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A Fixed-Parameter Algorithm for Scheduling Unit

Dependent Tasks on Parallel Machines with Time

Windows

Alix Munier Kordon

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract

This paper proves that the existence of a feasible schedule for a set of de-
pendent tasks of unit execution times with release dates and deadlines on
a limited number of processors is a fixed-parameter tractable problem. The
parameter considered is the pathwidth of the interval graph associated with
the time windows of the tasks. A fixed-parameter algorithm based on a dy-
namic programming approach is developed and proved to solve this decision
problem.

Fixed-parameter algorithms for the two classical problems P |prec, pi =
1, ri|Cmax and P |prec, pi = 1, ri|Lmax are then derived using a binary search.
They are, as far as we know, the first fixed-parameter algorithms for these
scheduling problems.

Keywords: parallel identical machines, makespan, maximum lateness,
parameterized complexity

1. Introduction1

This paper tackles a basic scheduling problem defined as follows: we con-2

sider a set T of n tasks of unit duration. Precedence relations are expressed3

by an (acyclic) precedence graph noted G = (T,A). If sσi denotes the starting4

time of a task i ∈ T according to a feasible schedule σ, each arc e = (i, j) ∈ A5

expresses the precedence constraint sσi + 1 ≤ sσj . Moreover, each task must6

be executed during its time window, i.e. for each task i ∈ T , ri ≤ sσi < di7

where ri is the release time of i and di its deadline. We assume without loss8

of generality that mini∈T ri = 0. Lastly, m identical machines are available,9
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so that at most m tasks can be scheduled at each time instant. The ques-10

tion is the existence of a feasible schedule. This problem is referred to as11

P |prec, pi = 1, ri, di|? using standard notations [11].12

Let C(σ) = maxi∈T (sσi + 1) be the makespan of a schedule σ and L(σ) =13

maxi∈T (max(0, sσi + 1 − di)) its maximum lateness. Let us consider the op-14

timization problem P |prec, pi = 1, ri|Cmax. For each upper bound C ≥ 015

of the makespan, the deadline of each task i ∈ T can be set to di = C − `i16

where `i is the maximum number of arcs of a path starting from i. We ob-17

serve that any solution of the corresponding instance of P |prec, pi = 1, ri, di|?18

is a feasible solution of P |prec, pi = 1, ri|Cmax. We conclude that any algo-19

rithm solving the decision problem P |prec, pi = 1, ri, di|? can be combined20

with binary search to solve P |prec, pi = 1, ri|Cmax. A similar remark can21

be made for the optimisation problem P |prec, pi = 1, ri|Lmax. Indeed, for22

each instance of this problem and each upper bound λ ≥ 0 of the maximum23

lateness, we can set the deadline of each task i ∈ T to d′i = di + λ and solve24

the associated decision problem P |prec, pi = 1, ri, di|?. So, each algorithm25

solving the decision problem P |prec, pi = 1, ri, di|? can thus be extended for26

P |prec, pi = 1, ri|Cmax or P |prec, pi = 1, ri|Lmax by adding a binary search27

on the upper bound of respectively the makespan or the maximum lateness.28

The optimisation problem P |prec, pi = 1|Cmax has been widely studied. It29

was proved to be NP-hard initially for opposing forests by Garey et al. [10].30

The recent survey of Prot and Bellenguez-Morineau [15] presents several31

complexity results depending on the structure of the precedence graph and32

the number of processors.33

The development of fixed-parameter algorithms for NP-complete prob-34

lems is a way to get polynomial-time algorithms when some parameters are35

fixed [6, 8]. More formally, a fixed-parameter algorithm solves any instance36

of the problem of size n in time f(k) × poly(n), where f is allowed to be a37

computable superpolynomial function and k the associated parameter.38

Several authors developed exact algorithms for P |prec, pi = 1|Cmax. Dolev39

and Warmuth [7] developed a dynamic programming algorithm of time com-40

plexity O(nh(G)(m−1)+1) to solve this problem. The parameter h(G) repre-41

sents the number of nodes of the longest path of the precedence graph G.42

Few years later, Möhring [14] developed another dynamic programming al-43

gorithm of time complexity O(nw(G)). The parameter w(G) is the width of44

the precedence graph G defined as the size of its largest antichain. None of45

these algorithms are fixed-parameter ones.46

Mnich and van Bevern [13] surveyed main results on parameterized com-47
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plexity for scheduling problems and identified 15 open problems. They point48

out that the fixed-parameter tractability of P3|prec, pi = 1|Cmax param-49

eterized by the width w(G) of the precedence graph G is an open chal-50

lenging question. The width w(G) leads to several negative results. Du et51

al. [9] proved that P2|chains|Cmax is strongly NP-hard for unbounded width.52

Günther et al. [12] proved that P2|chains, w(G) ≤ 3|Cmax is weakly NP-hard.53

Bodlaender and Fellows [4] proved that P |prec, pi = 1|Cmax is W[2]-hard pa-54

rameterized by the width and the number of machines. More recently, van55

Bevern et al. [2] proved that P2|prec, pj ∈ {1, 2}|Cmax is W[2]-hard parame-56

terized by the width w(G), and that this result is an argument to look at the57

parameterized complexity of P3|prec, pi = 1|Cmax using w(G) as parameter.58

The existence of a fixed-parameter algorithm for the optimisation problem59

P |prec, pi = 1|Cmax is a challenging question, but as we described above,60

most of the authors focused their study on the width w(G) as a parameter.61

The parameter considered in this paper is the pathwidth pw(I) of an62

instance I of the decision problem P |prec, pi = 1, ri, di|?. Let us consider the63

strictly increasing sequences uα, α ∈ N corresponding to all the time instants64

of the beginnings and endings of the intervals [ri, di], i ∈ T . By definition of65

release dates, u0 = 0. Moreover, the last element uk? of the sequence satisfies66

k? ≤ 2n− 1. Then, for any α ∈ {1, . . . , k?}, we set Xα = {i ∈ T, (uα−1, uα)∩67

(ri, di) 6= ∅}. The pathwidth is defined as pw(I) = maxα∈{1,...,k?}(|Xα| − 1).68

The pathwidth pw(I) is a simple measure of the parallelism of the in-69

stance I. One can observe that pw(I) is the pathwidth of the interval graph70

associated with the set of intervals {(ri, di), i ∈ T} [3]. As far as we know,71

this measure was not yet considered as a parameter for a scheduling problem.72

We prove in this paper that the decision problem P |prec, pi = 1, ri, di|?73

can be solved in time O(n224×pw(I)) using a dynamic programming approach74

based on a multistage auxiliary graph which longest paths model all the75

feasible schedules. By coupling our algorithm with a binary search based76

on a lower bound of the respective objectives, we get that the two opti-77

misation problems P |prec, pi = 1, ri|Cmax and P |prec, pi = 1, ri|Lmax are78

fixed-parameter tractable parameterized by the pathwidth.79

Baptiste and Timkovsky [1] developed a similar approach to get a polyno-80

mial time algorithm of time complexity O(n9) for P2|prec, pi = 1, ri|
∑
Cj.81

They also conjectured the existence of ideal schedules, i.e. that minimize both82

the makespan and the total completion time for the previous instance. More83

recently, Coffman et al. [5] proved that each optimal solution of P2|prec, pi =84

1, ri|
∑
Cj minimizes the makespan of the same instance and they improved85
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the algorithm of Baptiste and Timkowsky to get a complexity in time O(n3).86

This paper is organised as follows: Section 2 presents additional notations87

and an example. Section 3 is devoted to the description of properties of88

feasible schedules. These properties will be considered in Section 4 to build89

the multistage auxiliary graph G whose longest paths represent all the feasible90

solutions (if any). Section 5 details the complexity of the construction of G.91

Section 6 is our conclusion.92

2. Additional notations and example93

For any task i ∈ T , the set of immediate successors and predecessors of i is94

respectively denoted by Γ+(i) and Γ−(i). For any couple of tasks (i, j) ∈ T 2,95

we denote by i → j if there is a path in G from i to j. The descendants of96

a task i ∈ T , denoted by Γ+?(i) is the set of tasks j 6= i such that i → j.97

Similarly, Γ−?(i) denotes the set of ancestors of i, i.e. the set of tasks j 6= i98

such that j → i.99

We assume without loss of generality that release dates and deadlines100

are consistent with respect to precedence constraints, i.e. if (i, j) ∈ A101

then ri + 1 ≤ rj and di + 1 ≤ dj. For any task i ∈ T , f(i) is the small-102

est value α ∈ {1, . . . , k?} such that i ∈ Xα.103

Figure 1 presents an instance I of our scheduling problem for two ma-104

chines. We get k? = 5 and uα = α for α ∈ {0, . . . , 5}. The corresponding105

sets are X1 = {1}, X2 = {1, 2, 4}, X3 = {2, 3, 4, 5, 6}, X4 = {3, 5, 6, 7} and106

X5 = {7}. The pathwidth is pw(I) = |X3| − 1 = 4. We also have f(1) = 1,107

f(2) = f(4) = 2, f(3) = f(5) = f(6) = 3 and f(7) = 4.

1

2 3

4

5

6

7

i ∈ T 1 2 3 4 5 6 7
ri 0 1 2 1 2 2 3
di 2 3 4 3 4 4 5

Figure 1: An instance I of P |prec, pi = 1, ri, di|? for m = 2 machines.

108
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3. Basic properties of feasible solutions109

Let us suppose that σ is a feasible solution of our scheduling problem. For110

any value α ∈ {1, . . . , k?}, we define the slice Sα = {i ∈ T, uα−1 ≤ sσi < uα}.111

Consider the feasible schedule σ for our example given in Figure 2. We112

get the slices S1 = {1}, S2 = {2, 4}, S3 = {3, 5}, S4 = {6} and S5 = {7}.113

1 2

4

3

5

6 7

Figure 2: A feasible schedule σ associated with the example given in Figure 1.

Definition 1. A set of tasks V ⊆ T is said to be consistent if for any couple114

(i, j) ∈ V 2 with i 6= j such that i→ j, any task k of a path in G from i to j115

belongs to V .116

Definition 2. A set V ⊆ T is said to be strictly consistent if for any x ∈ V ,117

Γ+(x) ⊆ V .118

We observe that any strictly consistent set V is consistent, but the reverse119

is not true. The consequence is that Definition 2 is more restrictive than120

Definition 1.121

Lemma 1. For any value α ∈ {1, . . . , k?}, Sα is consistent.122

Proof. Suppose, for the sake of contradiction, that Sα is not consistent. Then,123

there exist a couple (i, j) ∈ S2
α and a task k ∈ Sβ with β 6= α and i→ k → j.124

If β > α, then the precedence k → j cannot be fulfilled since sσk ≥ uα > sσj .125

Similarly, if β < α, the precedence i→ k cannot be fulfilled as sσk < uα−1 ≤126

sσi , thus the lemma is proved.127

Lemma 2. For any value α ∈ {1, . . . , k?}, ∪k?β=αSβ is strictly consistent.128

Proof. Suppose, for the sake of contradiction, that there exists α ∈ {1, . . . , k?}129

such that ∪k?β=αSβ is not strictly consistent. Let then i ∈ ∪k?β=αSβ with130

Γ+(i) 6⊆ ∪k?β=αSβ and j ∈ Γ+(i) − ∪k?β=αSβ. Thus, j ∈ Sβ with β < α,131

and then sσj < uα−1 ≤ sσi . The precedence i → j is not fulfilled by σ,132

a contradiction.133
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Lemma 3. For any α ∈ {1, . . . , k?}, let Zα = {i ∈ T, f(i) ≥ α}. If σ134

is a feasible schedule, then any subset Vα = ∪k?β=αSβ can be partitioned such as135

Vα = Zα ∪ p(V ) with p(V ) ⊆ Xα.136

Proof. Any element i ∈ Zα satisfies f(i) ≥ α and thus ri ≥ uα−1. Since σ137

is feasible, sσi ≥ ri, and thus i ∈ Vα. We conclude that Zα ⊆ Vα.138

Now, let i ∈ p(Vα) = Vα − Zα, then f(i) < α, thus ri < uα−1. Then,139

there exists β < α with i ∈ Xβ. Since i ∈ Vα, there exists β′ ∈ {α, . . . , k?}140

with i ∈ Sβ′ , and then sσi ≤ uβ′ ≤ di. Since β′ ≥ α, uβ′ ≥ uα. As ri < uα−1141

and di ≥ uα, (ri, di) ∩ (uα−1, uα) 6= ∅ and thus i ∈ Xα, which concludes142

the proof.143

For the example given by Figure 1, we get Z5 = ∅, Z4 = {7}, Z3 =144

{3, 5, 6, 7}, Z2 = {2, 3, 4, 5, 6, 7} and Z1 = T . For the schedule σ from145

Figure 2, V1 = T = Z1, V2 = {2, 3, 4, 5, 6, 7} = Z2, V3 = {3, 5, 6, 7} = Z3146

V4 = {6, 7} = {6} ∪ Z4 and V5 = {7} = {7} ∪ Z5. We deduce that147

p(V1) = p(V2) = p(V3) = ∅, p(V4) = {6} and p(V5) = {7}.148

4. Representation of feasible solutions and description of the algo-149

rithm150

Let I be an instance of P |prec, pi = 1, ri, di|?. The idea of the algorithm151

is to build a multistage auxiliary graph G = (T ,A) whose longest paths152

describe all the feasible solutions (if any) of I.153

Elements of T are associated with subsets of T . The set T is partitioned154

into k? sets T1, . . . , Tk? such that, for any value α ∈ {1, . . . , k?}, elements155

of Tα are strictly consistent subsets of Xα−Zα. Then, every element v ∈ Tα156

verifies v ∪ Zα ⊆ Xα ∪ Zα ⊆
⋃k?

β=αXβ. Moreover, p(v ∪ Zα) = v.157

Now, let us suppose that v and v′ are two vertices respectively of Tα and158

Tα+1 for α ∈ {1, . . . , k? − 1}. Then, there is an arc (v, v′) in A if:159

1. v′∪Zα+1 ⊆ v∪Zα and S = v∪Zα−(v′∪Zα+1) is in Xα and is consistent;160

2. There exists a schedule of tasks from S on m machines of makespan161

Cα = uα−uα−1 meeting the precedence constraints induced by the sub-162

graph G′ = (S,A) of G.163

Figure 3 presents the multistage auxiliary graph G = (T ,A) associated with164

the instance given in Figure 1.165

We prove in Lemma 4 that any feasible schedule σ is associated with166

a path of the multistage auxiliary graph G from a vertex of T1 to a vertex167
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of Tk? . Indeed, let S1, . . . , Sk? be the slices of σ and the corresponding se-168

quence Vα = ∪k?β=αSβ, for each α ∈ {1, . . . , k?}. Then, σ is associated with169

the path p(V1), p(V2), . . . , p(Vk?) of G.170

Let us consider for example the schedule σ given in Figure 2. Recall that171

p(V1) = p(V2) = p(V3) = ∅, p(V4) = {6} and p(V5) = {7}. The schedule σ172

is thus associated with the path ∅ → ∅ → ∅ → {6} → {7}.173

∅

∅

{4}{2} ∅

{5, 6}{3, 5} {3, 6} {5} {3} {6}

{7}T5

T4

T3

T2

T1

Figure 3: The multistage auxiliary graph G = (T ,A) associated with the example given
in Figure 1. Vertices without successor are removed.

Lemma 4. Each feasible solution σ of the instance I is associated with a path174

of the multistage auxiliary graph G from a vertex of T1 to a vertex of Tk?.175

Proof. Let S1, . . . , Sk? be the slices of σ and Vα = ∪k?β=αSβ for each α ∈176

{1, . . . , k?}. For any value α ∈ {1, . . . , k?}, Vα ⊆ ∪k
?

β=αXβ. Vα is strictly177

consistent by Lemma 2 and Zα ⊆ Vα by Lemma 3. Thus, p(Vα) ∈ Tα.178

Now, for any value α ∈ {1, . . . , k? − 1}, Vα+1 ⊆ Vα, and the set Sα =179

Vα−Vα+1 ⊆ Xα is consistent by Lemma 1. Lastly, as σ is a feasible solution,180

Sα can be scheduled according to the resource constraints and the precedence181

expressed by the sub-graph (Sα, A). Thus the arc (p(Vα), p(Vα+1)) ∈ A,182

which concludes the proof.183

Let us consider now a path p(V1), . . . , p(Vk?) of G. We prove in Lemma 5184

that the sequence of slices Sk? = p(Vk?)∪Zk? and for each α ∈ {1, . . . , k?−1},185

Sα = p(Vα) ∪ Zα − (p(Vα+1) ∪ Zα+1) defines a feasible schedule.186
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Let us consider for example the path of the graph G given by Figure 3 from187

p(V1) from p(V5) such that p(V1) = p(V2) = ∅, p(V3) = {2}, p(V4) = {3, 6}188

and p(V5) = {7}. Corresponding slices are S5 = {7}, S4 = {3, 6, 7} −189

{7} = {3, 6}, S3 = {2, 3, 5, 6, 7} − {3, 6, 7} = {2, 5}, S2 = {2, 3, 4, 5, 6, 7} −190

{2, 3, 5, 6, 7} = {4}, and S1 = T − {2, 3, 4, 5, 6, 7} = {1}. We get the sched-191

ule σ defined as sσ1 = 0, sσ4 = 1, sσ2 = sσ5 = 2, sσ3 = sσ6 = 3 and sσ7 = 4.192

Lemma 5. Each path of the multistage auxiliary graph G from a vertex of T1193

to a vertex of Tk? is associated with a feasible solution.194

Proof. Let p(V1), . . . , p(Vk?) be a path of G with p(Vα) ∈ Tα. Let us de-195

fine the sequences Vα = p(Vα) ∪ Zα for α ∈ {1, . . . , k?}, Sk? = Vk? and196

for each α ∈ {1, . . . , k? − 1}, Sα = Vα − Vα+1.197

By definition of G, each set Sα is consistent and can be scheduled fol-198

lowing resource and precedence constraints of the sub-graph (Sα, A) within199

a makespan Cα = uα−uα−1. We prove that the schedule obtained by merging200

the schedules of the successive slices S1, . . . , Sk? is feasible.201

By definition, Z1 ⊆ V1 and Z1 = {i ∈ T, f(i) ≥ 1} = T , thus V1 =202

T . Moreover, for each arc (p(Vα), p(Vα+1)) of G with α ∈ {1, . . . , k? − 1},203

p(Vα+1) ∪ Zα+1 ⊆ p(Vα) ∪ Zα, thus Vα+1 ⊆ Vα and then Vk? ⊆ Vk?−1 ⊆ . . . ⊆204

V1. Then, each task i ∈ T belongs to exactly one slice Sα and S1, . . . , Sk? is205

a partition of T .206

By definition, Sα ⊆ Xα, thus for any task of Sα, release dates and207

deadlines are fulfilled. Resource constraints are fulfilled by definition of208

each set Sα, for each α ∈ {1, . . . , k?}.209

Lastly let us consider two tasks (i, j) ∈ T 2 with (i, j) ∈ A. Let suppose210

that i ∈ Sα and j ∈ Sβ. If α = β, the constraint is fulfilled since there211

exists a feasible schedule of Sα for the sub-graph (Sα, A). If α < β, the212

set Sα is scheduled before Sβ, the constraint is then fulfilled. Lastly, if213

α > β, then Vα is not strictly consistent since i ∈ Vα and j 6∈ Vα, which214

is a contradiction. Thus, the lemma is proved.215

The next theorem is a simple outcome of Lemmas 4 and 5.216

Theorem 1. There exists a feasible schedule of makespan C if and only if217

there exists a path in the multistage auxiliary graph G from a vertex of T1 to218

a vertex of Tk?.219

Our algorithm simply builds the multistage auxiliary graph G starting220

from Tk? to T1. Vertices without successor from Tα with α 6= k? are removed.221

In the next section, we investigate the time complexity for computing G.222
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5. Complexity for the computation of the multistage auxiliary graph223

Lemmas 6 and 7 study the complexity of two specific tests considered by224

our previous algorithm.225

Lemma 6. Checking the consistency of a set V ⊆ T can be done in time O(n3)226

and checking the strict consistency of a set V ⊆ T can be done in time O(n2)227

(with n = |T |).228

Proof. For any task x ∈ T , the computation of the sets of descendants Γ(x)+?229

and of ancestors Γ(x)−? can be done once in time O(n2) using a depth-first230

search algorithm. Checking that V is consistent can be done by checking231

that, for any couple (i, j) ∈ V 2 with i 6= j, Γ(i)+? ∩ Γ(j)−? ⊆ V . The overall232

complexity is then O(n3).233

Similarly, checking that for any task x ∈ V , Γ+(x) ⊆ V can be done in
time O(|Γ+(x)|). The overall complexity is bounded by∑

x∈V

|Γ+(x)| ≤
∑
x∈T

|Γ+(x)| ≤ n2,

the complexity of the algorithm is then O(n2).234

Lemma 7. The complexity of checking the existence of a feasible schedule235

of fixed duration C on m machines for a consistent set of tasks V ⊆ T with236

the precedence relations modelled by G′ = (V,A) is O(|V |3 × 22|V |).237

Proof. Let us denote by P(V ) the set of consistent subsets of V . Let us238

consider the directed graph H = (P(V ), E) which arcs are built as follows:239

an arc (v, v′) ∈ E if v ( v′, |v′−v| ≤ m and for any task i ∈ v′−v, Γ−?G′ (i) ⊆ v240

where Γ−?G′ (i) is the set of the ancestors of i in G′.241

Paths of H from ∅ to V are associated to feasible schedules. Indeed, let242

us consider a path v0 = ∅, v1, . . . , vp = V of H. For any value β ∈ {1, . . . , p},243

Yβ = vβ − vβ−1 are executed at time β − 1. Conversely any feasible schedule244

corresponds to a path ofH. Thus, there exists a feasible schedule of makespan245

at most C if the value of a shortest path (considering each arc valued by 1)246

from ∅ to V is inferior than or equal to C.247

The number of vertices of H satisfies |P(V )| ≤ 2|V |. By Lemma 6, check-248

ing that any element v ∈ P(V ) is consistent can be done in time O(|V |3 ×249

2|V |). Checking that e = (v, v′) ∈ E has a time complexity bounded by250

O(|V |2) thus the construction of H can be done in time O(|V |3 × 22|V |).251
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Now, any arc e = (v, v′) ∈ E verifies v ( v′ and thus |v| < |v′|. Then, H252

has no circuit. The shortest path can be computed from a topological sort253

in time complexity bounded by O(22|V |), thus the lemma holds.254

Lemma 8. For any instance I, the number of vertices |T | of the multi-255

stage auxiliary graph G is in O(n2pw(I)), while the number of arcs |A| is in256

O(n22pw(I)).257

Proof. By Lemma 3, for any value α ∈ {1, . . . , k?}, each element v ∈ Tα258

is included in Xα thus |Tα| ≤ 2|Xα| ≤ 2pw(I)+1. Then, |T | =
∑k?

α=1 |Tα| ≤259

k? × 2pw(I)+1. Since k? ≤ 2n, we get |T | ≤ 2n2pw(I)+1.260

Now, the number or arcs of G verifies |A| ≤
∑k?−1

α=1 (|Tα| × |Tα+1|) ≤261

k?(2pw(I)+1)2 ≤ 2n× 22pw(I)+2 which concludes the lemma.262

We are now ready to prove our main theorem:263

Theorem 2. Computing the graph G is in time O(n424pw(I)) for any in-264

stance I.265

Proof. Let us consider all the steps for the construction of the multistage266

auxiliary graph G for an instance I of the scheduling problem with n = |T |.267

The computation of sets Xα and Zα for α ∈ {1, . . . , k?} can be done in268

time complexity O(n log n). For the definition of sets Tα, α = 1, . . . , k?, we269

observe that for each subset v ⊆ Xα, we have to test if v ∪ Zα is strictly270

consistent, which requires O(n2) instructions by Lemma 6. By Lemma 8,271

the construction of T is thus in time O(n3 × 2pw(I)).272

Now, for any couple (v, v′) ∈ Tα × Tα+1, the consistency of S = (v ∪273

Zα) − (v′ ∪ Zα+1) is checked in time O(n3) by Lemma 6. The existence274

of a schedule of S on m machines within a makespan Cα = uα − uα−1 is275

in time O(|S|3 × 22|S|) following Lemma 7. Now, since S ⊆ Xα, |S| ≤276

pw(I) + 1 and thus checking the existence of an arc (v, v′) in A is in time277

O(n3 + pw(I)3 × 22(pw(I)). Following Lemma 8, the overall complexity for278

the determination of A is then O(n× 22pw(I) × (n3 + pw(I)3 × 22pw(I))) and279

thus O(n4 × 24pw(I)). The theorem follows.280

Corollary 1. P |prec, pi = 1, ri, di|? is fixed-parameter tractable by the path-281

width pw(I).282

Proof. By Theorem 1, an instance I has a solution if and only if there exists283

a path in G from a vertex of T1 to one from Tk? . By removing vertices284

without successor, it is equivalent to test that the remaining set |T1| > 0. By285

Theorem 2, building G is in time O(n424pw(I)), the corollary.286
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Corollary 2 is a simple outcome of Theorem 2.287

Corollary 2. Let I be an instance of P |prec, pi = 1, ri, di|? such that pw(I)288

belongs to O(log2 n). The existence of a feasible schedule can be solved in289

time O(n8).290

By augmenting our algorithm by a binary search on an upper bound of the291

objectives, we obtain in the next corollary the fixed-parameter tractability292

of two optimization problems:293

Corollary 3. Scheduling problems P |prec, pi = 1, ri|Cmax and P |prec, pi =294

1, ri|Lmax are fixed-parameter tractable by the pathwidth pw(I).295

6. Conclusion and perspectives296

For any instance I of the decision problem P |prec, pi = 1, ri, di|?, we in-297

troduced the pathwidth pw(I) as a simple measure of the parallelism. We298

proved that the previous decision problem is fixed-parameter tractable by299

the parameter pw(I). This result can be easily extended to P |prec, pi =300

1, ri|Cmax and P |prec, pi = 1, ri|Lmax using a binary search. As far as301

we know, it is the first fixed-parameter algorithm for these scheduling prob-302

lems. Extensions of this result should be considered to solve more general303

scheduling problems with precedence and resource constraints.304
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