
HAL Id: hal-03041785
https://hal.science/hal-03041785

Submitted on 5 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A LAZY REAL-TIME SYSTEM ARCHITECTURE
FOR INTERACTIVE MUSIC

David Janin

To cite this version:
David Janin. A LAZY REAL-TIME SYSTEM ARCHITECTURE FOR INTERACTIVE MUSIC.
Journées d’Informatique Musicale, 2012, Mons, France. �hal-03041785�

https://hal.science/hal-03041785
https://hal.archives-ouvertes.fr

A LAZY REAL-TIME SYSTEM ARCHITECTURE

FOR INTERACTIVE MUSIC

David Janin

Université de Bordeaux, LaBRI UMR 5800,

351, cours de la libération,

F-33405 Talence

janin@labri.fr

ABSTRACT

Designing systems that function both in real-time and are

interactive, characteristics commonly encountered in com-

putational music, is a challenging task indeed. It becomes

even more difficult if we require these systems to be ge-

neric with respect to the underlying interactive scores that

are to be followed.

The aim of this paper is to define a generic system ar-

chitecture of this type. Our proposal is based on a lazy

real-time kernel that manages both scheduled synchronous

events and unpredictable asynchronous inputs in reactive

fashion.

This computation by need approach contrasts with stan-

dard real-time architectures where the real time kernel is

built upon an active periodic loop. It also allows for a

clear distinction to be established between interactive mu-

sic programs written in symbolic time, and interactive mu-

sic performance executed in real time.

1. INTRODUCTION

Designing musical systems that function both in real-

time and are interactive is a challenging task.

At the lowest level, real-time requirements induce a

synchronous slicing of time with a period defined by a

fixed time quantum. Computations are limited, for they

need to be performed at a very quick pace. For instance,

inputs are audio streams possibly filtered by analyzers while

a fixed data-flow diagram produces outputs from inputs [4,

7]. Contrary to this, at the interaction management level,

some processes are guarded by the advent of external asyn-

chronous events. In that case, these data-flow diagrams

can be dynamically restructured when event arrived.

In other words, at the lowest level, interactive music

systems synchronously compute sound values. At the hi-

ghest level, interactive music systems asynchronously com-

pute time structures upon which music itself is built. Even

if systems delegate the actual sound production to sub-

components, there is still a need for low level synchronous

management of these delegations.

This distinction between low level real-time computa-

tions and high-level interactions also appears in the under-

lying time scale they are based upon. At the lowest level,

the time quantum is generally measured in 10−5th of a se-

cond, e.g. at a 44kHz sampling rate. At the interactional

level, the musical tempo is measured in 10−1th of a se-

cond, e.g. from 30 to 300 beats per minute. In between,

the expected reaction or precision time of the system after

an asynchronous event is measured in 10−3th of a second,

i.e. the lower limit beneath which standard human percep-

tion no longer discerns the difference in beat positions.

This shows that mixing real-time and interactional re-

quirements requires a clear distinction to be made bet-

ween, on the one hand, high level interactive music controls

governed by a symbolic time progression in the underlying

interactive score and, on the other hand, low level music

production based on the ticking of a real time clock.

Merging these two levels when designing a system will

probably give rise to design Flaws. The obtained software

will probably be non modular and non reusable. Still, these

two levels of design must function hand in hand. The aim

of the system architecture explored in this paper is to pro-

vide a clear framework for a partnership of this sort.

Main contribution

In this paper, we aim at proposing an abstract generic

system architecture for interactive real-time music perfor-

mance that will fulfill all of the above requirements. At

the system architecture level, the central question we ad-

dress is how the various components in interactive music

software will interact.

Our proposal is based on a lazy real-time kernel that

handles, in a reactive way, both scheduled synchronous

events and unpredictable asynchronous inputs. This con-

trasts with standard real-time architecture built upon per-

iodic reactive loops.

The resulting real-time and interactive system architec-

ture is peculiarly robust with respect to occasional time

drifts : whenever forced out of time, the running system

will auto-stabilize on time as if no time drift had ever oc-

curred.

Within the specific framework of music and the ar-

chitecture of the system thereby established, we also en-

code a clear distinction between symbolic time (beats) and

real-time (seconds), each being related to the other via a

constantly changing tempo.

Actes des Journées d’Informatique Musicale (JIM 2012), Mons, Belgique, 9-11 mai 2012

133

As a consequence, despite its simplicity, this model in-

duces several layers : from low-level input/output control-

lers to high-level music controllers, each with its own clear

and distinct functional specifications. In particular, the mu-

sic controller layer may simply be seen as an abstract in-

terpreter of (arbitrary) symbolic interactive scores. This

guarantees genericity.

Related works and subject position in the field

The last decades have seen the development of various

software programs for Computer Assisted Music either

used on stage for live performances or integral to mul-

timedia applications for rich interactive audio supports.

These softwares range from low level sound synthesis and

control tools such as Faust [7] or Max/MSP [4], to high

level composition assistants such as Elody [15] or Open-

Music [1] to name but a few.

However, the design and execution of computer assis-

ted interactive music still remains a challenging task. We

first need to gain a better understanding of the way low

level(synchronous) sound synthesis and control may be

combined with high level (asynchronous) musical inputs.

It some sense, there is a increasing need for mixed sys-

tems that provide high level interactive control structures

for the description of potentially complex interactions bet-

ween lower level sound or music features.

Many systems of this sort, see [5] among others, can be

seen as forms of domain specific languages (DSL) that are

adapted to the design and implementation of interactive

scores. Do these languages attain a sufficient level of abs-

traction ? Do they induce an adequate notion of interactive

scores ? The pragmatic reuse of existing and reliable low

level tools somehow messes up the picture.

There is as yet no appropriate yardstick for measuring

the expressivity of interactive music description. Even more

importantly, the temporal and spatial means of structuring

interactive scores, thereby aiding composers in this highly

arduous task, still need to be better understood and deve-

loped.

This paper, without forasmuch being able to clearly de-

fine the exact nature of an interactive musical score, aims

at establishing a more precise understanding of where and

how such interactive scores may be played. As a result, we

may develop an abstract operational semantics for such

scores that has some similarity with Alur and Dill timed

automata [3] or, more generally, hybrid systems [11].

This enforces the general and well-accepted idea that

known models, developed for years in the presumably dis-

tinct application context of critical embedded systems, may

nonetheless be adapted efficiently to the application context

of interactive music.

2. GENERAL ARCHITECTURE

The main purpose of a system is to bridge the gap bet-

ween the program layer and a hardware layer. Our propo-

sal, oriented towards interactive music performance, fol-

lows this general specification.

Its main components and connection with the environ-

ment are depicted in the diagram below.

Hardware

Musicians Sound devices

Program

Interactive Music Program

System

Interactive Music Controller

Input Monitor Output Controller

Asynchronous inputs
Synchronous outputs

Next Events Queries
Next Events Records

Lazy Real-Time Kernel Symbolic Time

Real Time

The system itself is composed of three layers of compo-

nents whose functionality may be described with more de-

tails.

The interactive music controller. This component acts

as an interactive partition (or interactive music program)

follower ; it receives queries from the musical events in

the real-time kernel with symbolic time stamps and pro-

duces back to the real-time kernel, in coherence with the

score followed and ? ? the record of musical events to be

performed at the next relevant symbolic time value.

Lazy real-time kernel. This component handles the lazy

real-time loop (described below in detail), a call by need

real-time scheduler ; functionally, it handles the commu-

nication between the symbolic time layer defined by the

music controller and the real time layer defined by both

the input monitor and the output controller ;

Input monitor / output controller. These components

are in charge of the communication between the interac-

tive music system and the music hardware :

(a) the input subcomponent receives asynchronous in-

put events from musical instrument users (musicians)

and transmits their formatted descriptions to the real-

time kernel with no delay,

(b) the output subcomponent produces musical streams

upon reception of their formatted descriptions recei-

ved from the real-time kernel.

Actes des Journées d’Informatique Musicale (JIM 2012), Mons, Belgique, 9-11 mai 2012

134

3. LAZY REAL TIME LOOP

The lazy real time loop, running in the real-time ker-

nel, is essentially in charge of the reactive communication

between the music controller denoted M, the input monitor

denoted by I and the output controller denoted by O.

It is described below in an object-oriented syntax.

Event * E; // eventsList

Time * T; // next firing date

T = M.getNextEventDate();

While (T.isDefined()) do

{

Event * E = I.WaitEventUntil(T);

if (E.isDefined())

// Received event case

E = M.updateReceiEvent(E,Now);

else

// Planed event case

E = M.getNextEventAtTime(T);

O.fireEventAtTime(E);

T = M.getNextEventDate();

}

This loop structure calls for some explanation. As op-

posed to standard real time architectures, it is built upon

a mechanism involving a lazy reactive evaluation schema

triggered by two competing events :

(1) an unpredictable asynchronous event E is received

from the input monitor I ; in that case, the event

is passed with no delay to the music controller that

sends back a possibly enriched event description that

is fired immediately ; such an event is called a recei-

ved event,

(2) a scheduled next event date expires and the new

scheduled synchronous event E, provided by the mu-

sic controller M, is passed to the output controller to

be fired at time T ; such an event is called scheduled

or planned events.

The monitoring of these two competing events is im-

plemented via the call of WaitEventUntil(T) on the

input monitor I. This method returns the undefined object

nil when no received event has occurred and the current

date is greater 1 or equal to the next event date encoded

in T. We describe how these events are managed in further

detail below.

Management of a received event. By default, when an

unpredictable event E is received, a copycat scenario takes

place. This scenario is implemented as follows. Method

updateReceiEvent(E,Now) sends back the event E.

The next event scheduled date, returned by the next call to

getNextEventDate(T), remains unchanged.

In all cases, the received event is passed to the music

controller which may then, upon reception, update its own

control states. The event actually fired, sent back by the

controller, may even be different to the received event. It

1 . this may happend when the all system is late

may have been enriched. It may even be ignored when the

music controller sends it back nil.

More precisely, the musical consequence of the recep-

tion of an asynchronous unpredictable event, that depends

both on its reception date and its value, is governed by the

interactive score followed by the music controller. For ins-

tance, it may even be the case that the next planned event

date changes after updating by the music controller. This

generally happens when a received event induces a change

of tempo.

Management of a planned event. When a scheduled

event date expires, the music controller is asked for the

event E to be fired. This is done by the lazy real-time ker-

nel, using the getNextEventAtTime(T) method. By

default, it simply reads the music score, sends back the

next event, and updates its own record of the next schedu-

led event date.

Until that firing date, there is no need to know which

event is to be fired. It follows that this event may be sim-

ply computed by the music controller, when asked via the

getNextEventAtTime(T). This means that the mu-

sic score can be truly interactive, in the sense that, at any

time, the played event may depend on the history of the

musical events that have been received and produced so

far.

At any time, the next musical event to be played de-

pends on the current internal state of the interactive music

score. This programmatic feature of the score is discussed

a little further in Section 5 below.

Firing events on time. In all cases, both (enriched) re-

ceived events or planned events are sent to the output mo-

nitor to be fired immediately. In practical implementations

of this process, we make the firing of a planned event a lit-

tle more subtle.

More precisely, method WaitEventUntil(T) re-

sumes some delta seconds before the real time sche-

duled date expires. This anticipates the amount of time

needed for the computation of the next event E. Firing a

planned event is thereby performed as follows :

(1) if the current date is sooner than the scheduled fi-

ring date, the real-time kernel waits during the re-

maining lapse of time ; the event is then fired just

on time, i.e. this is the expected default case,

(2) if the current date is equal or gamma seconds later

than the scheduled firing date, the event is immedia-

tely fired almost on time, i.e. gamma is the allowed

lapse of time for an error in precision,

(3) if the current date is greater than the scheduled fi-

ring date plus gamma, this means the system is late ;

the firing of the event can be omitted in order to

avoid parasite noises which are out of time ; it is ex-

pected that the system will auto-stabilize.

Parameters delta and gamme may be set adequately ac-

cording to the performance of the computer the system is

running on.

Actes des Journées d’Informatique Musicale (JIM 2012), Mons, Belgique, 9-11 mai 2012

135

4. REAL TIME VS SYMBOLIC TIME

MANAGEMENT

One of the major tasks of the lazy real-time kernel is

to ensure the conversion from real time, handled by the

input monitor and the output controller, to symbolic time

handled by the interactive music controller.

In the lazy real-time loop described above, we have

concealed the means by which real-time dates are conver-

ted into symbolic dates and vice-versa, by which symbolic

dates are converted into real-time dates.

The methods and attributes of class Timemanage these

conversions operating back and forth.

4.1. Real and symbolic current time handling

The first basic attributes of the class Time are :

(1) SymbCurrentD defined as the symbolic current

date, i.e. the (float) number of symbolic time units

(or beats) elapsed since the beginning of the musical

performance until now,

(2) RealCurrentD defined as the real-time current

date, i.e. the (float) number of real time units (or

minutes) elapsed since the beginning of the musical

performance until now,

(3) tempo defined as the evolving speed of the sym-

bolic date w.r.t. the real-time date (in beats per mi-

nute).

Observe that at any time, the value of the real-time cur-

rent date is defined while the value of the symbolic current

date needs to be computed.

In the simplest case, when the tempo is constant, the

following invariant property holds.

SymbCurrentD == tempo * RealCurrentD;

This shows how the symbolic current date can be compu-

ted from the (constant) value of the tempo and the real-

time current date.

In the general case, when the tempo is not constant,

things are a little more complex. In this light the following

hypothesis may be posited :

(H) Between any two successive events, be

they received or planned events, tempo is constant.

May we therefore argue that this hypothesis is a constraint ?

We may observe that any change of tempo 2 can be mo-

deled as an event in its own right and that therefore this

hypothesis is simply a modeling choice.

On the basis of this simple hypothesis, managing the

symbolic vs real-time conversion may be achieved by re-

cording the last values of symbolic or real-time dates in

two extra attributes. More formally, these extra attributes

of the class Time are :

(4) SymbLastD defined to be the symbolic last event

date,

2 . either from the input monitor or from the music controller

(5) RealLastD defined to be the real-time last event

date.

The invariant property associated with these new attri-

butes is defined as follows :

SymbCurrentD == SymbLastD +

tempo * (RealCurrentD - RealLastD);

This shows, in the general case, how the value of the sym-

bolic current date may be computed from the value of the

real-time current date.

It may be observed that this equation is essentially nee-

ded when updating the music controller’s current state upon

the reception of an event E. Indeed, the music controller M

only handles symbolic time in the interactive music score.

Converting the real-time date of reception of a given event

E into its corresponding symbolic time value is thus a ne-

cessity.

4.2. Scheduled dates updates

In the lazy loop described above there is yet another

notion of time which needs to be modeled : namely, the

scheduled symbolic date and scheduled real-time date of

the next planned event.

This is done by using two more attributes in the class

Time which are :

(6) SymbSchedD defined as the symbolic scheduled

date of the next planned event,

(7) RealSchedD defined as the real-time scheduled

date of the next planned event.

These scheduled dates are related with last dates in the

same way as current dates are related with last dates. Ho-

wever, the symbolic scheduled date is provided by the mu-

sic controller when computing the next event date. It fol-

lows that we now need to compute the real-time scheduled

date from that symbolic value.

The relevant invariant property is thus defined as fol-

lows.

// whenever needed

RealSchedD = RealLastD +

(SymbSchedD - SymbLastD)/tempo;

This shows how the value of the real-time scheduled date

is computed from the value of the symbolic scheduled date.

This equation is essentially required when the input

monitor I is waiting for a input event prior to some sche-

duled date T. Since monitor I only handles real-time dates,

the symbolic scheduled date provided by the music control-

ler will necessarily have to be converted.

4.3. Last date updates

We are now ready to describe the update procedure of

the real-time last event date and the symbolic last event

date. By definition, these dates must be updated every

time an event is fired.

Actes des Journées d’Informatique Musicale (JIM 2012), Mons, Belgique, 9-11 mai 2012

136

At first sight, intuition might lead us to intuit that these

updates values are to be calculated with the values of the

real-time and the symbolic current date of the given event

production. Yet this intuition would indeed be wrong. By

definition, the real-time current date changes all the time.

It may even be the case that real-time current date is grea-

ter than real-time scheduled date since firing an event also

takes a certain amount of time. Even worse, it may be the

case that the real-time current date values changes from

the moment we want to read its value from the moment

we actually ascertain its value.

It transpires that these updates must be computed with

the values of the real-time and symbolic scheduled dates

of the event that has just been performed. In other words,

we actually perform the following update :

RealLastD = RealSchedD;

SymbLastD = SymbSchedD;

The updating of the tempo, an update that may be associa-

ted with the event fired, occurs immediately after the last

date updates :

tempo = E.newTempo();

In order to increase the robustness of the code, the new

tempo, associated with any event, may be set, by default,

in accordance with the current tempo value.

4.4. Properties defining the robustness of the lazy time

handling

This handling of symbolic and real-time dates enjoys a

number of key properties which are worthy of discussion.

Time precision. With this architecture, scheduled dates

are computed from previous scheduled dates and tempo at

any moment in the run of an interactive score. It follows

that the time precision may be measured, say, just before

firing an event, as follows :

timePrecision =

RealCurrentD - RealSchedD;

which is positive when the firing of the event occurs after

the scheduled date.

Experiments on a prototype implementation of that sys-

tem in ObjectiveC under MacOSX shows that this time

precision just remains below a few ms which is just en-

ough for musical performance.

Robustness w.r.t. time drifting. When firing an event,

if the time precision is too great, then we may seek to

avoid the sound resulting from this event being produced.

It results that this is easily implemented by simply guar-

ding the actual firing of an event by a comparison between

the measured time precision and the maximal allowed one.

In doing so, the resulting system becomes remarkably

robust : if the system is paused for some reason (either

intentionally or because of an overload of the computer

running the system) then, upon resuming, the system not

only omits to play the outdated events, but also, since the

scheduled dates are computed data, the system runs for-

ward through the score until it reaches the correct symbo-

lic date corresponding to the actual real-time date.

In other words, after a pause, the system resumes as if

no pause had ever occurred ! In a live performance context,

especially when real musicians continue to play while the

system is paused, or when listeners are dancing or even

just finger tapping, the fact that the system will resume on

time is a particularly desirable property.

We may observe that this property is not satisfied by

standard streaming software since, quite often, audio or

video frames are not time stamped.

5. INTERACTIVE MUSIC SCORES

At this point, the real-time kernel of the proposed sys-

tem requires further analysis. As the input monitor and

output controller are rather simple at that level of abstrac-

tion, it remains for us to describe the way the interactive

music controller can be programmed in greater depth.

To some extent, the interactive music controller is a

symbolic execution layer upon which an interactive music

specification, no longer seen just as a score to be followed,

is run. In our approach : an interactive score is defined as

a timed reactive program that produces the musical score

on line, event after event, in step with the history of the

received input events.

In this section, the characteristic of such musical pro-

grams will be described in greater depth. It is not our in-

tention to defend a given syntax for these programs. We

are more concerned by the operational semantic features

these programs may have.

5.1. Some basic musical programs

In order to better intuit how such timed interactive pro-

grams may be defined, we describe below several typical

musical scenarios and show how they may be encoded.

Immediate start. The first start scenario envisaged arises

when we want the music to be started immediately upon

activation of the system.

This can be done by a controller that sets the initial next

scheduled event date to zero. Indeed, in doing so, the real

time kernel immediately prompts the music controller for

the first musical event to be performed.

Conditional start on input. Contrary to this, another

possible start scenario arises when we want the music to

be started by an external input event that may occur after

an unpredictable delay.

In turn, this may simply be achieved by a controller that

sets the initial next scheduled event date to infinity (+∞).

This way, the system will necessarily wait for an external

event.

Actes des Journées d’Informatique Musicale (JIM 2012), Mons, Belgique, 9-11 mai 2012

137

Observe that if such an infinite date value is not avai-

lable, this can still be done by repeatedly producing a silent

scheduled event until the first external event is received.

End scenario. We may also ask how such a system may

be stopped. Might we therefore argue that the architecture

described here engenders never ending musical pieces ?

Actually, the lazy loop makes this quite clear. The music

controller stops the system by simply sending an undefi-

ned (or nil) next event date. In other words, this undefined

date acts as the final bar of an interactive score.

Play through metronome scenario with varying tempo.

Finally, a metronome with play through capacity is also

easily encoded as a music controller.

Indeed, repeatedly, the symbolic date of the next sche-

duled event is by default increased at every beat by one :

the metronome is expected to tick at every beat. At any

other date, upon reception of an external event E, the de-

fault behavior described in Section 3 is executed, i.e. me-

thod updateReceiEvent(E,Now) simply sends back

the event E.

In doing so, a simple additional input interface with a

tempo change cursor and a start/stop button may complete

the picture in order to produce the missing start/stop and

tempo change events.

5.2. Music programs as symbolic timed automata

At any scheduled date, the interactive music control-

ler essentially provides the next scheduled event to be fi-

red. Of course this event must be known before being fi-

red. However, until its firing date, any asynchronous exter-

nal event may occur and change this characteristic. This

means that the next scheduled event must be computed

right on time when needed for firing : this computation by

need is the consummate definition of lazy computation.

But what about interactive scores ? The proposed archi-

tecture permits the programming of timed controllers in an

almost pure symbolic time setting. The real time interpre-

tation is solely governed by the evolving variable tempo.

Indeed, this tempo may be changed either by hand with

adhoc input events or programmatically by special control

events from the symbolic controller (see the end of Sec-

tion 4.3).

This means that the interactive music controller be-

haves like a sort of input/output timed automata [3] in-

terpreter. Reading a timed input event updates the state of

the running automaton (the automaton is reactive). After

some delay, depending on the active state, a default transi-

tion is always activated by sending back a timed planned

event to the system (the automaton is time active).

What exact type of timed automata are to be executed

by the music controller layer ? This is still a matter of re-

search. Our proposal provides some indication of how to

run an interactive score. The true nature of an interactive

score is still an open question.

6. CONCLUSION

For an effective use of this proposed system we now

need to gain a deeper understanding of how the music

controller can be programmed. At the operational level,

music controllers look like timed automata. But this fairly

low level model seems inadequate for interactive music

composition.

There is still a need to develop a high level modular lan-

guage for the description of interactive scores. This might

be achieved by pursuing the research which led to propo-

sals such as iScore [2]. In particular, we may consider the

following three complementary research projects.

The first concerns the capacity of such a score to des-

cribe musical anticipation in a simple fashion as one of the

main conceptual tools used in music composition.

Already in the 80’s some proposals emerged in this di-

rection [6]. But there are still many questions to be answe-

red. Aside statistical analysis and continuation techniques

that are proposed by softwares such Continuator [16] or

OMax [9], we also believe that structural analysis of mu-

sical languages may be conducted. For instance, musical

anticipation may be envisaged, on a more abstract level

than music scores, as a generalization of musical anacru-

sis [12].

The second concerns the various combinations possible

of interactive programs which may be defined. The se-

quential and parallel composition of elements of interac-

tive scores are obviously required. But what type of se-

quential composition ? What type of parallel composition ?

How may input events be distributed among the different

elements of these scores ? Are they to be duplicated ? Buf-

fered ? An initial study of sequential composition, both

from the perspective of music modeling [12] or from a

purely theoretical point view [13, 14] already shows that,

together with anticipation modeling, a lot remains to be

said.

The third concerns the hierarchical description of the

music. It seems that composers are looking for ways of

thinking about their music on several levels of abstrac-

tion : say from elementary sounds to performance in a

concert via musical motifs, movements, pieces, etc. . .

Hierarchical system modeling techniques have already

been defined in various areas in computer science. In par-

ticular, statecharts in UML [10] is based on a hierarchical

description of this type. However, standard statecharts se-

mantics may need to be adapted for hierarchical interac-

tive music descriptions.

These ideas for future research, on the musical side of

our proposal, also need to be combined with existing tech-

niques and concepts for low level audio stream analysis

(as inputs) or audio stream production (as outputs) or with

those still to be developed.

Synchronizing two elements from scores that result from

real-time computation issuing from the history of the glo-

bal piece being performed is one thing. Combining the

associated audio streams these elements realize is quite

Actes des Journées d’Informatique Musicale (JIM 2012), Mons, Belgique, 9-11 mai 2012

138

another. It seems that each operator defined on the symbo-

lic side of music demands a counterpart on the realization

side.

In all cases, we expect that the present proposed system

architecture will facilitate further experimentation.

7. REFERENCES

[1] Bresson J. Agon C. and Assayag G. The OM

composer’s Book, Vol.1 & Vol.2. Collection Mu-

sique/Sciences. Ircam/Delatour, 2006.

[2] Antoine Allombert, Myriam Desainte-Catherine,

and Gérard Assayag. Iscore : a system for writing

interaction. In Third International Conference on

Digital Interactive Media in Entertainment and Arts

(DIMEA 2008), pages 360–367. ACM, 2008.

[3] Rajeev Alur and David L. Dill. A theory of timed au-

tomata. Theor. Comput. Sci., 126(2) :183–235, 1994.

[4] Alessandro Cipriani and Maurizio Giri. Electronic

Music and Sound Design - Theory and Practice with

Max/Msp. Contemponet, 2010.

[5] Arshia Cont. Antescofo : Anticipatory synchroniza-

tion and control of interactive parameters in compu-

ter music. In International Computer Music Confe-

rence (ICMC), 2008.

[6] P. Desain and H. Honing. Loco : a composi-

tion microworld in logo. Computer Music Journal,

12(3) :30–42, 1988.

[7] D. Fober, Y. Orlarey, and S. Letz. Faust architectures

design and OSC support. In 14th Int. Conference

on Digital Audio Effects (DAFx-11), pages 231–216.

IRCAM, 2011.

[8] Alexandre R. J. François and Elaine Chew. An ar-

chitectural framework for interactive music systems.

In International Conference on New Interfaces for

Musical Expression, pages 150–155, 2006.

[9] M. Chemillier G. Assayag, G. Bloch. Omax-ofon.

In Sound and Music Computing (SMC) 2006, 2006.

[10] David Harel. Statecharts in the making : a perso-

nal account. In Proceedings of the Third ACM SIG-

PLAN History of Programming Languages Confe-

rence (HOPL-III), San Diego, California, USA, 9-10

June 2007, pages 1–43. ACM, 2007.

[11] Thomas A. Henzinger. The theory of hybrid auto-

mata. In Proceedings, 11th Annual IEEE Sympo-

sium on Logic in Computer Science (LICS), pages

278–292. IEEE Computer Society, 1996.

[12] David Janin. Modélisation compositionnelle des

structures rythmiques : une exploration didactique.

Technical Report RR-1455-11, LaBRI, Université de

Bordeaux, August 2011.

[13] David Janin. On languages of one-dimensional over-

lapping tiles. Technical Report RR-1457-12, LaBRI,

Université de Bordeaux, January 2012.

[14] David Janin. Quasi-recognizable vs MSO de-

finable languages of one-dimentionnal overlaping

tiles. Technical Report RR-1458-12, LaBRI, Uni-

versité de Bordeaux, February 2012.

[15] S. Letz, Y. Orlarey, and D. Fober. Real-time com-

position in Elody. In Proceedings of the Interna-

tional Computer Music Conference, pages 336–339.

ICMA, 2000.

[16] F. Pachet. The continuator : Musical interaction with

style. In Proceedings of ICMC, pages 211–218, Gö-

teborg, Sweden, September 2002. ICMA. best paper

award.

Actes des Journées d’Informatique Musicale (JIM 2012), Mons, Belgique, 9-11 mai 2012

139

	A lazy real-time system architecture for interactive music

