
HAL Id: hal-03041892
https://hal.science/hal-03041892

Submitted on 5 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gas flow through a bore-piston ring contact
Baptiste Hallouin, Didier Lasseux, Gerald Senger

To cite this version:
Baptiste Hallouin, Didier Lasseux, Gerald Senger. Gas flow through a bore-piston ring contact.
International Journal of Engine Research, 2020, pp.146808742097112. �10.1177/1468087420971127�.
�hal-03041892�

https://hal.science/hal-03041892
https://hal.archives-ouvertes.fr


Gas flow through a bore-piston ring
contact

————————————-
International J of Engine Research
1–18 2020
DOI: 10.1177/1468087420971127

Baptiste Hallouin1, Didier Lasseux2 and Gerald Senger1

Abstract
This work reports on the derivation of simplified but accurate models to describe gas flow through a bore-piston ring
contact, in reciprocating machines like compressors or IC engines. On the basis of the aperture field of a contact
deduced from real measurements carried out on an expanding ring in a bore, a scale analysis on the complete
compressible flow model is performed, assuming ideal gas law. It is shown that the flow can be treated as stationary
and three distinct flow regimes can be identified (namely incompressible, compressible creeping and compressible
inertial regimes). Three dimensionless parameters characterizing these regimes are identified. While for the two former
regimes, classical analytical Poiseuille type of models are derived, an Oseen approximation is further employed for the
latter, yielding a quasi-analytical solution. The models are successfully compared to direct numerical simulations (DNS)
of the complete initial set of balance equations in their steady form performed on an aperture field of sinusoidal shape.
These simplified models are of particular practical interest since they allow an accurate gas flow-rate estimate through
a real contact using the aperture field as the geometrical input datum, together with the thermodynamic conditions
(pressure and temperature). This represents an enormous advantage as DNS is hardly tractable still very challenging
in practice due to the extremely small value of the contact aperture to contact length ratio.
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Introduction

Piston rings are key components of reciprocating machines.
Their prime function is to dynamically seal the clearance
between the bore and the moving piston in order to maintain
gas pressure in the chamber above the piston. However,
due to many parameters, among which are technological
constraints like open rings as well as geometrical defects that
are always present at very different scales on all the contact
surfaces (bore, ring and piston groove), significant leak
may occur through the piston ring pack.1 This represents a
major source of pressure loss that may strongly impact the
machine efficiency. So far, two main leakage paths have been
considered to account for efficiency loss due to gas blow-by.
The first one, as the main, corresponds to the ring end gaps.
Flow through this leak path is assumed to be one dimensional
and isentropic using an "orifice and volume" approach as an
equivalence with the flow between two volumes (the two
chambers separated by the ring) through an orifice having
the gap cross section.2–4 The second potential leak path,
as reported in some scarce references, can be identified as
the clearance between the ring faces and the piston groove
flanks as a result of either the absence of contact or only
partial contact due to deviations to flatness on both the
ring faces and groove flanks.5,6 In this region, the flow is
approximated by the classical 1D Reynolds equation as was
used elsewhere7,8 and which served as the basis of extensive
analyses of contact transmissivities for different classes of
surfaces.9–13 However, for gas, compressible and inertial
effects might be significant as will be further highlighted in
the next sections, calling for a more careful investigation of
the relevant flow models.

Empirical evidences have shown that piston rings
normally experience starved lubrication, at least at some
points of their stroke, mainly due to interaction with the other
rings in the pack.14,15 Simulation methods for the motion
of a piston ring pack have been developed,5,6,16–19 showing
that ring movements affect lubricant consumption and engine
wear mechanism. Some of these methods, focused on
lubricant starvation issue, have been able to predict the
occurrences of oil film rupture and the conditions that can
lead to gas blow-by.4 The existence of a discontinuous oil
film strongly suggests that, in addition to ring end gap and
groove flank blow-by, some gas leakage may also appear
within the bore-ring interface, i.e. in the gap -referred to as
the aperture field in the remainder of this paper- resulting
from deviation to circularity of both the ring and bore where
oil film is broken up. Experimental observations confirm this
assumption and clearly show that the mechanism is enhanced
by excessive bore distortions.20,21 Nevertheless, the literature
dedicated to the analysis of the rings to bore conformity is
mainly focused on tribological aspects22–25 and the gas flow
mechanism through the aperture field has not been enough
reported with enough details.
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In order to quantify this effect and help the diagnostic
and/or the design of a bore-piston assembly, one may think
about carrying out direct numerical simulations (DNS) of
the complete set of equations (mass, momentum, energy and
equation of state) governing the flow. In practice, this is
however extremely difficult to routinely perform an accurate
computation of the flow through a real aperture field. In fact,
the scale contrast between the circumferential extension of
the contact (which can be of the order of tens of centimeters,
or even one meter in the case of diesel marine engines25)
compared to the characteristic value of the aperture (typically
few microns) is such that this requires a tremendously large
number of grid blocks, making the simulation intractable
for routine use. A reduction of the number of grid points
for reasonable computational resources would be to the
cost of a mesh featuring grid block with a poor aspect
ratio which may significantly alter the accuracy of the
results. An alternative would be to employ a multi-scale
approach,26 which however requires an upscaled model that
is extremely difficult to achieve if mass, momentum and
energy conservation equations are coupled. Some detailed
computation of the gas pressure evolution in combustion
chambers was reported recently27 but the gas blow-by
envisaged here was not taken into account. To circumvent
this difficulty, accurate predicting models, requiring very few
computational steps, are highly desirable.

Our objective in this work is hence to complement
previous descriptions of gas blow-by with predictive models
of gas flow through the aperture field of the bore-ring contact
that has not been accounted for, so far. In particular, the
purpose is to derive simplified models that are of simple
practical use that would be able to give a satisfactory
approximation of the flow rate through the contact. This
is carried out assuming that i) the gas is ideal; ii) the gas
thermophysical parameters (dynamic viscosity, heat capacity
at constant pressure and thermal conductivity) are constant;
iii) no oil film is present in the contact, or at least, if
present at some places on the surfaces, it behaves as a
solid with respect to the gas flow; iv)the pressure drop
across the ring remains moderate. Within this framework,
the article is organized as follows. In section 2, it is shown
that three distinct flow regimes can be identified -namely
incompressible, compressible creeping and compressible
inertial- that essentially depend on the pressure drop between
the ring faces. This is performed from a scale analysis carried
out on the full set of balance equations governing the flow.
It is shown that the flow can be considered as stationary,
the dynamics of the piston being only reflected through the
evolution of the velocity of the piston ring outer surface
during the stroke. In section 3, operational predictive flow-
rate models and their solutions are provided for the three
identified flow regimes. These simplified predictive models
are compared in section 4 to DNS of the flow performed on
a model aperture field of realistic characteristic dimensions.

Gas flow model

The starting point of our analysis is the microscopic
description of mass, momentum and heat transfer of the
gas within the aperture field, assuming negligible Knudsen
effects so that the classical framework of continuum

mechanics with no velocity and temperature jumps at the
solid boundaries is assumed. The gas is assumed to obey
the ideal gas law, and, in addition, thermophysical properties
of the gas (dynamic viscosity, µ, thermal conductivity, λ,
and heat capacity at constant pressure, cp) are assumed to
be constant. These assumptions are adopted for the sake of
simplicity in the development although the dependence of
these parameters on temperature and fuel-to-air ratio may
be required in the case of IC engines. From this simplified
model, the different flow regimes are identified.

Balance equations
The flow within the bore-piston ring contact is governed by
the classical mass, momentum and energy balance equations
which, according to our hypotheses, are recalled below.

* Continuity equation
Mass conservation is that for a classical compressible

fluid, i.e.
∂ρ

∂t
+ ρ∇ · u + u · ∇ρ = 0 (1)

* Navier-Stokes (momentum) equation
The gas is assumed to be a Newtonian fluid and the two

coefficients of viscosity are related by the Stokes relation
for which the bulk viscosity is zero. The motion is therefore
described by the following momentum equation

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u +

1

3
µ∇∇ · u (2)

* Energy equation
The flow is assumed to be adiabatic and heat conduction

in the gas is governed by Fourier’s law. Under these
assumptions, the energy equation takes the following form

∂

∂t

(
ρ

(
cpT −

P

ρ
+
u2

2

))
+ ρu ·

(
1

2
∇u2 + cp∇T

)
= ∇ · (σ · u) + λ∇2T (3)

* Gas equation of state
The gas behavior is described by the ideal gas state law

P = ρrT (4)

where r is the ideal gas constant for the gas under
consideration. Gas enthalpy, H , is related to the temperature
by the following relationship

H =

∫ T

Tref

cpdT (5)

The purpose of the scale analysis is to determine the most
influential terms in the above equations in order to derive
simplified flow models.

Dimensionless form and scale analysis
The scale analysis is performed on a representative volume
of the gas between the bore and the ring, as the one depicted
between points A and B in Fig. 1. This figure shows a typical
aperture field of a bore-ring interface which was obtained
by superimposing real profiles measured on an expanding
ring and a bore. Indeed, the aperture field, h, resulting from
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Figure 1. a) Example of a real aperture field resulting from the
measurement of ring and bore surfaces. Top view in the xy
plane. b) Schematic cross section view of the piston-ring-bore
assembly. The ring is in the xy plane.

the difference between the two surfaces in contact, is the
geometrical characteristic of interest to analyze the flow.

As indicated by this figure, bore roundness deviation
is extremely small since it does not exceed micrometers
over the whole circumference. In a bolted assembly, this
deviation may be much larger, leading to a loss of conformity
between the ring and the bore. Conversely, defects on the
ring (resulting from processing, wear, etc.) are much more
significant suggesting that they are the main source of
the resulting aperture field. Many authors have studied the
influence of bore distortions on ring conformability but, most
of the time, those on the ring have been disregarded.28–31

Few works dedicated to this issue addressed the problem
from a tribological point of view.22–25 Figure 1 shows that
the ring defects should also be taken into account since they
can induce an aperture of several hundredths of millimeters.
They shall certainly be considered as the main origin of poor
conformity.

As the ratio between the typical aperture and the ring
radius is much smaller than 1, the analysis can be carried
out using a Cartesian system of coordinates for which x, y
and z correspond to the azimuthal, radial and axial directions
respectively, the latter being the main direction of the piston
motion. Both the upstream and downstream side of the ring
are in the (x, y) plane.

Six flow variables are involved in the problem, namely
the three components of velocity, u, i.e. u, v and w in the
three directions x, y and z respectively, the temperature,
T , the pressure, P , and the density, ρ, all being space and
time dependent. For a convenient scale analysis, they shall
be classified into two categories, depending on whether their
scale is defined a priori or not. The term scale for a variable,
is meant to be a representative value of the magnitude of its
variation. First are the variables whose scale can be easily
inferred from the configuration and operating conditions.
These are the space variables along with the pressure and
time. Scales of space coordinates are determined from the
aperture field as represented in Fig. 1. The characteristic
dimensions of the aperture field are such that x scales as L0,
the average distance between two contact points, y scales as
h0, the typical aperture, z scales as l0, the typical width of a
ring. Since gas flow through the aperture field is actuated by
both the gas pressure gradient across the contact and piston
motion, the pressure can be scaled by the pressure drop,

∆P , between the upstream and downstream faces. Typically,
∆P is of the order of 10 kPa, 100 kPa or 0.1 MPa,
depending on the type of machine and position of the ring in
the assembly. It is rather 0.1 MPa for the top compression
ring of an IC engine, for instance, and typically 100 kPa for
a ring in a compressor. The time-scale, t0, is determined by
the stroke period, i.e.

t0 =
c

V
(6)

where c is the stroke and V is the piston velocity.
The second category of variables includes those whose

scale is unknown a priori, which, in the present case, are
u, v, w, T and ρ. Scales associated to these variables
are respectively denoted by u0, v0, w0, ∆T and ∆ρ.
The objective of the scale analysis is first to determine
unknown scales and further to eventually simplify the
balance equations by discarding unimportant terms on the
basis of their respective orders of magnitude. To do so,
unknown scales have to be expressed as functions of known
scales and this is achieved once all variables and their
derivatives are made dimensionless and are all of order one
according to their respective scales. From a practical point of
view, this means that all the variables are bounded between
roughly 0.1 and 10. The comparison between the different
terms in the equations can be then performed from the order
of magnitude of their respective prefactors only. Prefactors
have thus to be expressed as functions of known scales so
that they can be quantified numerically.

To have dimensionless variables of order 1, two changes
of variables may be performed. The first one is purely
linear. It is suitable for variables whose variation and average
value have the same orders of magnitude. In particular, it
is convenient for all the variables that are set to zero at
some location at a given time. This is the case for velocity
components as no slip is assumed at the gas-solid interface.
This is also the case for space and time coordinates as a result
of the choice of the Cartesian triad and time origins. This
leads to the following changes of variables

x∗ =
x

L0
, y∗ =

y

h0
, z∗ =

z

l0
(7a)

u∗ =
u

u0
, v∗ =

v

v0
, w∗ =

w

w0
(7b)

t∗ =
t

t0
(7c)

Conversely, variables whose variation is small compared
to their average value require an affine change of variable.
It shall be noted that, in the absence of any indication
on whether the variable itself experiences small variations
compared to its average value, an affine change of variable
is preferable to a linear one, even though the analysis might
be more complex. In our case, pressure, temperature and gas
density are respectively made dimensionless as follows

P ∗ =
P − P0

∆P
(8a)

T ∗ =
T − T0

∆T
(8b)

ρ∗ =
ρ− ρ0

∆ρ
(8c)
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In these three last relationships, P0, T0 and ρ0 are reference
values which can be taken as those at a boundary. For
instance, P0 can be chosen as the gas pressure in the
crankcase in the case of an IC engine.

The governing equations (1) to (4) are rewritten according
to the different changes of variables in equations (7) and
(8) and unknown scales are determined by matching terms
involving them, i.e. by solving the equations in terms of
the orders of magnitude, according to a least degeneracy
principle. This is a classical approach in the method of
matched asymptotic expansions.32 With this, it is simply
meant that the unknown scales must be determined so that the
resulting number of negligible terms in the balance equations
of the problem is minimal. The scale analysis is detailed in
the Appendix in which a special attention is dedicated to the
temperature field and this leads to the following solution

u0 ∼
h2

0∆P

µL0
(9a)

v0 ∼
h3

0∆P

µl20
(9b)

w0 ∼
h2

0∆P

µl0
(9c)

∆T ∼ h4
0∆P 2

µl20λ
(9d)

∆ρ ∼ ρ0

(
1 + τ

1 + Reδτ µrλ
− 1

)
(9e)

In this last relationship, τ and Re are respectively given by

τ =
∆P

P0
(10)

Re =
ρ0h0w0

µ
=
P0h

3
0∆P

rT0µ2l0
(11)

where Re is the Reynolds number of the flow. Taking into
account the range of ∆P mentioned above, τ is considered
to have an order of magnitude up to 1 in the following.

With this solution in terms of orders of magnitude at hand,
the dimensionless governing equations can be written as

* Continuity equation

α

τ

(
1

1
τ + P ∗

∂P ∗

∂t∗
− 1

1
Reδτ

λ
µr + T ∗

∂T ∗

∂t∗

)

+
∂v∗

∂y∗
+
∂w∗

∂z∗

+ v∗
(

1
1
τ + P ∗

∂P ∗

∂y∗
− 1

1
Reδτ

λ
µr + T ∗

∂T ∗

∂y∗

)

+ w∗
(

1
1
τ + P ∗

∂P ∗

∂z∗
− 1

1
Reδτ

λ
µr + T ∗

∂T ∗

∂z∗

)
= O

(
(ε/δ)

2
)

(12)

* Navier-Stokes equation
1 + τP ∗

1 + Reδ µrλ τT
∗

Reδ
(
α

τ

∂u∗

∂t∗
+ v∗

∂u∗

∂y∗
+ w∗ ∂u

∗

∂z∗
+O

(
(ε/δ)

2
))

= −∂P
∗

∂x∗
+
∂2u∗

∂y∗2
+O

(
ε2
)

+O
(
δ2
)

(13a)

1 + τP ∗

1 + Reδ µrλ τT
∗

Reδ3

(
α

τ

∂v∗

∂t∗
+ v∗

∂v∗

∂y∗
+ w∗ ∂v

∗

∂z∗
+O

(
(ε/δ)

2
))

= −∂P
∗

∂y∗
+O

(
ε2
)

+O
(
δ2
)

(13b)

1 + τP ∗

1 + Reδ µrλ τT
∗

Reδ
(
α

τ

∂w∗

∂t∗
+ v∗

∂w∗

∂y∗
+ w∗ ∂w

∗

∂z∗
+O

(
(ε/δ)

2
))

= −∂P
∗

∂z∗
+
∂2w∗

∂y∗2
+O

(
ε2
)

+O
(
δ2
)

(13c)

* Energy equation

α

τ
Reδ

{[(
Pr− µr

λ

)(
1 + Reδτ

µr

λ
T ∗
)

+
1

2

(
O
(

(ε/δ)
2
)

+O
(
δ2
)

+ w∗2
)]

(
1 + τ

1 + Reδτ µrλ
− 1

)
∂ρ∗

∂t∗

+

(
1 +

(
1 + τ

1 + Reδτ µrλ
− 1

)
ρ∗
)

((
Pr− µr

λ

) ∂T ∗

∂t∗
+O

(
(ε/δ)

2
)

+O
(
δ2
)

+ w∗ ∂w
∗

∂t∗

)}

+
1 + τP ∗

1 + Reδτ µrλ T
∗ Reδ

(
w∗
(
v∗
∂w∗

∂y∗
+ w∗ ∂w

∗

∂z∗

)
+Pr

(
v∗
∂T ∗

∂y∗
+ w∗ ∂T

∗

∂z∗

))
=
∂2T ∗

∂y∗2
+

∂

∂y∗

(
w∗ ∂w

∗

∂y∗

)
+O

(
(ε/δ)

2
)

+O
(
ε2
)

+O
(
δ2
)

(14)

* Gas equation of state

1 + τP ∗ =

(
1 +

(
1 + τ

1 + Reδτ µrλ
− 1

)
ρ∗
)

(
1 + Reδτ

µr

λ
T ∗
)

(15)

In these equations, the following nomenclature was
employed

δ =
h0

l0
(16a)

ε =
h0

L0
(16b)

α =
µV l20
P0ch2

0

(16c)

and
Pr =

µcp
λ

(17)

where Pr is the Prandtl number of the flow. Since Pr and µr
λ

are both of order 1, the flow within the bore-ring interface
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is conditioned by τ and two τ -dependent dimensionless
numbers, namely α

τ and Reδ with

Reδ = βτ (18)

and

β =
P 2

0

rT0

h4
0

µ2l20
(19)

The dimensionless momentum equations clearly show that
the balance between inertial and viscous effects does not
simply depend on the Reynolds number but on the rescaled
form, Reδ, of this number.

Characteristic dimensions of realistic aperture fields are
such that the ratios δ and ε are both small compared to
unity. In fact, taking typical values as h0 ∼ 10−5 m, l0 =
10−3 m and L0 = 10−2 m leads to δ ∼ 10−2 and ε ∼
10−3. As a consequence, the governing equations (1) to
(4) can be simplified on the basis of comparative orders
of magnitude of the different terms in these equations
depending on the order of magnitude of τ and this is carried
out in the following section, with the purpose of determining
a simplified solution for the axial component, w, of the
velocity in order to estimate the gas blow-by through the
bore-piston ring contact.

Flow regimes identification
The flow regime within the bore-ring interface depends on
the order of magnitude of Reδ = βτ , i.e. on τ which is
intimately related to the type of reciprocating machine under
consideration as well as to the location of the ring in the ring
pack. It is also linked to the value of β which depends on the
bore-ring conformity. As discussed above, the aperture field
for this contact can take typical values of several hundredths
of millimeters. However, in some cases of better conformity,
occurring in the wear regime for example, it decreases to few
micrometers.

To begin with, the influence of the non-stationary terms
in the mass, momentum and energy balance equations (12),
(13) and (14) respectively must be investigated. A careful
inspection indicates that the importance of these terms relies
on the prefactors α in the mass equation and αβ in both the
momentum and energy equations. As a consequence, typical
values of the two parameters α and β must be estimated.
For such an estimation, the following characteristic orders
of magnitude, representative of realistic situations, are used:
P0 ∼ 105 Pa, V ∼ 10 ms−1, c ∼ 10−1 m, T0 ∼ 300 K. It
should be noted that T0 is taken as the ambient temperature
with an order of magnitude intermediate between 102 and
103. For h0, one may distinguish situations where conformity
between the ring and the bore is either poor or of good
quality. In the former case, it is reasonable to consider h0 ∼
10−5 m, while in the latter, one may rather take h0 ∼ 10−6

m. This respectively yields

α =
µV l20
P0ch2

0

∼ 10−4 (20a)

β =
P 2

0

rT0

h4
0

µ2l20
∼ 1 (20b)

when h0 ∼ 10−5 m and

α ∼ 10−2 (20c)

β ∼ 10−4 (20d)

when h0 ∼ 10−6 m. In the two situations, α and αβ are
much smaller than 1, and this indicates that unsteady terms
in the mass, momentum and energy equations are completely
negligible, showing that non-stationary effects induced by
the piston movement on the gas flow through the aperture
field can be neglected.

With this simplification at hand, the flow regimes can now
be analyzed and this is performed in accordance with the
orders of magnitude of τ and β. Keeping in mind that β
can be up to O(1), the discussion is mainly focused on τ .
The purpose is to derive approximate models which can yield
simple solutions that can be carried out analytically as much
as possible.

Incompressible flow regime This regime occurs when τ �
1. The corresponding model is hence obtained using a zeroth-
order approximation in τ in equations (12) to (15) above
which can be expressed as

* Continuity equation

O (α) +
∂v∗

∂y∗
+
∂w∗

∂z∗
+O (τ) +O

(
(ε/δ)

2
)

= 0 (21)

* Navier-Stokes equations

O (αβ) +O (τ) =− ∂P ∗

∂x∗
+
∂2u∗

∂y∗2

+O
(
ε2
)

+O
(
δ2
)

(22a)

δ2 (O (αβ) +O (τ)) = −∂P
∗

∂y∗
+O

(
ε2
)

+O
(
δ2
)

(22b)

O (αβ) +O (τ) =− ∂P ∗

∂z∗
+
∂2w∗

∂y∗2

+O
(
ε2
)

+O
(
δ2
)

(22c)

* Energy equation

O (αβτ) +
∂2T ∗

∂y∗2
+

∂

∂y∗
(w∗ ∂w

∗

∂y∗
)

= O
(

(ε/δ)
2
)

+O
(
ε2
)

+O
(
δ2
)

(23)

* Gas equation of state

P ∗ O(τ) = ρ∗ O(τ) (24)

The flow is actually incompressible, as shown by equation
(24), and in the creeping regime, as indicated by equations
(22). The momentum equations can then be integrated. To
carry out the integration, the following boundary conditions
shall be considered

P (z = 0) = P1(x) (25)

P (z = l) = P0 (26)

w(y = 0) = 0 (27)

w(y = h) = V (28)
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the latter corresponding to a no slip condition at the gas-
ring interface. With such conditions, the integration leads to
a solution similar to a Couette flow given by

P (x, z) =
P0 − P1(x)

l
z + P1(x) (29a)

u(x, y, z) =
1

2µ

∂P

∂x
(y2 − h(x)y) (29b)

v = 0 (29c)

w(x, y) =
P0 − P1(x)

2µl

(
y2 − h(x)y

)
+

V

h(x)
y (29d)

Compressible creeping flow regime When τ increases but
remains smaller than 1, compressibility effects become more
significant and can be taken into account by a first order
approximation in τ in equations (12) to (15). Doing so yields
the following problem statement

* Continuity equation

O(α) +
∂v∗

∂y∗
+
∂w∗

∂z∗
+ v∗

(
τ
∂P ∗

∂y∗
+O

(
τ2
))

+ w∗
(
τ
∂P ∗

∂z∗
+O

(
τ2
))

+O
(

(ε/δ)
2
)

= 0 (30)

* Navier-Stokes equations

O (αβ) + βτ

(
v∗
∂u∗

∂y∗
+ w∗ ∂u

∗

∂z∗
+O

(
(ε/δ)

2
))

+O
(
τ2
)

= −∂P
∗

∂x∗
+
∂2u∗

∂y∗2
+O

(
ε2
)

+O
(
δ2
)

(31a)

δ2

[
O(αβ) + βτ

(
v∗
∂v∗

∂y∗
+ w∗ ∂v

∗

∂z∗
+O

(
(ε/δ)

2
))

+

O
(
τ2
) ]

= −∂P
∗

∂y∗
+O

(
ε2
)

+O
(
δ2
)

(31b)

O (αβ) + βτ

(
v∗
∂w∗

∂y∗
+ w∗ ∂w

∗

∂z∗
+O

(
(ε/δ)

2
))

+O(τ2) = −∂P
∗

∂z∗
+
∂2w∗

∂y∗2
+O

(
ε2
)

+O
(
δ2
)

(31c)

* Energy equation

O (αβτ) + βτ (1 +O (τ))

[
w∗
(
v∗
∂w∗

∂y∗
+ w∗ ∂w

∗

∂z∗

)
+Pr

(
v∗
∂T ∗

∂y∗
+ w∗ ∂T

∗

∂z∗

)]
=
∂2T ∗

∂y∗2
+

∂

∂y∗

(
w∗ ∂w

∗

∂y∗

)
+O

(
(ε/δ)

2
)

+O
(
ε2
)

+O
(
δ2
)

(32)

* Gas equation of state

1 + τP ∗ = 1 + τρ∗ +O
(
βτ2

)
(33)

If β is of order 1, (i.e. in the case of poor conformity of
the ring in the bore, see equation (20b)), the flow is inertial

and an analytical solution of the above equations cannot
be found. If β < 1, (i.e. in the case of a good conformity
between the bore and the ring, see equation (20d)), the
flow remains in the creeping regime as can be inferred
from equations (31). Using the boundary conditions given in
equations (25) to (28), the integration of the flow equations
can be performed yielding the following solution

P (x, z) =

(
P 2

0 − P 2
1 (x)

l
z + P 2

1 (x)

)1/2

(34a)

u(x, y, z) =
1

2µ

∂P

∂x

(
y2 − h(x)y

)
(34b)

v = 0 (34c)

w(x, y, z) =

(
P 2

0 − P 2
1 (x)

) (
y2 − h(x)y

)
4µl

(
P 2

0 −P 2
1 (x)
l z + P 2

1 (x)
)1/2

+
V

h(x)
y (34d)

Unlike the case of the incompressible regime, it shall be
noted that the axial pressure variation is non linear and fluid
particles are accelerated in the axial direction.

Compressible inertial flow regime In this case for which τ
is of order 1, inertial (i.e., convective acceleration in the gas)
and thermal effects remain significant which is in contrast
with situations for which τ < 1. Once unsteady terms are
discarded and taking into account the values of δ and ε that
are both small compared to 1, the governing equations can
be expressed as

* Continuity equation

O(α) +
∂v∗

∂y∗
+
∂w∗

∂z∗

+ v∗
(

1
1
τ + P ∗

∂P ∗

∂y∗
− 1

1
Reδτ

λ
µr + T ∗

∂T ∗

∂y∗

)

+ w∗
(

1
1
τ + P ∗

∂P ∗

∂z∗
− 1

1
Reδτ

λ
µr + T ∗

∂T ∗

∂z∗

)
+O

(
(ε/δ)

2
)

= 0 (35)

* Navier-Stokes equation

O(α) +
1 + τP ∗

1 + Reδ µrλ τT
∗ Reδ(

v∗
∂u∗

∂y∗
+ w∗ ∂u

∗

∂z∗
+O

(
(ε/δ)

2
))

= −∂P
∗

∂x∗
+
∂2u∗

∂y∗2
+O

(
ε2
)

+O
(
δ2
)

(36a)

δ2O(α) = −∂P
∗

∂y∗
+O

(
ε2
)

+O
(
δ2
)

(36b)

O(α) +
1 + τP ∗

1 + Reδ µrλ τT
∗ Reδ(

v∗
∂w∗

∂y∗
+ w∗ ∂w

∗

∂z∗
+O

(
(ε/δ)

2
))

= −∂P
∗

∂z∗
+
∂2w∗

∂y∗2
+O

(
ε2
)

+O
(
δ2
)

(36c)
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* Energy equation

O(α) +
1 + τP ∗

1 + Reδτ µrλ T
∗ Reδ[

w∗
(
v∗
∂w∗

∂y∗
+ w∗ ∂w

∗

∂z∗

)
+ Pr

(
v∗
∂T ∗

∂y∗
+ w∗ ∂T

∗

∂z∗

)]
=
∂2T ∗

∂y∗2
+

∂

∂y∗

(
w∗ ∂w

∗

∂y∗

)
+O

(
(ε/δ)

2
)

+O(ε2) +O(δ2) (37)

* Gas equation of state

1 + τP ∗ =

(
1 +

(
1 + τ

1 + Reδτ µrλ
− 1

)
ρ∗
)

(
1 + Reδτ

µr

λ
T ∗
)

(38)

Under this form, no analytical solution can be obtained.
However, some additional simplification may be proposed to
carry out a solution of practical use and this is detailed in the
following section.

Before proceeding, it should be noted that this last
regime can be extended without any modification to the
case Reδ > 1 (i.e. τ > 1) that may be of interest for IC
engines for instance, for which, in particular, a good bore-
ring conformity is expected.

Simplified operational models

In this section, simplified models are proposed in order to
predict the flow rate through the bore-ring interface in the
three flow regimes identified above. This is achieved by
deriving the corresponding quasi-analytical solution for the
mass flow rate in the axial direction.

Incompressible flow model (τ � 1)

The pressure and velocity fields are given by the analytical
solution reported in equations (29), and, to complete this
solution, the static pressure P1(x) must be made explicit by
setting boundary conditions at the upstream and downstream
edges of the bore-ring contact. Realistic boundary conditions
are chosen to be such that:

- the static pressure P0 is uniform at the downstream face
of bore-ring contact, i.e. at the plane z = l;

- the total pressure is uniform at the upstream face of
the bore-ring contact, i.e. at the plane z = 0. This can be
expressed as

Pt1 = P1(x)

(
1 +

γ − 1

2
M1

2
(x)

) γ
γ−1

(39)

with

M1(x) =
w1(x)√
γrT1(x)

(40)

w1(x) being the average axial velocity component at the
upstream face of the bore-ring contact

w1(x) =
1

h

∫ h

0

w1(x, y, z = 0)dy

=
P1(x)− P0

12µl
h2(x) +

V

2
(41)

- the total temperature is uniform at the upstream face of
the bore-ring contact. This yields

Tt1 = T1(x)

(
1 +

γ − 1

2
M1

2
(x)

)
(42)

To estimate the blow-by through the bore-ring contact,
the aperture field h(x) is discretized according to a finite
difference type of discretization using n grid points. For each
grid block positioned at xi, P1, w1 and T1 can be computed
by solving numerically the set of equations (39) to (42).
The flow rate per unit length can finally be obtained at the
corresponding position xi. It is given by

dQm
dx

(xi) =
P1(xi)

rT1(xi)

[
P1(xi)− P0

12µl
h3(xi)

+
V h(xi)

2

]
(43)

The blow-by through the contact is finally obtained as

Qm =

n∑
i=1

dQm(xi) (44)

Compressible creeping flow model (τ < 1)
This simplified model is similar to the incompressible
creeping flow regime as the boundary conditions and the
procedure to obtain the mass flow rate are the same. Using
the expressions of the pressure and velocities given by the
analytical solution in equations (34) and employing the
methodology presented above, the following expression of
the average axial velocity at the upstream face of the bore-
ring contact is obtained

w1(x) =
1

h(x)

∫ h

0

w1(x, y, z = 0)dy

=
P 2

1 (x)− P 2
0

24µlP1(x)
h2(x) +

V

2
(45)

From this expression, the mass flow rate per unit length
through the bore-ring contact is given by

dQm
dx

(xi) =
P1(xi)

rT1(xi)

[
P 2

1 (xi)− P 2
0

24µlP1(xi)
h3(xi)

+
V h(xi)

2

]
(46)

Compressible inertial flow model (τ = O(1))
In this case, the set of PDEs governing the flow cannot
be simply integrated analytically. For an analytical solution
to be tractable, some additional simplifying assumptions
are required which consist in assuming that i) temperature
variations remain small within the contact so that the flow
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can be considered as quasi-isothermal, ii) the radial velocity
component, v, is much smaller than the axial component and
can be neglected in the problem.

Under these assumptions equations (35) and (36c) can
be combined yielding the approximated equation of motion,
which in its dimensional form, is given by

w2

rT

∂P

∂z
= −∂P

∂z
+ µ

∂2w

∂y2
(47)

This equation remains non linear and to achieve
integration, an Oseen approximation shall be used which
consists in linearizing the term w2

rT
∂P
∂z . To do so, this term is

approximated by w2

rT
∂P
∂z where w(x) is the average velocity

axial component given by

w(x) =
1

l

∫ l

0

(
1

h(x)

∫ h(x)

0

w(x, y, z)dy

)
dz (48)

The final integration of equation (47) leads to the
following solution

P (x, z) =

(
P 2

0 − P 2
1 (x)

l
z + P 2

1 (x)

)1/2

(49)

w(x, y, z) =
K
(
P 2

0 − P 2
1 (x)

) (
y2 − h(x)y

)
4µl

(
P 2

0 −P 2
1 (x)
l z + P 2

1 (x)
)1/2

+
V

h(x)
y (50)

with

K = 1− w2(x)

rT
(51)

and

w(x) =
h2(x)

12µl

(
1− w2(x)

rT1(x)

)
(P1(x)− P0) +

V

2
(52)

The same boundary conditions as those employed so far
(uniform static pressure, P0, at the downstream face and
uniform total pressure, Pt1, and total temperature, Tt1, at the
downstream face of the bore-ring contact; see equations (39)
and (42)) shall now be considered. This allows to express the
average axial velocity component at the upstream face of the
bore-ring contact as

w1(x) =
1

h(x)

∫ h(x)

0

w1(x, y, z = 0)dy

=

(
1− w2(x)

rT1(x)

)
P 2

1 (x)− P 2
0

24µlP1(x)
h2(x) +

V

2
(53)

The mass flow-rate through the bore-ring contact is finally
obtained using the same procedure as the one employed in
the two preceding cases.

It should be emphasized that the flow rates computation
from the quasi analytical procedures detailed above for each
flow regime only requires few seconds, compared to the
computational time of a complete DNS, which is typically
on the order of 1 to 10 hours.

Comparison with DNS
In this section, the validity of the simplified models derived
above is assessed by comparing their predictions to the
results obtained from DNS of the complete initial set of
equations. This is performed on a model contact which
dimensional characteristics are close to a real configuration.
It should be noted that in a real configuration, the data
required to employ the predictive models reduce to the
aperture field, h, resulting from the difference between the
external ring and internal bore surfaces as illustrated in Fig.
1.

Configuration
The geometry of the numerical model used for the
comparison between the predictive models and the DNS
is a small volume of fluid whose ratios ε and δ are the
same as those of a real aperture field. It is made of a
sinusoidal aperture field (see Fig. 2) which varies from 3 to
20 micrometers. Its extent is 18 millimeters in the azimuthal
direction and 1 millimeter in the axial direction.

051015
0

0.5

1

1.5

2

·10−2

Y

Z

x (mm)
h

(m
m

)

X

y 

z 

x 

a) b)

Figure 2. Geometry of the numerical model. a) Aperture field
from which the volume of fluid is built. b) Volume of fluid.

The fluid domain was discretized using a quadrilateral
mesh made of about 215000 nodes, namely 21 in the radial
direction, 51 in the axial direction and 201 in the azimuthal
direction.

Equations (1) to (3) in their steady version, together with
equation (4), are employed for the DNS with the purpose of
analyzing the impact of τ (β being of O(1)). The boundary
conditions, as detailed in Fig. 3, are those employed to derive
the simplified models except that the total temperature is
assumed to be uniform on the downstream face of the bore-
ring contact. This is a consequence of the fact the hypothesis
of an isothermal flow is not kept in the DNS, hence requiring
an additional boundary condition on the temperature.

y 

x 

z 

On the downstream face : 

- total temperature Tt0 = 300 K 

- static pressure P0 = 101 kPa 

On the upstream face : 

- total temperature Tt0 = 300 K 

- Total pressure Pt1 =Cste 

Planes whose equations are x 

= 0 mm and x = 18 mm are 

planes of symmetry 

Figure 3. Boundary conditions for the numerical model.
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Adiabatic conditions are considered at the boundaries y =
0 (the bore surface) and at the sinusoidal face corresponding
to the model ring surface. A prescribed velocity in the
axial direction, V = 10 ms−1, is assumed at this surface,
accounting for the piston velocity. The flow is assumed to
occur in the laminar regime and the equations are those given
in the gas flow model section (see equations (1) to (4)).
The computation is performed using the ANSYS Fluentr

software.33 A mesh convergence test was first carried out,
indicating that the selected mesh was fine enough to reach
this convergence.

Three simulations, corresponding to the three expected
regimes identified above were carried out, using three
different values of the total pressure condition, Pt1, at the
upstream face of fluid domain (z = 0), namely

* Case 1 Pt1 = P0 + 1 kPa

In this case, τ ∼ 0.01 for which the incompressible regime
is expected.

* Case 2 Pt1 = P0 + 20 kPa

In this configuration, τ ∼ 0.1 and the flow is expected to
occur in the compressible creeping regime.

* Case 3 Pt1 = P0 + 100 kPa

In this last case, τ ∼ 1 for which the expected flow regime
is the compressible inertial one.

Comparison of the velocity fields

The values of the axial component of the velocity, w, given
by the simplified models are compared to the results obtained
from the DNS. The comparison is carried out in the mid-
section of the bore-ring interface, at z = 0.5 mm and in the
zone where the aperture is maximum, i.e. at x = 0 where h =
20 µm. This comparison is evaluated through the relative
percent error between the DNS results and the predictions
of the three models (incompressible, compressible creeping
and compressible inertial).

Results for case 1 (Pt1 = P0 + 1 kPa) are reported in
Fig. 4. In this situation, τ � 1, and the velocity field is well
predicted by the incompressible flow model, the two other
models yielding the same results. The % error on w is less
than 2% in that case.

Results on w for case 2, (Pt1 = P0 + 20 kPa) are
represented in Fig. 5. In that case, compressibility effects
become significant, as expected, although the compressible
creeping model and the incompressible model seem
equivalent in this area of the bore-ring interface. For these
two models, the maximum error is 8.5%. Since β is of
order 1, inertial effects are not completely negligible. For
this reason, the compressible inertial model performs a little
bit better than the two other ones, the relative error on w
remaining below 6.8% with this model.

For case 3, for which Pt1 = P0 + 100 kPa (τ ∼ 1), the
results on w are represented in Fig. 6. In this case, the
upstream pressure is high enough to induce important inertial
effects. The prediction of the velocity by the compressible
inertial model is reasonable as the maximum relative percent
error is about 15%. As expected, the two other models
badly perform, yielding up to 38% and ∼ 33% for the
incompressible and compressible models, respectively.
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Figure 4. a) Variation of the velocity axial component in the
radial direction at z = 0.5mm. Comparison between the DNS
results and the predictions obtained from the incompressible,
compressible creeping and compressible inertial models. b)
Relative % error of the predictions with respect to the DNS
results. Case 1 (τ ∼ 0, 01).

Comparison of the pressure fields
The axial variation of the pressure predicted by each of the
simplified models is compared to the result of the DNS in the
area of maximal aperture (x = 0, y = 10 µm, h = 20 µm),
in the three cases under consideration.

For case 1 (Pt1 = P0 + 1 kPa), which results are
shown in Fig. 7, the pressure variation is quasi linear.
This is consistent with a flow in the incompressible
regime. As observed on the profile of the axial component
of the velocity, the models are almost equivalent. The
incompressible flow model yields an excellent prediction of
the pressure with less than 0.025% of error.

In case 2 (Pt1 = P0 + 20 kPa), the weak compressibility
effects induce a slight non linearity of the pressure profile
as can be noticed in Fig. 8. In this case, the three models
perform equivalently, the % error remaining smaller than
0.3% for the compressible creeping model, confirming the
relevance of this simplified prediction.

For case 3, corresponding to Pt1 = P0 + 100 kPa, the
curvature of the pressure profile due to compressibility
effects is much more pronounced (see Fig. 9). The prediction
from the compressible inertial model is excellent, leading to
a % error of less than 1.4%, while, for the incompressible
and compressible creeping models it reaches 8.7% and 2.8%,
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Figure 5. a) Variation of the velocity axial component in the
radial direction at z = 0.5mm. Comparison between the DNS
results and the predictions obtained from the incompressible,
compressible creeping and compressible inertial models. b)
Relative % error of the predictions with respect to the DNS
results. Case 2 (τ ∼ 0, 1).

respectively. The poor performance of the incompressible
model is partly due to density variations. Additionally, there
is also an effect induced by the boundary conditions at the
upstream face. Indeed, the static pressure, P1(x), decreases
when the axial component of the velocity increases. Since
the velocity predicted with the incompressible model is
overestimated, an error is induced on the total pressure, Pt1,
and the static pressure, P1, at the upstream face is also
overestimated. As a result, the model including inertia is the
most accurate one.

Comparison of the mass flow rates
Mass flow rate is the main variable of interest as it directly
impacts engine performance. In Fig. 10, the computed flow
rates through the sinusoidal aperture field (over one period)
are represented versus the total pressure difference between
the upstream and downstream faces of the contact.

When τ � 1, which is equivalent in this case to ∆P <
100 kPa, the simplified creeping models provide reasonable
estimates of the mass flow rate. For ∆P = 50 kPa, the
incompressible model yields a relative error of about 31%,
the compressible creeping model performing better with less
than 15% of relative error.

The discrepancy between the flow rates computed from
the inertial simplified model and those obtained from DNS
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Figure 6. a) Variation of the velocity axial component in the
radial direction at z = 0.5mm. Comparison between the DNS
results and the predictions obtained from the incompressible,
compressible creeping and compressible inertial models. b)
Relative % error of the predictions with respect to the DNS
results. Case 3 (τ ∼ 1).

remains less than 12% and does not increase while increasing
the pressure difference ∆P . This clearly validates this
predictive model making this tool an operational one to
estimate the flow rate through the aperture field when τ is
of order 1.

In practice, an operational use of the models derived
above may be considered as to select the configuration
(ring in a pack, position along the bore) which gives the
largest flow rate for a secure prediction. Similarly, should
the value of τ be in between the limits of applicability of
one model or another (for instance τ = 0.5), so that it may
be difficult to select the appropriate model a priori, the
recommendation would be to compute the flow with the two
models corresponding to the two closet ranges of τ and select
the one which would predict the largest flow rate.

In the case of an IC engine, the use of the above models
also requires a careful attention regarding the different
operating cycle periods. However, a thorough analysis taking
into account these features which may be very different from
one case to another, is beyond the scope of the present work
and is left for a more detailed future work.
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Figure 7. a) Pressure variation in the axial direction at x = 0,
y = 10 µm, (h = 20 µm). a) Comparison of the DNS results
with the predictions obtained from the incompressible,
compreesible creeping and compressible inertial models. b)
Relative % error of the predictions with respect to the DNS
results. Case 1 (τ ∼ 0, 01).

Discussion and conclusion

In this study, the gas blow-by through a bore-ring contact, as
might be encountered in reciprocating machines, is carefully
analyzed with the purpose of deriving simplified accurate
operational models, avoiding direct numerical simulations
that would be hardly feasible in practice. Three simplified
quasi analytical models to estimate the gas flow-rate through
the aperture field of the contact are derived. The analysis
shows that sealing of the clearance between a piston-ring
and a bore is a quasi steady problem as non-stationary terms
in balance equations governing the flow can be reasonably
neglected. The unsteady character of the flow remains only in
the boundary condition at the gas-ring interface that moves at
a velocity V (which is time dependent over the piston stroke
in real situations) and in the change of the aperture field of
the bore-ring contact along the piston stroke.

Predictions of the gas axial velocity and pressure as well as
of the gas mass flow-rates from these models are compared
to those obtained from direct numerical simulation (DNS) of
the flow on a model aperture field of realistic dimensions.
This successful comparison confirms the validity of these
predictive models that are of simple and rapid use and only
require the knowledge of the aperture field. They allow an
accurate estimation of the blow-by through a piston-ring
interface that could hardly be achieved from DNS otherwise.
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Figure 8. a) Pressure variation in the axial direction at x = 0,
y = 10 µm, (h = 20 µm). a) Comparison of the DNS results
with the predictions obtained from the incompressible,
compreesible creeping and compressible inertial models. b)
Relative % error of the predictions with respect to the DNS
results. Case 2 (τ ∼ 0, 1).

They could be advantageously implemented in discrete time
models for the motion of a piston ring pack, allowing to
quantify the drop in the compression ratio of a reciprocating
machine.

The derivation of the models reported in this work was
made within the framework of simplifying assumptions
including i) the ideal gas law; ii) constant thermophysical
parameters (dynamic viscosity, heat capacity at constant
pressure and thermal conductivity); iii) no oil film present;
iv) values of τ up to 1. These assumptions were considered
for the sake of simplicity with the purpose of proposing
a methodology. Models may be further enriched by
reconsidering these hypotheses. As a first approach, the oil
film may be taken into account by first distributing the oil
within the asperities compatible with the equilibrium of the
oil-phase subject to viscous shear forces due to gas flow and
capillary forces. This would result in a modified aperture
field which could then be used to estimate the gas blow-
by using the models proposed here. Regarding values of
τ larger than 1, which are encountered in IC engine, in
particular for the top ring, the results reported in Fig. 10
suggest that the compressible inertial flow model allows
to accurately predict the gas mass flow rate beyond this
limit of τ , the error with respect to the value obtained from
DNS remaining around 10%. Nevertheless, a more thorough
analysis is necessary to confirm this. The dependence of the
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Figure 9. a) Pressure variation in the axial direction at x = 0,
y = 10 µm, (h = 20 µm). a) Comparison of the DNS results
with the predictions obtained from the incompressible,
compreesible creeping and compressible inertial models. b)
Relative % error of the predictions with respect to the DNS
results. Case 3 (τ ∼ 1).

thermophysical parameters upon the temperature and fuel-
to-air ratio in the case of an IC engine also deserves some
additional work which was beyond the scope of the present
analysis. As a final remark, it shall be emphasized that the
models reported in this work are particularly relevant in
many applications in turbo machines where rings may be
static and operates in the absence of oil.

The methodology (and the models) proposed in this work
can be of major interest for the diagnostic and/or design
of more efficient bore-piston assembly making use of ring
packs. A similar approach could be employed for many other
similar problems of gas flow in a fracture.

Appendix: Solutions in terms of orders of
magnitude

In this appendix, details on how to derive the scales for the
velocity components, pressure, temperature and density are
provided. This is achieved by solving the equations in terms
of orders of magnitude, as is usually done, for instance, in
the method of matched asymptotic expansions.32

The axial projection of the Navier-Stokes equation (2),
written in its dimensionless form, takes the following
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Figure 10. a) Mass flow rate through one period of the
sinusoidal aperture field. Comparison between the results
obtained from DNS and those predicted by the incompressible,
compressible creeping and compressible inertial models. b)
Relative % error of the predictions relative to the DNS results.

expression

1
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∆P + P ∗

1 + ∆T
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T ∗ l0w0(

1
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+
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)
(A1)

All the dimensionless variables and their derivatives are of
order 1. In particular, the first term on the right hand side of
the above equation, i.e. the axial pressure gradient, is of order
1. In order to keep the second term on the right hand side, i.e.
the first viscous term, in the description of the physics, the
following scaling must be adopted

µl0w0

h2
0∆P

∼ 1 (A2)

This leads to the scale for w given by

w0 ∼
h2

0∆P

µl0
(A3)
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Similarly, the orthoradial projection of the Navier-Stokes
equation (2), written in its dimensionless form, leads to

1
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)
(A4)

Again, keeping the second term on the right hand side in
the physical description requires the following scaling

µL0u0

∆Ph2
0

∼ 1 (A5)

yielding the scale for u

u0 ∼
h2

0∆P

µL0
(A6)

To continue the derivation of the scales for the other
variables, let the velocity components w and u be replaced,
from this point on, by their solutions, (in terms of scales,
respectively h2

0∆P
µl0

and h2
0∆P
µL0

), in the balance equations. In
its dimensionless form, the continuity equation (1) writes
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= 0 (A7)

To satisfy the least degeneracy principle and keep the third
and fifth terms on the left hand side of this equation, it is
required that

µl20v0

h3
0∆P

∼ 1 (A8)

i.e. the scale for v to be given by

v0 ∼
h3

0∆P

µl20
(A9)

Let the velocity component v be now replaced by its
solution (in terms of scales) h

3
0∆P

µl20
in the balance equations.

The energy equation (3) becomes
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(A10)

At this point, two assumptions can be made consisting in
considering that either the convection or the conduction term
is of the same order of magnitude as the viscous dissipation
term and this is detailed below.

Convection and viscous dissipation terms are of
the same order of magnitude
With this assumption, it follows that

P0cp∆T

rT0∆P
∼ 1 (A11)

This further implies that the scaling for T is given by

∆T ∼ rT0∆P

P0cp
(A12)

As a consequence, the energy equation (A10) can be
written as

αReδ
cp
r

1

τ

[
1

Reδ

(cp
r
− 1
) 1

τ

(
1 + τ

r

cp
T ∗
)

+O
(

(ε/δ)
2
)

+O
(
δ2
) ]( 1

cp
r

1
τ + T ∗

∂P ∗

∂t∗
−

1
τ + P ∗( cp
r

1
τ + T ∗)2 ∂T ∗

∂t∗

)

+ αReδ
cp
r

1

τ

1
τ + P ∗( cp
r

1
τ + T ∗)(

1

Reδ

(
1− r

cp

)
∂T ∗

∂t∗
+O

(
(ε/δ)

2
)

+O
(
δ2
))

+
1 + τP ∗

1 + r
cp
τT ∗

[
Reδw∗

(
v∗
∂w∗

∂y∗
+ w∗ ∂w

∗

∂z∗

)
+ v∗

∂T ∗

∂y∗
+ w∗ ∂T

∗

∂z∗

]
=

1

Pr
1

Reδ
∂2T ∗

∂y∗2

+
∂

∂y∗

(
w∗ ∂w

∗

∂y∗

)
+O

(
(ε/δ)

2
)

+O
(
ε2
)

+O
(
δ2
)
(A13)

with τ = ∆P
P0

, Reδ =
P 2

0

rT0

h4
0

µ2l20
τ , Pr =

µcp
λ = 0.74, r

cp
=

0.29, α =
µl20

P0t0h2
0

. The numerical values provided here are
those for air at 300 K and 105 Pa.



14 International J of Engine Research (-)

To assess the validity of this approximation which results
from matching the orders of magnitude of the convection
and viscous dissipation terms, it is of interest to look for a
solution to the above equation, and for the sake of simplicity,
in an analytical form. This can be achieved in the creeping
flow regime, when Reδ � 1. In this regime, the energy
equation (A13) becomes

O
(
αβ/τ2

)
+
∂2T ∗

∂y∗2
= O

(
(ε/δ)

2
)

+O
(
ε2
)

+O
(
δ2
)

+O
(

(βτ)
2
)

(A14)

Further assuming that αβ
τ2 � 1, and with the boundary

conditions T (y = 0) = T (y = h) = T0, the integration of
equation (A14) leads to

T (y) = T0 (A15)

This last result indicates that the temperature field would
be uniform in both the axial and radial directions.

To check the validity of this conclusion, the solution given
by equation (A15) can be compared to the one obtained from
a direct numerical simulation (DNS), with a model similar
to the one presented in the section “Comparison with DNS”
in the body of the article. The simulation is performed with a
maximum aperture of 10 µmwhile considering the following
boundary conditions: Tt1 = 300 K, Pt1 = 121 kPa, P0 =
101 kPa, Tt0 = 300 K, V = 10 ms−1. These values
ensure β = O(1), τ = O(0.1), α = O(10−4) which means
Reδ = βτ = O(0.1) and αβ

τ2 = O(10−2), which satisfy the
constraints formulated to obtain the analytical solution in
equation (A15).

Results on the temperature fields obtained from this
simulation are represented versus the radial coordinate y for
three axial positions (z = 0.1mm, z = 0.5mm and z = 0.9
mm) at x = 1 mm are represented in Fig. A1. These results
show that the temperature field is not rigorously uniform.
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Figure A1. Gas temperature variation in the radial direction at
x = 1mm and at three axial positions as obtained by DNS.

However, it must be noticed that the temperature
fluctuations are very small compared to the mean
temperature value. In fact, these fluctuations do not exceed
few hundredth of Kelvin for an average temperature close
to 300 K. This indicates that assuming the conduction and
dissipation terms to be of the same orders of magnitude is

acceptable and that the temperature field in the fluid domain
can be reasonably considered as uniform.

Nevertheless, it is of interest to investigate the second
possible choice for the solution of the energy equation (A10).

Conduction and viscous dissipation terms are
of the same order of magnitude
Making this assumption leads to consider the coefficient of
the convective term in equation (A10) to be of order 1

µl20λ∆T

h4
0∆P 2

∼ 1 (A16)

and this yields the scale for T

∆T ∼ h4
0∆P 2

µl20λ
(A17)

Under this assumption, the energy equation (A10)
becomes
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(A18)

with τ = ∆P
P0

, Reδ =
P 2

0

rT0

h4
0

µ2l20
τ , Pr =

µcp
λ = 0.74, µr

λ =

0.2. Again, the numerical values provided here are those for
air at 300 K and 105 Pa

As in the previous case, it is of interest to compare the
solution of the above equation (in the case where it can be
solved analytically, i.e. in the creeping flow regime) with
the result of the DNS presented above. Considering again
Reδ � 1), the energy equation (A18) takes the following
form

O

(
α

βτ

)
+
∂2T ∗

∂y∗2
= − ∂

∂y∗

(
w∗ ∂w

∗

∂y∗

)
+O

(
(ε/δ)

2
)

+O
(
ε2
)

+O
(
δ2
)

(A19)

If α
βτ � 1 (this is the case in the DNS to which this present

solution will be compared as α
βτ = O(10−3)) and using

the boundary conditions T (y = 0) = T (y = h) = T0, the
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integration of this last equation leads to

T (x, y, z) =
µ

λ
K

(
−1

2
Ky2 +

1

3

(
3h(x)K − V

h(x)

)
y
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1
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y2 − KµV h(x)

6λ
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with

K =
P 2

0 − P 2
1 (x)

4µl
(
P 2

0 −P 2
1 (x)
l z + P 2

1 (x)
)1/2

(A21)

This analytical solution can now be compared to the
solution obtained from DNS as reported in Fig. A2. As can be
observed on this figure, the temperature fluctuations are well
captured by the approximation given in equation (A20), both
in the axial and radial directions although these fluctuations
are very small compared to the characteristic value of the
temperature.
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Figure A2. Gas temperature variation in the radial direction at
x = 1mm and at three axial positions. Comparison of the DNS
results with the analytical predictions obtained from equation
(A20).

To summarize, the determination of ∆T can be made
from either one of the two possible assumptions investigated
above. The analysis shows that conduction, convection
and viscous dissipation terms are all of the same order
of magnitude. However, considering that conduction and
viscous dissipation are of the same order of magnitude leads
to a more precise description of the temperature field. For
this reason, this latter choice is kept and the scale for T is
that given in equation (A17).

Finally, the scale for density can be determined from the
gas equation of state (4)

∆ρ
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ρ
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)
(A22)

i.e.
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with τ = ∆P
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, Reδ =
P 2

0
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0

µ2l20
τ , ρ0 = P0

rT0
, µrλ = 0.2.

To conclude, the solution of the balance equations in terms
of orders of magnitude leads to the scales for the variables u,
v, w, T and ρ respectively given by

u0 ∼
h2

0∆P

µL0
(A24a)

v0 ∼
h3
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(A24b)

w0 ∼
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(A24c)

∆T ∼ h4
0∆P 2
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(A24d)

∆ρ ∼ ρ0

(
1 + τ
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)
(A24e)
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Nomenclature

c piston stroke, m
cp heat capacity of the gas, cp = 1006JK−1kg−1

for air at 300 K and 105 Pa
h aperture, m
h0 typical aperture, m
hmin minimal aperture, m
hmax maximal aperture, m
H gas enthalpy, J
l0 typical width of a ring, m
l ring width, m
L0 typical distance between two contact points, m
M1 flow Mach number at the upstream face of the

bore-ring interface
P gas pressure, Pa
P1 pressure at the upstream face of the bore-ring

interface, Pa
P0 pressure at the downstream side of the ring, Pa
Pr Prandtl number
Pt1 total pressure at the upstream side of the ring, Pa
r ideal gas constant, r = 287JK−1kg−1 for air
Re Reynolds number
t0 stroke period, s
T gas temperature, K
T0 temperature at the downstream side of the ring,

K
Tt1 total temperature at the upstream side of the ring,

K
Tt0 total temperature at the downstream side of the

ring, K
u velocity component in the x−direction, ms−1

u0 scale of the velocity component in the
x−direction, ms−1

u velocity vector, ms−1

v velocity component in the y−direction, ms−1

v0 scale of the velocity component in the
y−direction, ms−1

V piston velocity, ms−1

w velocity component in the z−direction, ms−1

w0 scale of the velocity component in the
z−direction, ms−1

w1 average velocity at the upstream face of the bore-
ring interface, ms−1

Greek symbols

∆P total pressure difference between the upstream
and downstream sides of the ring, Pa

∆T scale of gas temperature, K
∆ρ scale of gas density, kgm−3

γ adiabatic index
λ thermal conductivity of the gas, λ = 2.62 10−2

Wm−1K−1 for air at 300 K and 105 Pa
µ gas viscosity, µ = 1.8 10−5 Pas for air at 300 K

and 105 Pa
ρ gas density, kgm−3

ρ0 gas density at the downstream side of the ring,
kgm−3

σ viscous stress tensor, σ = µ
(
∇u +∇uT

)
,

Nm−2


