number M ≈ 0.12, and the flow can

be considered as incompressible. The reference density is ρe = 1.177kg.m−3,65

and the dynamic viscosity is µ = 1.81× 10−5kg.m−1s−1, yielding a chord based

Reynolds number Rec = 3.82× 105. All simulations are carried out at the

incidence angle 4◦.

2.3. Mesh

Two different meshes are considered, a wall-resolved LES mesh and a RANS70

mesh.

The LES uses an HOH blade-to-blade mesh duplicated 481 times along the

span-wise direction. A 2D representation (blade-to-blade plane) of the mesh

(truncated upstream and downstream) is shown in figure 1. The cell dimensions

at the walls (blade and end-wall) satisfy: less than 60 in the flow direction,75

∆y+ 6 2 in the wall-normal direction on the blades and the end-wall, and

less than 30 in the cross-flow direction near the blade and the end-wall. The

a posteriori calculated ∆y+ values on the blade and the end-wall are shown

in figure 2. This allows resolving of the main turbulent structures near the

walls. The tripping bands used to force the laminar/turbulent transition in the80

experiment (3.0mm wide by 0.3mm thick, located at 6.0mm from the leading

edge, more details in [22]) are reproduced in the LES by steps (removal of some

grid points) at the same locations. The total grid point number is about 2× 108.

The RANS uses a similar but coarser mesh as used in the LES. The 2D

blade-to-blade mesh is duplicated 77 times along the span-wise direction. The85

refinement is chosen to yield a wall-normal cell size ∆y+ 6 2 [19]. The values of

∆y+ on the blade and the end-wall are given in figure 2. The RANS simulations
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x1
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Figure 1: LES mesh around the blade. Every fourth point in each direction is plotted.

are fully turbulent, and the tripping bands are discarded. The total number of

points is about 2.8× 106, which is consistent with other RANS studies on corner

separation [14].90
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Figure 2: ∆y+ on the blade and the end-wall surfaces for LES and RANS, extracted from

Gao [19].

2.4. Boundary conditions

Generating a turbulent inflow for LES is a burning issue. In order to provide

a physically-sound turbulent boundary layer to the LES, a flat-plate boundary
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layer simulation using three-dimensional, wall resolved LES is realised in parallel

with the passage simulation. The instantaneous density and velocity vector95

are extracted on a plane from this simulation at the location where the time-

averaged displacement thickness equals the experimental value at the inlet of

the blade passage. The flat-plate simulation has a limited pitch-wise extension

(∼ δ, with δ the boundary-layer thickness at the blade passage inlet) which is

repeated periodically to feed the blade passage inlet. In the free-stream region,100

due to the weak intensity of turbulence, the quantities are averaged in space

and imposed at the inlet plane of the blade passage. This ensures consistent

inflow conditions between the LES and the experiment. An illustration of the

inflow generation is given in figure 3. The flat-plate domain is ∼ 76δ long, its

width is 1/4s (∼ δ) and its height is ∼ 2δ. The total number of points in the105

flat-plate domain is around 1× 108. The turbulent transition for the flat plate

is triggered by a tripping band represented by a step in the grid. The band is

located at Rex = 1.3 × 106, and measures 4.8mm long by 0.673mm thick, and

it is modelled by removing cells from the smooth mesh.

Tripping band

Figure 3: Corner separation inflow configuration, from Gao[19].

For the inflow of the RANS simulations, a two dimensional steady RANS110

simulation of a flat-plate boundary-layer is carried out. As for the LES, profiles

are extracted at the location where the displacement thickness matches the
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experimental value. The density, the three components of velocity, and the two

turbulent variables are imposed as inlet profiles.

The pitch-wise boundary condition is set to periodic for all simulations. The115

boundary condition at mid-span is set as symmetric, in all simulations. All walls

are set as no-slip adiabatic.

The outlet boundary condition is set to a partially non-reflective pressure

condition for all simulations. In LES, a particular attention has been paid to

the correct evacuation of the numerical acoustic waves at the outlet. In order to120

damp the unwanted numerical reflections, the mesh is stretched in the stream-

wise direction and an explicit filter[29] is implemented for the last 20 grid planes

(whose normals are in the stream-wise direction). The filter is also used near

the blade leading and trailing edges over five grid points in the whole span, in

order to smooth the oscillations present close to stagnation points.125

2.5. Numerical schemes

The spatial scheme used for the inviscid fluxes is a four-point centred scheme

from Jameson[30], with a fourth-order artificial viscosity (coefficient: 0.002 for

the LES, 0.02 for the RANS simulations, see [31] for its definition). The spatial

scheme for the viscous fluxes is a two-point centred scheme for all simulations.130

For the LES, the temporal scheme is a three-step Runge-Kutta scheme with

a constant time step of 2.5× 10−8s, yielding a Courant-Friedrichs-Lewy (CFL)

number of 0.95 based on the minimum grid size 1.0× 10−5m, the reference

velocity 40 m.s−1 and the speed of sound 340 m.s−1. For RANS simulations,

a five-step Runge-Kutta scheme is used for the time discretisation with a local135

variable time step at a CFL number 0.7 (based on local grid size, local velocity

and local speed of sound). Given that the simulations are realised at a low Mach

number, a low-Mach preconditioning [32] is applied for all RANS simulations.

2.6. Subgrid-scale/Turbulence models

The SISM subgrid-scale (SGS) model [33] is used in the LES. The charac-140

teristic frequency of the exponential averaging used in the model is calculated

based on the free-stream velocity ue and the chord length c, as 2ue/c = 533Hz.
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For RANS simulations, three turbulence models are used: the original Wilcox

k − ω turbulence model [34] (referenced as ‘original k − ω’ thereafter), the

quadratic Wilcox k−ω turbulence model [13]1 (‘QCR k−ω’), and the modified145

Wilcox k − ω turbulence model[10] (‘modified k − ω’).

In the modified k − ω turbulence model, the production of ω is multiplied

by a factor fr1 defined as follows:

fr1 = − 1

2π
arctan

(
5

(
Ω

S
− 1.2

))
+ 0.75 (1)

with S being the modulus of the mean strain-rate tensor and Ω the modulus of

the mean rotation tensor.150

2.7. Grid independence

In order to assess the grid independence of the RANS simulations, a finer

mesh has been tested for the original k − ω simulation. For this new mesh,

referenced to as the ‘refined mesh’, the number of grid points is doubled in

each direction, compared to the original mesh. The total number of points of155

the refined mesh is about 16× 106 points. The wall-normal cell size is halved

(y+ 6 1, and y+ 6 0.4 in the corner separation area) compared to the original

mesh.

The grid convergence is assessed for the mean pressure coefficient (whose

formulation is given in equation (2) around the blade. Figure 4 plots the blade160

mean pressure coefficient from mid-span to near the end-wall. The span-wise lo-

cations where the mean pressure coefficient is extracted are presented thereafter,

in figure 8.

For all the span-wise positions, the pressure coefficient show very little dif-

ference between the simulations with the original mesh and the refined mesh.165

The original mesh is sufficiently refined to yield the correct physics. From this

point on, all the results presented are based on the original mesh.

1The QCR is originally presented for the Spalart-Allmaras turbulence model. In the present

case, it has been adapted to the the Wilcox k − ω turbulence model.
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Figure 4: Mean static pressure coefficient around the blade at various span-wise positions.

2.8. Statistics

For LES, which is naturally unsteady, the transient regime at the beginning

of the computation corresponds to the phase of numerical convergence. Addi-170

tional ten flow-through periods (defined as the ratio between the chord length c

and the free-stream velocity ue) have been simulated to collect statistics, after

the transient regime. These generates during 40.25ms, with one sample every
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Figure 5: Visualisation of the LES flow field. Left: instantaneous Q criterion iso-surface

(Q = 1 × 107s−2). Right: Mean pressure coefficient on the blade and the end-wall, and mean

total pressure coefficient at the outlet of the blade passage. The same scale and colourmap

are used for Cpt in both figures.

50µs (2000 iterations), 805 samples.

For the RANS simulations, convergence is assessed by the residuals. The175

mean values of the conservative variables are directly provided by the steady

solution.

3. Mean flow results

This section presents the mean flow characteristics. Prior to this, a visual-

isation of the corner separation (using Q-criterion and pressure coefficients) is180

presented in figure 5 with the LES solution.

First, the flow is visualised through limiting streamlines over the blade and

endwall surfaces. Some results on the mean values, such as the static pressure

coefficient around the blade or the total pressure losses, are presented to evaluate

the overall performance of the LES and RANS simulations. Then, the Reynolds185

stresses are analysed on a plane downstream of the blade trailing edge.

Another more detailed characterisation of the LES can be found in ref.[11],

with, for instance, the ratio of the SGS dissipation to the total dissipation (lying

between 0.0 and 0.85 for the entire domain).
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3.1. Limiting streamlines190

The limiting streamlines over the blade suction side surface and the passage

endwall are presented in figure 6 for all the simulations. These indicate the

extent of the corner separation over the blade surface. For the LES, the sepa-

ration occurs around mid-chord, and covers around one third of the half-span

presented here. Compared to the LES, all RANS simulations over-estimate the195

corner separation. The separation occurs further upstream, and covers about

one half of the half-span presented. The simulation with the original k − ω

model predicts the largest corner separation region. The modified k − ω model

gives a slightly reduced corner separation compared to the original k − ω but

still larger than the LES. The QCR k − ω model gives a better estimation of200

the node-saddle (NS) point position, but the extent of the corner separation is

over-predicted over the span. The focus points predicted by the QCR k − ω

model are slightly upstream of those predicted by the original k − ω one. The

position the end-wall focus point indicates that the corner separation in the

QCR k−ω is smaller than in the other RANS simulations. A direct comparison205

of the topologies by all simulations is given in figure 7.

3.2. Static and total pressure coefficient

In order to gauge the performance of the simulations, the mean static and

total pressure coefficients calculated with the LES and RANS solutions are com-

pared with the experimental results [22]. The mean static pressure coefficient210

is defined as:

Cp =
p− pe

0.5ρeu2e
(2)

with p the local mean static pressure, pe the inflow mean static pressure, ρe the

inflow freestream density and ue the inflow freestream velocity. The mean total

pressure loss coefficient is defined as:

Cpt =
pte − pt
pte − pe

(3)
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Figure 6: Limiting streamlines of the mean flow for the LES and the RANS simulations. For

the RANS simulations, focus points (F) of the blade and the endwall are shown. For each

simulation, the node-saddle (N-S) point at the junction of the blade and the end-wall, where

the corner separation begins, is marked. The green line represents the edge of the separation

on the blade suction side.
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Figure 7: Comparison of the size of the corner separations. ‘F’ indicates the focus points.

‘N-S’ represents the node-saddle points at the junction of the blade and the end-wall, where

the corner separation begins.

with pte the mean inflow total pressure, pt the local mean total pressure. The215

static pressure coefficient is extracted around the blade at six span-wise posi-

tions. The total pressure loss coefficient is extracted on the ‘outlet 1’ plane

downstream of the blade passage outlet. These are shown in figure 8.

The mean static pressure coefficient Cp is presented in figure 9. Some os-

cillations are present close to the leading edge in the LES simulation due to220

the tripping bands. The upper branch of the curves represents the suction side,

while the lower branch corresponds to the pressure side.

At mid-span and at 29.7% span, a fairly good agreement is achieved between

the experiment and all simulations where the flow is attached to the blade. At

21.6% span a fairly good agreement can still be observed between the exper-225

iment, the LES, the quadratic and the modified k − ω models. The original

k−ω model shows some difference with the others solutions, presenting a slight

flattening of the pressure distribution on the suction side for x1/ca > 0.75. This
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Figure 8: Extraction locations for Cp and Cpt. The static pressure coefficient is extracted

on the blade surface at six span-wise positions, indicated with black lines. The total pressure

coefficient is exctracted on the plane ‘outlet 1’. The axis origin is located at the junction

between the blade leading edge and the end-wall.

plateau, related to boundary layer separation, occurs for all the simulations

close to the end-wall as the corner separation develops. The QCR k − ω model230

presents less pressure drop than the original k − ω model, indicating weaker

separation intensity near the blade trailing edge. Close to the end-wall, the

QCR k − ω model shows the best performance among the RANS models. The

modified k−ω model solution becomes less consistent with the experiment and

the LES, but performs better than the original k − ω model.235

A sudden and important static pressure drop is visible at the trailing edge.

This is a known feature of steady simulations, reported by Denton[35] as the

difficulty to capture the separation at the trailing edge.

The total pressure loss coefficients on the plane ‘outlet 1’ are shown in fig-

ure 10. The experimental and LES total pressure losses are very similar, differ-240
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Figure 9: Mean static pressure coefficient around the blade at various span-wise positions.

The vertical bars on the experimental results indicate the measurement uncertainties.

ing significantly from the RANS results. Therefore, the LES data are used as a

reference for further detailed analysis, in order to understand why RANS gen-

erally fails in predicting this kind of flows. All RANS simulations over-predict

the losses. Among the RANS models the QCR k − ω model achieves the clos-

est agreement with the experiment and the LES. The modified Wilcox model245
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Exp.

QCR k-𝜔Original k-𝜔 Modified k-𝜔

LES

Figure 10: Mean total pressure loss coefficient on plane ‘outlet 1’.

improves the intensity of the losses compared to the original Wilcox model, but

not the size or the shape of the loss region. The corner separation wake remains

too wide and too curved compared with the experimental or LES results.

3.3. Reynolds stresses

The RANS turbulence models affect the Navier-Stokes equations through

the Reynolds stresses. Their accurate description is important for reliable and

accurate simulations. The Reynolds stresses are defined as :

∀(i, j) ∈ [[ 1 ; 3 ]]2, τtij = −
〈
ρu′′i u

′′
j

〉
(4)
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with u′′ the fluctuation of the velocity u and ρ its local density. The Reynolds250

stresses are modelled in the RANS simulations via the Boussinesq constitutive

relation (for the original and modified k − ω simulations) presented in eq. (5),

and the QCR presented in eq. (6). All the constitutive relations use a turbulent

viscosity, denoted µt, calculated as µt = 〈ρ〉 [k] / [ω].

Note that for a given quantity ϕ, the ensemble average is denoted 〈ϕ〉 and255

the fluctuating part is denoted ϕ′, with the relation ϕ = 〈ϕ〉+ ϕ′. Because the

compressible Navier-Stokes equations are considered, the Favre average[36] is

used. Considering ρ the density, the Favre average is denoted [ϕ] = 〈ρϕ〉 / 〈ρ〉,

and the Favre fluctuating part is denoted2ϕ′′, with the relation ϕ = [ϕ] + ϕ′′.

LES Original k-𝜔 QCR k-𝜔 Modified k-𝜔

Figure 11: τt11 on the plane ‘outlet 1’, normalised by ρeu2e.

The normal Reynolds stresses τt11 at the section ‘outlet 1’ are shown in260

figure 11. Two zones are visible on the LES results: the wake of the blade

boundary-layer (x2/s ∈ [1.0, 1.1], x3/h ∈ [0.2, 0.5]) and the wake of the corner

separation (x2/s ∈ [0.9, 1.5], x3/h ∈ [0.0, 0.2]).

In the wake of the corner separation, the RANS simulations mis-predict the

intensity of the LES normal Reynolds stress τt11. The RANS loss areas are also265

wider and farther from the blade boundary layer wake than the LES. A clear

improvement is achieved with the QCR, by reducing the intensity and the loss

area. The modified Wilcox model yields similar results to the original Wilcox

2Note that the same notation ϕ′ is used for the ensemble-averaged fluctuating part and

the large-scale filtered fluctuating part. Moreover, the same notation ϕ′′ is used for the Favre

averaged fluctuating part and the Favre filtered fluctuating part.
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model, but with slightly reduced intensity. However, the improvement is not

sufficient to get close to the LES results.270

LES Original k-𝜔 QCR k-𝜔 Modified k-𝜔

Figure 12: τt12 on the plane ‘outlet 1’, normalised by ρeu2e.

The shear Reynolds stresses τt12 on the ‘outlet 1’ plane are given in fig-

ure 12. The strong stress areas in the LES results are the same as for the

normal Reynolds stresses.

The blade wake intensity is under-predicted by RANS for x3/h > 0.3, com-

pared to the LES. The RANS simulations mis-predict again the size and the275

intensity of the Reynolds stress τt12, downstream of the separation region. Con-

trary to the tendency for the normal stresses, the original and the modified k−ω

models under-predict the intensity of negative stress values and over-predict pos-

itive stress values. The QCR k − ω model tends to correct this behaviour, and

presents again the best agreement with the LES, in terms of both topology and280

intensity.

The differences between the LES and RANS Reynolds stresses remain sig-

nificant. In order to explain this mismatch, the RANS turbulence modelling is

investigated in two steps. First, the hypotheses of alignment and proportional-

ity for both the Boussinesq and the QCR formulations are analysed. Then, the285

TKE budget modelled in the RANS is compared to that resolved by the LES.
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4. Constitutive relation analysis

4.1. Alignment criterion and turbulent viscosities

Constitutive relations

The Boussinesq constitutive relation, used in both the original and modified290

k − ω models, assumes the Reynolds stress tensor satisfies:

τ
t

+
2

3
〈ρ〉 [k] I3 = µt

[
σ
]

(5)

with τ
t
the Reynolds stress tensor, I3 the identity tensor and

[
σ
]
the mean zero-

trace strain rate tensor. In LES, both the Reynolds stress tensor and the mean

zero-trace strain rate tensor3 ([σ̃]) are known independently, so the relation in

eq. (5) can be tested.295

The other constitutive relation tested, the QCR, relies also on a tensorial

relation:

τ
t

+
2

3
〈ρ〉 [k] I3 = µt

([
σ
]

+ cQCR(
[
σ
]
O −O

[
σ
]
)
)

(6)

with O being the normalised rotation tensor.

The evaluation is carried out in two steps: first the alignment of the left-

hand side and the right-hand side tensors is evaluated, then the magnitude are300

compared.

Alignment criterion

The alignment between the tensors of the Boussinesq constitutive relation

is measured using an indicator, as given in eq.(7). The present indicator is

similar to that of Schmitt [37], but is able to discriminate aligned and anti-305

aligned tensors. Two tensors are anti-aligned if they are aligned with opposite

3Note that even though [σ̃] = [σ], the first notation is kept, in order to distinguish clearly

in the equations what comes from LES.
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directions. An example of anti-aligned vectors is given in figure 13.

Υ =
τkt :

[
σ̃
]∥∥∥τkt ∥∥∥∥∥[σ̃]∥∥ (7)

with: τkt = −
〈
ρu′′i u

′′
j

〉
+

2

3
〈ρ〉
[
k̃
]
I3 (8)

and [k̃] = −0.5τtii/ 〈ρ〉.

Similarly to Schmitt’s indicator, when this indicator is equal to 1, the ten-

sors are aligned, and the Boussinesq hypothesis is valid. When this indicator310

is equal to 0, the tensors are orthogonal, and the Boussinesq hypothesis is in-

valid. Contrary to Schmitt’s indicator, this indicator can be negative. In this

case, the tensors are anti-aligned, which means that the Boussinesq constitutive

relation would lead to non-physical results. Schmitt suggested that the align-

ment hypothesis is considered valid as this indicator is greater than 0.86. The315

same alignment criterion is kept for the present Υ indicator, i.e. the alignment

hypothesis is considered valid if Υ > 0.86. An illustration is given in figure 13,

with vectors in place of tensors.

AB

C

D

E

ΥSchmitt(A,B) = 1.00
ΥSchmitt(A,C) = 0.86
ΥSchmitt(A,D) = 0.00
ΥSchmitt(A,E) = 1.00

Υ(A,B) =  1.00
Υ(A,C) =  0.86
Υ(A,D) =  0.00
Υ(A,E) = -1.00

π/6

Figure 13: Illustration of the tensor alignment criterion. The grey cone represents the area

where the Boussinesq constitutive relation is considered valid.

The alignment indicator is adapted to the QCR as follows:

ΥQCR =
τkt :

[
σQCR

]∥∥∥τkt ∥∥∥∥∥[σQCR]∥∥ (9)
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with:
[
σQCR

]
=
[
σ̃
]

+ cQCR(
[
σ̃
]
Õ − Õ

[
σ̃
]
) (10)

Magnitude assessment: turbulent viscosity320

The second step of the constitutive relation assessment compares the mag-

nitude of the tensors. The turbulent viscosity represents the proportionality

coefficient between the Reynolds stress tensor and the constitutive relation ten-

sor (i.e.
[
σ̃
]
for the Boussinesq constitutive relation and

[
σQCR

]
for the QCR).

Given the LES data available, a first approach is to reconstruct a reference325

turbulent viscosity as the ratio of the tensor norms:

µ
(0)
t =

∥∥∥τkt ∥∥∥∥∥[σ̃]∥∥ ; µ
(0)QCR
t =

∥∥∥τkt ∥∥∥∥∥[σQCR]∥∥ (11)

If the tensors are aligned, i.e. Υ = 1.0 (resp. ΥQCR = 1.0), this value is

the turbulent viscosity that verifies the Boussinesq constitutive relation (resp.

QCR).

The turbulent viscosity is estimated by the RANS k-ω models as:330

µ
(1)
t = 〈ρ〉

[
k̃
]

[ω̃]
(12)

The turbulent viscosity µt can also be computed from the LES results with

[ω̃] = [ε̃]([k̃]Cµ)−1, Cµ = 0.09, and [ε̃] derived from the turbulent kinetic energy

budget equation as:

〈ρ〉 [ε̃] =

〈
τ ij

∂u′′i
∂xj

〉
︸ ︷︷ ︸

Viscous dissipation

+

〈
Πij

∂u′′i
∂xj

〉
︸ ︷︷ ︸
SGS dissipation

(13)

4.2. Alignment analysis

The alignment is evaluated by the Υ indicator (resp. ΥQCR indicator), plot-335

ted as probability density functions (PDF) and cumulative distribution func-

tions (CDF). Concerning the PDF (for instance, in Fig. 15), there are two sets

of bars, a left black bar with a right green bar for each Υ value. A pair of bars
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occupies a range of 0.05. The black one (resp. green one) represents the mass

weighted percentage of points with Υ (resp. ΥQCR) in the given 0.05 range.340

The CDF is the integration of the PDF made from −1 upward. Practically, the

ordinate corresponding to the abscissa Υ = 0.86 (resp. ΥQCR = 0.86) represents

the mass weighted percentage of points for which the Boussinesq constitutive

relation (resp. QCR) is not valid.

The analysis focuses on the regions where turbulence is significant. Only the345

points whose turbulence intensity (defined as (2/3[k̃]/([ũi][ũi]))
1/2) is superior

to 5% contribute to the PDF and CDF. This value is chosen so that the corner

separation wake and the blade wake are included in the analysis. In order to

be grid independent, each point considered is weighted by its mass, calculated

as the Jacobian determinant at that point (homogeneous in a control volume)350

times the density. The analysis focuses first on the entire domain, which includes

the inlet domain, the passage domain and the outlet domain, as presented in

figure 14. Then, each individual domain is analysed separately.

Inlet

Outlet

Pass
age

x1
x3

x2

Figure 14: Domains used for the alignment criterion analysis.

The PDF and CDF of the alignment criterion for the entire domain (i.e.

100% of the points whose turbulence intensity is superior to 5%) are plotted355
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in figure 15. Both the Boussinesq constitutive relation and the QCR present

points with negative criterion values, indicating negative alignments between the

modelled tensor and the actual Reynolds stress tensor. For both constitutive

relations, the amount of anti-aligned points remains small, with less than 4% of

the points concerned. The PDF of Υ (Boussinesq) increases gradually from 0 to360

0.75 and then decreases abruptly, showing that the vast majority of points do not

present a correct alignment between the tensors. The peak of the distribution

is in the interval [0.7, 0.75], below the 0.86 threshold.

In comparison, ΥQCR presents lower densities under 0.75 and more points

with higher Υ values, i.e. their peaks in the interval [0.9, 0.95]. The CDF shows365

the Boussinesq constitutive relation is valid for only 9% of the points, whereas

the QCR is valid for 34% of the points. The QCR improves the direction of the

tensor.
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Figure 15: PDF and CDF of the Υ and ΥQCR criteria over the entire domain.

The analysis now focuses separately on the inlet, the passage, and the outlet

domains to see if the constitutive relations behave differently for different parts370

of the flow.

The inlet domain, located upstream of the blades, presents characteristics

of a flat-plate turbulent boundary layer. The Boussinesq constitutive relation

is expected to present better results on this canonical case. Considering only

the points where the turbulence intensity is greater than 5%, the mass-weighted375
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Figure 16: PDF and CDF of the Υ and ΥQCR criteria in the inlet, passage, and outlet

domains.

point number of the inlet domain represents 6% of that of the entire domain.

The PDF and CDF of the inlet domain are plotted in figure 16. Contrary

to expectations, the Boussinesq constitutive relation does not perform better

on this canonical flow in the inlet domain. The distribution is similar to the
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one of the entire domain, with a peak in the interval [0.7, 0.75], except there380

is no negative alignment. The CDF shows that the overall alignment is even

worse, with 97% of the points invalid for the Boussinesq constitutive relation.

In comparison, the QCR presents a significant improvement in this area. The

peak of the PDF is in the interval [0.95, 1.0], and the CDF shows that the

constitutive relation is valid, in terms of alignment, for 76% of the points. The385

QCR has an important effect on this canonical flow. This may be partly due

to the fact that the coefficient was calibrated in the outer region of a simple

boundary layer [13].

The passage domain, located in-between the blades, presents three boundary

layers: at the end-wall and on both sides of the blades. The interaction of390

the end-wall and suction-side boundary layers under adverse pressure gradient

forms the corner separation. The flow is three dimensional and vortical, and

is more complex than the inlet domain boundary layer. The mass-weighted

point number of this domain accounts for 48% of that of the entire domain,

considering turbulence intensity greater than 5%. Around 2% of the points are395

anti-aligned, for both the Boussinesq and the quadratic constitutive relations.

The Boussinesq constitutive relation yields similar results to the inlet domain.

Inspecting the CDF, the Boussinesq hypothesis is valid for 7% of the points. The

QCR yields better results in terms of tensor alignment, but the improvement is

limited compared to the inlet domain. The peak of the PDF is inside the area400

where the alignment hypothesis is valid, but the CDF indicates that the QCR

is valid for only 43% of the points.

The last domain is located at the outlet, where the wake of the corner sep-

aration develops. The flow is again three-dimensional and highly vortical. The

number of points from this domain, weighted by the mass, represents 46% of405

that of the entire domain. The Boussinesq constitutive relation gives simi-

lar results, with slight improvement. Almost all the anti-aligned points of the

entire domain are located in the outlet part, in the corner separation wake.

Concerning the QCR, the improvement is visible compared to the Boussinesq

constitutive relation, but is less significant than for the upstream domains. In410
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this complex wake region, the QCR behaviour, in terms of tensor alignment, is

much closer to the Boussinesq constitutive relation. The CDF shows that the

amount of aligned points with QCR is comparable to the Boussinesq results:

25% of aligned points for ΥQCR, close to the value 12% for Υ. This result is

counter-intuitive. Given that the formulation of the QCR explicitly contains415

a normalised rotation tensor, it was expected to be more effective in highly

vortical areas.

4.3. Turbulent viscosity comparisons

𝜇t/𝜇 Original k-𝜔 𝜇t/𝜇 Modified k-𝜔𝜇t/𝜇 QCR k-𝜔

Figure 17: Turbulent viscosities on the ‘outlet 1’ plane. The a priori values from the LES

results, defined by eqs. 11 and 12, are presented in the first row. The a posteriori values

obtained with the RANS simulations are presented in the second row. All the turbulent

viscosities (a priori and a posteriori) are normalised by the reference molecular viscosity µ.

The turbulent viscosities are plotted in figure 17. The LES reference value

µ
(0)
t is compared to the LES estimate µ(1)

t and to the turbulent viscosities ob-420

tained directly with the RANS simulations (a posteriori values). The turbulent
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viscosities are plotted on the ‘outlet 1’ plane, and normalised by the reference

dynamic viscosity µ = 1.81× 10−5kg.m−1.s−1.

It is first remarkable that the LES turbulent viscosity computed as µ(1)
t =

〈ρ〉 [k̃]/[ω̃] is of a comparable order of magnitude as the RANS turbulent vis-425

cosities computed as µt = 〈ρ〉 [k]/[ω], where [k] and [ω] are provided by the

transport equations of the models. As already observed with the Reynolds

stresses, RANS simulations are unable to correctly predict the size of the corner

separation, where the turbulent viscosity is maximal. The reference turbulent

viscosities µ(0)
t are of the same order of magnitude as the RANS turbulent vis-430

cosities µt. The similarity between µ(0)
t and µ(0)QCR

t values indicates the QCR

bears no significant modification on the norm of the constitutive relation tensor.

Finally, the µ(1)
t estimate yields high values inside the corner separation wake

(near x2/s = 1.1 and x3/h = 0.05) whereas the reference µ(0)
t is more concen-

trated around the separation border (x2/s ≈ 1.3 and x3/h ≈ 0.15). This is a435

deficiency of estimating µt as 〈ρ〉 [k̃]/[ω̃].

5. Turbulent kinetic energy budget

The turbulent kinetic energy (TKE) budget, also called turbulence budget,

allows to understand the distribution of the TKE terms, between production,

dissipation and transport. However, due to the difficulty to measure the com-440

bined statistics, it is impossible to directly obtain the TKE budget with the

experiment. In this regard, DNS and LES offer an interesting alternative for

such an in-depth physical analysis of turbulence.

The LES momentum equation is rearranged to obtain the Reynolds stress

budget equation, following the method of Bogey and Bailly [38]. Then the445

diagonal terms are summed to achieve the following TKE budget formulation:
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0 =
∂ 〈ρk〉
∂t

= − ∂

∂xj
(〈ρk〉 [ũj ])︸ ︷︷ ︸

Advection

−
〈
ρu′′i u

′′
j

〉 ∂ [ũi]

∂xj︸ ︷︷ ︸
Production

−
∂
〈
ρku′′j

〉
∂xj︸ ︷︷ ︸

Turbulent diffusion

−∂ 〈u
′′
i p
′〉

∂xi︸ ︷︷ ︸
Pressure Diffusion

+

〈
p′
∂u′′i
∂xi

〉
︸ ︷︷ ︸

Pressure dilatation

−〈u′′i 〉
∂ 〈p〉
∂xi︸ ︷︷ ︸

Fluctuating velocity-
pressure gradient correlation

+
∂ 〈τ iju′′i 〉
∂xj︸ ︷︷ ︸

Viscous diffusion

−
〈
τ ij

∂u′′i
∂xj

〉
︸ ︷︷ ︸

Viscous dissipation

+
∂
〈
Πiju

′′
i

〉
∂xj︸ ︷︷ ︸

SGS diffusion

−
〈

Πij
∂u′′i
∂xj

〉
︸ ︷︷ ︸
SGS dissipation

+Ξ︸︷︷︸
Numerical residual

(14)

with Π the sub-grid scale stress tensor [28] and Ξ the numerical residual term,

computed as the opposite value of the sum of all the other terms.

In RANS with a k − ω model, the TKE budget is modelled by the k equa-

tion [34]. The Wilcox k−ω model is known to over-predict k production where450

anisotropy is important [39]. Consequently, a k-production limiter [40] is imple-

mented in the solver, in the form of a clipping of the k-production term, when

the k-production term is superior to ten times the k-dissipation term. This

limiter does not usually appear in the k equation, but it is explicitly introduced

in the budget, as a dissipative term Λ. Moreover, the k equation being directly455

solved in RANS, the sum of all the other terms except the production limiter is

negligible. Thus, the numerical residual represents directly the opposite of the

production limiter.

∂ 〈ρ〉 [k]

∂t
= τt,ij

∂ [ui]

∂xj︸ ︷︷ ︸
Production

−∂ 〈ρ〉 [k] [uj ]

∂xj︸ ︷︷ ︸
Advection

+
∂

∂xj

(
µ
∂ [k]

∂xj

)
︸ ︷︷ ︸

Molecular
diffusion

+
∂

∂xj

(
µt
σk

∂ [k]

∂xj

)
︸ ︷︷ ︸
Turbulent transport &

pressure diffusion

−ck 〈ρ〉 [k] [ω]︸ ︷︷ ︸
Dissipation

+Λ︸︷︷︸
k production

limiter

+Ξ︸︷︷︸
Numerical
residual

(15)

Note that τt,ij is computed with either the Boussinesq constitutive relation (for

the original and modified k−ω models) or the QCR (for the QCR k−ω model).460
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5.1. Validation on a flat plate case

The implementation of the budget extraction for LES is validated on a flat-

plate boundary layer simulation, against DNS results from Jiménez et al.[21].

The characteristics of flow, mesh and numerical schemes are chosen as similar as

possible to those of the corner separation case, and the simulations are realised465

with the same solver. The boundary-layer is described up to Rex = 1.3 × 106,

with a source term to trip transition at Rex = 3.0 × 105. The details of the

trip implementation are presented by Boudet et al.[31]. The position of the trip

is indicated in figure 18 by a triangle. Because the solver uses a compressible

formulation, the Mach number is chosen small enough to limit compressible470

effects but high enough to improve convergence speed, i.e. M = 0.2, which

yields a free-stream velocity ue = 70m.s−1. The air density is ρe = 1.117kg.m−3

and the dynamic viscosity is µ = 1.81× 10−5kg.m−1.s−1. The length of the

computational domain in the stream-wise direction is Lx1
= 0.3m. To simulate

properly the boundary-layer at the outlet, the computational domain height475

is set to twice the estimated boundary-layer thickness, Lx2
= 0.0117m. The

span-wise width corresponds to the estimated boundary-layer thickness at the

outlet, Lx3
= 0.00586m. The mesh is uniform in the stream-wise and span-

wise directions. In the wall-normal direction, the point distribution follows a

geometrical law with an expansion ratio of 1.10. The non-dimensional cell sizes480

at the wall, in wall units, are ∆x+1 6 60, ∆x+2 6 2 and ∆x+3 6 30. This

refinement level is classical in wall resolved LES. The computational domain is

made of 1035 × 60 × 44 = 2 732 400 points. At the inlet, the velocity vector

and density are imposed. The outlet boundary and upper boundary are set to a

mixed pressure outlet, which combines atmospheric static pressure prescription485

(p = 101 340Pa) and a non-reflection condition. It allows pressure waves to

exit the computational domain. The wall boundary condition is set to no-

slip adiabatic. The lateral boundary conditions are set to periodic. The spatial

scheme for the inviscid fluxes is a 4-point Jameson centred scheme, with a fourth-

order artificial viscosity (coefficient: 0.002, see [31] for its definition). A 2-point490

centred scheme is used for the viscous fluxes. The temporal discretisation uses
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x1

x2

x3

Figure 18: Flat-plate boundary-layer test-case for the validation of the LES TKE-budget

implementation: instantaneous iso-surface of Q-criterion, coloured by normalised stream-wise

velocity. For visualisation, the total length is cut into three pieces, which are piled from top

to bottom. The triangle marks the trip abscissa, and the grey plane the extraction abscissa

for the TKE budget.

a three-step Runge-Kutta scheme, with a global constant time step of 10−8s,

corresponding to CFL = 0.95 (based on the inflow velocity, the speed of sound,

and the minimal grid size). The simulation is carried out with the SISM SGS

model [33]. The exponential average used to extract the mean flow for the SISM495

[41] is calibrated with a frequency of 13, 340Hz. This value corresponds to the

ratio between a characteristic velocity (the stream-wise friction velocity at the

transition point) and a characteristic length (the boundary-layer displacement

thickness at the transition point).

The TKE budget is extracted at a constant x1 position where Reδ2 = 1968,500

with δ2 the momentum thickness. The sampling period is 10−2µs (= LES time

step). The total duration of 12.0ms is used for the calculation of the statistics.
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Some of the TKE budget terms, presented in equation (14), are grouped for

the presentation. The advection and production terms are kept separate. The

viscous and SGS dissipations are summed into a dissipation term. The viscous505

diffusion and SGS diffusion are summed into a viscous diffusion term. The

remainders are summed into a single term, representing the pressure dilatation

and turbulent diffusion. The numerical residual is computed as the opposite of

the sum of all budget terms. The budget terms are normalised by (ρ2eu
2
e)/µ.

The budget evolution is analysed against the sample time used for its calcu-510

lation, to check its convergence. For a given sample time, a term is calculated by

the integral of its absolute value over the height, and divided by the production

term computed with the maximal sample time.

Sample duration [ms]

Figure 19: TKE budget terms against duration time. The terms are normalised by the

production term computed with the maximal sample duration.

Figure 19 shows the budget evolution terms remains unchanged with sample

time, indicating the statistical convergence is satisfactory. However, a non null515

numerical residual is observed. This term is stationary, indicating that the

numerical residual is not due to an insufficient statistical convergence, but a

stationary numerical dissipation.

The budget computed over the maximal sample duration is compared to the

DNS results from Jimenez et al.[21]. The results are presented on the left subplot520

of figure 20. The comparison with DNS shows that the LES is able to describe
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Figure 20: TKE budget in a flat-plate boundary layer, extracted at Reδ2 = 1968. Left : the

terms are presented separately. Right : the pressure dilatation and turbulent diffusion term,

the advection term and the viscous diffusion term are grouped into a single transport term.

the TKE budget. The production and transport terms of the LES are very close

to the DNS, and the difference on the dissipation term remains moderate. The

viscous diffusion term is slightly over estimated, whereas the pressure dilatation

and turbulent diffusion term is slightly underestimated. The numerical residual525

is negative, thus acting as a numerical dissipation. The numerical dissipation is

maximal at x+2 ≈ 10, but remains smaller than the other terms.

In order to summarise the physical meaning of the terms, the pressure dilata-

tion and turbulent diffusion term, the advection term and the viscous diffusion

term are grouped into a single transport term. The results are presented on the530

right subplot of figure 20. The sum of the dissipation term and the numerical

residual term is also plotted. The transport term presents very good agreement

with the DNS. This means that the transport mechanisms of the TKE is ap-

propriately predicted. When the dissipation and the numerical dissipation are

summed, the resulting term is very close to the DNS dissipation term. The535

numerical residual represents various numerical effects that are not taken into

account by the viscous and SGS dissipation. Among these effects, we can cite

the effects of the numerical schemes, the effects of the mesh, or the effects of

the computational method (finite difference) used to compute the TKE bud-

get. These effects arise partly because the TKE budget equation is not directly540
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solved, but reconstructed. Consequently, non-conservative effects can develop.

Finally, the LES gives excellent results close to the wall (x+2 6 3), where the

three physical terms agree well with the DNS.

Although the LES results present more numerical dissipation than the DNS,

the prediction of the different terms is considered correct enough to be exploited545

for a physical analysis. This behaviour is common for LES TKE budget extrac-

tion. For example, a similar amount of numerical dissipation can be found in

the work of Schiavo et al.[42].

5.2. Application to the corner separation case

The TKE budget terms are extracted on the ‘outlet 1’ plane. In order to550

facilitate the comparison, the terms are grouped by their physical meaning, as

done during the flat-plate validation: the production term and the numerical

residual term are left isolated, while the dissipation is the sum of the viscous and

SGS dissipations and the transport is the sum of the remaining terms (among

which the SGS diffusion). Thus, the SGS terms are included in the group terms555

that are plotted. For the RANS simulations, the numerical residual presents

directly the opposite of the production limiter. The numerical residual is pre-

sented first, in order to gauge the quality of the budget extraction.

LES Original k-𝜔 Modified k-𝜔QCR k-𝜔

Figure 21: Numerical residual of the TKE budget on the ‘outlet 1’ plane, normalised by

(ρ2eu
4
e)/µ.

The numerical residual term on the ‘outlet 1’ plane is presented in figure 21.

It is negative, thus corresponding to a dissipative effect. For the LES, this term560
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is not negligible compared to the other budget terms (in Figs 22, 23 and 24) but

remains moderate. Its amplitude is smaller than a quarter of the amplitude of

the production and dissipation, thus its impact on the budget does not modify

the physical analysis.

The three RANS simulations show a significant numerical residual corre-565

sponding to the activation of the k-production limiter, which clips the produc-

tion if it is more than ten times the dissipation. This behaviour is expected,

given that the limitation is to occur in areas of high anisotropy. The three

RANS simulations show a similar activation of the k-production limiter, inside

the wake of the corner separation, where the flow is highly vortical.570

LES Original k-𝜔 Modified k-𝜔QCR k-𝜔

Figure 22: TKE production on the ‘outlet 1’ plane, normalised by (ρ2eu
4
e)/µ.

The production term at ‘outlet 1’ is shown in figure 22. The LES shows two

distinct lobes. The first lobe, centred around x2/s = 1.1 and x3/h = 0.05, is

the main area of production. A second lobe of lower intensity is found around

x2/s = 1.3 and x3/h = 0.1. These two areas are inside the area of maximal

Reynolds stresses and maximal losses, as shown in figures 10, 11 and 12.575

The RANS results present a similar topology to the LES result, i.e. two

lobes are well delimited. However, all the RANS simulations over-predict the

size of the lobes and the intensity of the term. The over-prediction is remarkable

for the external lobe (at x2/s ' 1.3 and x3/h ' 0.15). The QCR k − ω model

reduces the intensity of the production term and the lobe extent, and so does,580

but less efficiently, the modified k−ω model. The QCR k−ω model shows the

best comparison to the LES.
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LES Original k-𝜔 Modified k-𝜔QCR k-𝜔

Figure 23: TKE dissipation on the ‘outlet 1’ plane, normalised by (ρ2eu
4
e)/µ.

The dissipation term at the section ‘outlet 1’ is given in figure 23. The LES

dissipation in the wake is very weak. The behaviour of the RANS simulations

is very different. For the three RANS simulations, the dissipation in the wake is585

intense and superimposed with the area of production. The original k−ω model

shows a notable overestimation of the dissipation. The intensity is reduced by

the QCR and modified k−ω models. But the reduction is limited in comparison

to the LES. As for the production term, the QCR k − ω model gives the best

description of the physics.590

LES Original k-𝜔 Modified k-𝜔QCR k-𝜔

Figure 24: TKE transport on the ‘outlet 1’ plane, normalised by (ρ2eu
4
e)/µ.

Figure 24 presents the transport term at ‘outlet 1’. The LES transport

develops in the blade and corner separation wakes. The TKE is taken from

areas of production to be transported to dissipative places, close to the walls

and downstream. With regard to RANS, the amplitude of the transport term

is moderate compared with the production or dissipation terms. This is the595
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counterpoint of the non-physical behaviour of the RANS models. Turbulent ki-

netic energy is dissipated where it is produced, and not transported. However,

given the overestimation of production and dissipation, transport shows inten-

sities comparable with the LES. A particularly good estimate of the intensity

is achieved by the original k − ω model. The QCR k − ω model gives a better600

estimate in terms of size of the maximal transport area. The modified model

does not show such a strong improvement.

6. Conclusion

The main objective of the present work was to characterise in detail the

behaviour of classic RANS models in a corner separation flow. The characteri-605

sation has been made through various aspects, from the analysis of the Reynolds

stress tensor to the term-to-term comparison of the modelled TKE budget equa-

tion, using LES results as reference.

The three RANS models fail to accurately predict the Reynolds stresses.

Both the topology and intensity are wrongly estimated. Among the three mod-610

els, the QCR k−ω model gives the best agreement with the LES. The incorrect

estimation of the Reynolds stresses can be a consequence of a defect of the con-

stitutive relation, a defect of the modelled turbulence equations, or a coupling

of the two.

The alignment hypothesis between the Reynolds stresses and the velocity615

gradient tensor is generally not valid. The Boussinesq constitutive relation relies

on an alignment that is not valid even on canonical flows, such as a developing

boundary layer. The quadratic constitutive relation, which accounts for the

local vorticity of the flow, gives much better results in the inlet and corner

separation domain. Its improvement to the corner separation wake domain is,620

however, limited. Concerning the estimate of the eddy-viscosity, the use of k

and ω gives fairly good results.

The modelled TKE budget (k equation) presents almost the same behaviour

for the three RANS turbulence models. The production term is not accurately
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predicted, which is directly associated with the erroneous representation of the625

Reynolds stresses. The transport term is weak compared to the other terms in

the RANS simulations, while it is not negligible in the LES. The dissipation term

is locally opposite to the production term in the RANS simulations, while the

LES TKE dissipation is not located in the same areas as the production. This

superimposition is typical of the RANS turbulence models that rely implicitly630

on the strong hypothesis of equilibrium turbulence, i.e. a local equilibrium

between production and dissipation with little transport.

Nomenclature

c Blade chord length [m]

ca Chord length projection in the x1 direction [m]

cQCR Constant of the quadratic constitutive relation

Cp Mean static-pressure coefficient

Cpt Mean total-pressure loss coefficient

Cµ Turbulence model constant

fr1 Factor in the modified k − ω model

h Blade span [m]

k Turbulent kinetic energy [m-2.s-2]

Lx1 Length of the flat-plate domain [m]

Lx2
Height of the flat-plate domain [m]

Lx3
Width of the flat-plate domain [m]

M Mach number

O Normalised rotation tensor

p Local mean static pressure [Pa]

pe Inflow (reference) mean static-pressure [Pa]

pt Local mean total-pressure [Pa]

pte Inflow (reference) mean total pressure [Pa]

Rec Chord based Reynolds number

Reδ2 Momentum thickness based Reynolds number
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Rex Stream-wise Reynolds number

s Pitch [m]

S Modulus of the mean strain-rate tensor [s-1]

u Local velocity vector [m.s-1]

ue Free-stream (reference) velocity [m.s-1]

x1 Stream-wise direction

x2 Pitch-wise direction

x3 Span-wise direction

γ Blade stagger angle [◦]

δ Boundary-layer thickness [m]

δ2 Boundary-layer momentum thickness [m]

∆y+ Non-dimensional wall distance

ε Turbulence dissipation rate [m-2.s-3]

Λ k-production limiter [kg.m-1.s-3]

µ Dynamic viscosity [kg.m-1.s-1]

µSGS Sub-grid scale viscosity [kg.m-1.s-1]

µt Eddy-viscosity [kg.m-1.s-1]

µ
(0)
t LES-based reference turbulent viscosity assuming

the Boussinesq constitutive relation is valid [kg.m-1.s-1]

µ
(0)QCR
t LES-based reference turbulent viscosity assuming

the QCR is valid [kg.m-1.s-1]

µ
(1)
t LES-based estimate of the turbulent viscosity [kg.m-1.s-1]

Ξ Numerical residual [kg.m-1.s-3]

Π SGS stress tensor [kg.m-1.s-2]

ρ Local density [kg.m-3]

ρe Reference density [kg.m-3]

σ Mean zero-trace strain rate tensor [s-1]

τ Viscous stress tensor [kg.m-1.s-2]

τt Reynolds stress tensor [kg.m-1.s-2]

Υ Alignment indicator for the Boussinesq constitutive relation
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ΥQCR Alignment indicator for the QCR

ω Specific turbulence dissipation rate [s-1]

Ω Modulus of the mean rotation tensor [s-1]
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