
HAL Id: hal-03041735
https://hal.science/hal-03041735v1

Submitted on 5 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fixed-Parameter Algorithm for Scheduling Unit
Dependent Tasks on Parallel Machines with Time

Windows
Alix Munier Kordon

To cite this version:
Alix Munier Kordon. A Fixed-Parameter Algorithm for Scheduling Unit Dependent Tasks on Parallel
Machines with Time Windows. Discrete Applied Mathematics, 2020. �hal-03041735�

https://hal.science/hal-03041735v1
https://hal.archives-ouvertes.fr

A Fixed-Parameter Algorithm for Scheduling Unit

Dependent Tasks on Parallel Machines with Time

Windows

Alix Munier Kordon

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract

This paper proves that the existence of a feasible schedule for a set of de-
pendent tasks of unit execution times with release dates and deadlines on
a limited number of processors is a fixed-parameter tractable problem. The
parameter considered is the pathwidth of the interval graph associated with
the time windows of the tasks. A fixed-parameter algorithm based on a dy-
namic programming approach is developed and proved to solve this decision
problem.

Fixed-parameter algorithms for the two classical problems P |prec, pi =
1, ri|Cmax and P |prec, pi = 1, ri|Lmax are then derived using a binary search.
They are, as far as we know, the first fixed-parameter algorithms for these
scheduling problems.

Keywords: parallel identical machines, makespan, maximum lateness,
parameterized complexity

1. Introduction1

This paper tackles a basic scheduling problem defined as follows: we con-2

sider a set T of n tasks of unit duration. Precedence relations are expressed3

by an (acyclic) precedence graph noted G = (T,A). If sσi denotes the starting4

time of a task i ∈ T according to a feasible schedule σ, each arc e = (i, j) ∈ A5

expresses the precedence constraint sσi + 1 ≤ sσj . Moreover, each task must6

be executed during its time window, i.e. for each task i ∈ T , ri ≤ sσi < di7

where ri is the release time of i and di its deadline. We assume without loss8

of generality that mini∈T ri = 0. Lastly, m identical machines are available,9

Preprint submitted to Discrete Applied Mathematics November 28, 2020

so that at most m tasks can be scheduled at each time instant. The ques-10

tion is the existence of a feasible schedule. This problem is referred to as11

P |prec, pi = 1, ri, di|? using standard notations [11].12

Let C(σ) = maxi∈T (sσi + 1) be the makespan of a schedule σ and L(σ) =13

maxi∈T (max(0, sσi + 1 − di)) its maximum lateness. Let us consider the op-14

timization problem P |prec, pi = 1, ri|Cmax. For each upper bound C ≥ 015

of the makespan, the deadline of each task i ∈ T can be set to di = C − `i16

where `i is the maximum number of arcs of a path starting from i. We ob-17

serve that any solution of the corresponding instance of P |prec, pi = 1, ri, di|?18

is a feasible solution of P |prec, pi = 1, ri|Cmax. We conclude that any algo-19

rithm solving the decision problem P |prec, pi = 1, ri, di|? can be combined20

with binary search to solve P |prec, pi = 1, ri|Cmax. A similar remark can21

be made for the optimisation problem P |prec, pi = 1, ri|Lmax. Indeed, for22

each instance of this problem and each upper bound λ ≥ 0 of the maximum23

lateness, we can set the deadline of each task i ∈ T to d′i = di + λ and solve24

the associated decision problem P |prec, pi = 1, ri, di|?. So, each algorithm25

solving the decision problem P |prec, pi = 1, ri, di|? can thus be extended for26

P |prec, pi = 1, ri|Cmax or P |prec, pi = 1, ri|Lmax by adding a binary search27

on the upper bound of respectively the makespan or the maximum lateness.28

The optimisation problem P |prec, pi = 1|Cmax has been widely studied. It29

was proved to be NP-hard initially for opposing forests by Garey et al. [10].30

The recent survey of Prot and Bellenguez-Morineau [15] presents several31

complexity results depending on the structure of the precedence graph and32

the number of processors.33

The development of fixed-parameter algorithms for NP-complete prob-34

lems is a way to get polynomial-time algorithms when some parameters are35

fixed [6, 8]. More formally, a fixed-parameter algorithm solves any instance36

of the problem of size n in time f(k) × poly(n), where f is allowed to be a37

computable superpolynomial function and k the associated parameter.38

Several authors developed exact algorithms for P |prec, pi = 1|Cmax. Dolev39

and Warmuth [7] developed a dynamic programming algorithm of time com-40

plexity O(nh(G)(m−1)+1) to solve this problem. The parameter h(G) repre-41

sents the number of nodes of the longest path of the precedence graph G.42

Few years later, Möhring [14] developed another dynamic programming al-43

gorithm of time complexity O(nw(G)). The parameter w(G) is the width of44

the precedence graph G defined as the size of its largest antichain. None of45

these algorithms are fixed-parameter ones.46

Mnich and van Bevern [13] surveyed main results on parameterized com-47

2

plexity for scheduling problems and identified 15 open problems. They point48

out that the fixed-parameter tractability of P3|prec, pi = 1|Cmax param-49

eterized by the width w(G) of the precedence graph G is an open chal-50

lenging question. The width w(G) leads to several negative results. Du et51

al. [9] proved that P2|chains|Cmax is strongly NP-hard for unbounded width.52

Günther et al. [12] proved that P2|chains, w(G) ≤ 3|Cmax is weakly NP-hard.53

Bodlaender and Fellows [4] proved that P |prec, pi = 1|Cmax is W[2]-hard pa-54

rameterized by the width and the number of machines. More recently, van55

Bevern et al. [2] proved that P2|prec, pj ∈ {1, 2}|Cmax is W[2]-hard parame-56

terized by the width w(G), and that this result is an argument to look at the57

parameterized complexity of P3|prec, pi = 1|Cmax using w(G) as parameter.58

The existence of a fixed-parameter algorithm for the optimisation problem59

P |prec, pi = 1|Cmax is a challenging question, but as we described above,60

most of the authors focused their study on the width w(G) as a parameter.61

The parameter considered in this paper is the pathwidth pw(I) of an62

instance I of the decision problem P |prec, pi = 1, ri, di|?. Let us consider the63

strictly increasing sequences uα, α ∈ N corresponding to all the time instants64

of the beginnings and endings of the intervals [ri, di], i ∈ T . By definition of65

release dates, u0 = 0. Moreover, the last element uk? of the sequence satisfies66

k? ≤ 2n− 1. Then, for any α ∈ {1, . . . , k?}, we set Xα = {i ∈ T, (uα−1, uα)∩67

(ri, di) 6= ∅}. The pathwidth is defined as pw(I) = maxα∈{1,...,k?}(|Xα| − 1).68

The pathwidth pw(I) is a simple measure of the parallelism of the in-69

stance I. One can observe that pw(I) is the pathwidth of the interval graph70

associated with the set of intervals {(ri, di), i ∈ T} [3]. As far as we know,71

this measure was not yet considered as a parameter for a scheduling problem.72

We prove in this paper that the decision problem P |prec, pi = 1, ri, di|?73

can be solved in time O(n224×pw(I)) using a dynamic programming approach74

based on a multistage auxiliary graph which longest paths model all the75

feasible schedules. By coupling our algorithm with a binary search based76

on a lower bound of the respective objectives, we get that the two opti-77

misation problems P |prec, pi = 1, ri|Cmax and P |prec, pi = 1, ri|Lmax are78

fixed-parameter tractable parameterized by the pathwidth.79

Baptiste and Timkovsky [1] developed a similar approach to get a polyno-80

mial time algorithm of time complexity O(n9) for P2|prec, pi = 1, ri|
∑
Cj.81

They also conjectured the existence of ideal schedules, i.e. that minimize both82

the makespan and the total completion time for the previous instance. More83

recently, Coffman et al. [5] proved that each optimal solution of P2|prec, pi =84

1, ri|
∑
Cj minimizes the makespan of the same instance and they improved85

3

the algorithm of Baptiste and Timkowsky to get a complexity in time O(n3).86

This paper is organised as follows: Section 2 presents additional notations87

and an example. Section 3 is devoted to the description of properties of88

feasible schedules. These properties will be considered in Section 4 to build89

the multistage auxiliary graph G whose longest paths represent all the feasible90

solutions (if any). Section 5 details the complexity of the construction of G.91

Section 6 is our conclusion.92

2. Additional notations and example93

For any task i ∈ T , the set of immediate successors and predecessors of i is94

respectively denoted by Γ+(i) and Γ−(i). For any couple of tasks (i, j) ∈ T 2,95

we denote by i → j if there is a path in G from i to j. The descendants of96

a task i ∈ T , denoted by Γ+?(i) is the set of tasks j 6= i such that i → j.97

Similarly, Γ−?(i) denotes the set of ancestors of i, i.e. the set of tasks j 6= i98

such that j → i.99

We assume without loss of generality that release dates and deadlines100

are consistent with respect to precedence constraints, i.e. if (i, j) ∈ A101

then ri + 1 ≤ rj and di + 1 ≤ dj. For any task i ∈ T , f(i) is the small-102

est value α ∈ {1, . . . , k?} such that i ∈ Xα.103

Figure 1 presents an instance I of our scheduling problem for two ma-104

chines. We get k? = 5 and uα = α for α ∈ {0, . . . , 5}. The corresponding105

sets are X1 = {1}, X2 = {1, 2, 4}, X3 = {2, 3, 4, 5, 6}, X4 = {3, 5, 6, 7} and106

X5 = {7}. The pathwidth is pw(I) = |X3| − 1 = 4. We also have f(1) = 1,107

f(2) = f(4) = 2, f(3) = f(5) = f(6) = 3 and f(7) = 4.

1

2 3

4

5

6

7

i ∈ T 1 2 3 4 5 6 7
ri 0 1 2 1 2 2 3
di 2 3 4 3 4 4 5

Figure 1: An instance I of P |prec, pi = 1, ri, di|? for m = 2 machines.

108

4

3. Basic properties of feasible solutions109

Let us suppose that σ is a feasible solution of our scheduling problem. For110

any value α ∈ {1, . . . , k?}, we define the slice Sα = {i ∈ T, uα−1 ≤ sσi < uα}.111

Consider the feasible schedule σ for our example given in Figure 2. We112

get the slices S1 = {1}, S2 = {2, 4}, S3 = {3, 5}, S4 = {6} and S5 = {7}.113

1 2

4

3

5

6 7

Figure 2: A feasible schedule σ associated with the example given in Figure 1.

Definition 1. A set of tasks V ⊆ T is said to be consistent if for any couple114

(i, j) ∈ V 2 with i 6= j such that i→ j, any task k of a path in G from i to j115

belongs to V .116

Definition 2. A set V ⊆ T is said to be strictly consistent if for any x ∈ V ,117

Γ+(x) ⊆ V .118

We observe that any strictly consistent set V is consistent, but the reverse119

is not true. The consequence is that Definition 2 is more restrictive than120

Definition 1.121

Lemma 1. For any value α ∈ {1, . . . , k?}, Sα is consistent.122

Proof. Suppose, for the sake of contradiction, that Sα is not consistent. Then,123

there exist a couple (i, j) ∈ S2
α and a task k ∈ Sβ with β 6= α and i→ k → j.124

If β > α, then the precedence k → j cannot be fulfilled since sσk ≥ uα > sσj .125

Similarly, if β < α, the precedence i→ k cannot be fulfilled as sσk < uα−1 ≤126

sσi , thus the lemma is proved.127

Lemma 2. For any value α ∈ {1, . . . , k?}, ∪k?β=αSβ is strictly consistent.128

Proof. Suppose, for the sake of contradiction, that there exists α ∈ {1, . . . , k?}129

such that ∪k?β=αSβ is not strictly consistent. Let then i ∈ ∪k?β=αSβ with130

Γ+(i) 6⊆ ∪k?β=αSβ and j ∈ Γ+(i) − ∪k?β=αSβ. Thus, j ∈ Sβ with β < α,131

and then sσj < uα−1 ≤ sσi . The precedence i → j is not fulfilled by σ,132

a contradiction.133

5

Lemma 3. For any α ∈ {1, . . . , k?}, let Zα = {i ∈ T, f(i) ≥ α}. If σ134

is a feasible schedule, then any subset Vα = ∪k?β=αSβ can be partitioned such as135

Vα = Zα ∪ p(V) with p(V) ⊆ Xα.136

Proof. Any element i ∈ Zα satisfies f(i) ≥ α and thus ri ≥ uα−1. Since σ137

is feasible, sσi ≥ ri, and thus i ∈ Vα. We conclude that Zα ⊆ Vα.138

Now, let i ∈ p(Vα) = Vα − Zα, then f(i) < α, thus ri < uα−1. Then,139

there exists β < α with i ∈ Xβ. Since i ∈ Vα, there exists β′ ∈ {α, . . . , k?}140

with i ∈ Sβ′ , and then sσi ≤ uβ′ ≤ di. Since β′ ≥ α, uβ′ ≥ uα. As ri < uα−1141

and di ≥ uα, (ri, di) ∩ (uα−1, uα) 6= ∅ and thus i ∈ Xα, which concludes142

the proof.143

For the example given by Figure 1, we get Z5 = ∅, Z4 = {7}, Z3 =144

{3, 5, 6, 7}, Z2 = {2, 3, 4, 5, 6, 7} and Z1 = T . For the schedule σ from145

Figure 2, V1 = T = Z1, V2 = {2, 3, 4, 5, 6, 7} = Z2, V3 = {3, 5, 6, 7} = Z3146

V4 = {6, 7} = {6} ∪ Z4 and V5 = {7} = {7} ∪ Z5. We deduce that147

p(V1) = p(V2) = p(V3) = ∅, p(V4) = {6} and p(V5) = {7}.148

4. Representation of feasible solutions and description of the algo-149

rithm150

Let I be an instance of P |prec, pi = 1, ri, di|?. The idea of the algorithm151

is to build a multistage auxiliary graph G = (T ,A) whose longest paths152

describe all the feasible solutions (if any) of I.153

Elements of T are associated with subsets of T . The set T is partitioned154

into k? sets T1, . . . , Tk? such that, for any value α ∈ {1, . . . , k?}, elements155

of Tα are strictly consistent subsets of Xα−Zα. Then, every element v ∈ Tα156

verifies v ∪ Zα ⊆ Xα ∪ Zα ⊆
⋃k?

β=αXβ. Moreover, p(v ∪ Zα) = v.157

Now, let us suppose that v and v′ are two vertices respectively of Tα and158

Tα+1 for α ∈ {1, . . . , k? − 1}. Then, there is an arc (v, v′) in A if:159

1. v′∪Zα+1 ⊆ v∪Zα and S = v∪Zα−(v′∪Zα+1) is in Xα and is consistent;160

2. There exists a schedule of tasks from S on m machines of makespan161

Cα = uα−uα−1 meeting the precedence constraints induced by the sub-162

graph G′ = (S,A) of G.163

Figure 3 presents the multistage auxiliary graph G = (T ,A) associated with164

the instance given in Figure 1.165

We prove in Lemma 4 that any feasible schedule σ is associated with166

a path of the multistage auxiliary graph G from a vertex of T1 to a vertex167

6

of Tk? . Indeed, let S1, . . . , Sk? be the slices of σ and the corresponding se-168

quence Vα = ∪k?β=αSβ, for each α ∈ {1, . . . , k?}. Then, σ is associated with169

the path p(V1), p(V2), . . . , p(Vk?) of G.170

Let us consider for example the schedule σ given in Figure 2. Recall that171

p(V1) = p(V2) = p(V3) = ∅, p(V4) = {6} and p(V5) = {7}. The schedule σ172

is thus associated with the path ∅ → ∅ → ∅ → {6} → {7}.173

∅

∅

{4}{2} ∅

{5, 6}{3, 5} {3, 6} {5} {3} {6}

{7}T5

T4

T3

T2

T1

Figure 3: The multistage auxiliary graph G = (T ,A) associated with the example given
in Figure 1. Vertices without successor are removed.

Lemma 4. Each feasible solution σ of the instance I is associated with a path174

of the multistage auxiliary graph G from a vertex of T1 to a vertex of Tk?.175

Proof. Let S1, . . . , Sk? be the slices of σ and Vα = ∪k?β=αSβ for each α ∈176

{1, . . . , k?}. For any value α ∈ {1, . . . , k?}, Vα ⊆ ∪k
?

β=αXβ. Vα is strictly177

consistent by Lemma 2 and Zα ⊆ Vα by Lemma 3. Thus, p(Vα) ∈ Tα.178

Now, for any value α ∈ {1, . . . , k? − 1}, Vα+1 ⊆ Vα, and the set Sα =179

Vα−Vα+1 ⊆ Xα is consistent by Lemma 1. Lastly, as σ is a feasible solution,180

Sα can be scheduled according to the resource constraints and the precedence181

expressed by the sub-graph (Sα, A). Thus the arc (p(Vα), p(Vα+1)) ∈ A,182

which concludes the proof.183

Let us consider now a path p(V1), . . . , p(Vk?) of G. We prove in Lemma 5184

that the sequence of slices Sk? = p(Vk?)∪Zk? and for each α ∈ {1, . . . , k?−1},185

Sα = p(Vα) ∪ Zα − (p(Vα+1) ∪ Zα+1) defines a feasible schedule.186

7

Let us consider for example the path of the graph G given by Figure 3 from187

p(V1) from p(V5) such that p(V1) = p(V2) = ∅, p(V3) = {2}, p(V4) = {3, 6}188

and p(V5) = {7}. Corresponding slices are S5 = {7}, S4 = {3, 6, 7} −189

{7} = {3, 6}, S3 = {2, 3, 5, 6, 7} − {3, 6, 7} = {2, 5}, S2 = {2, 3, 4, 5, 6, 7} −190

{2, 3, 5, 6, 7} = {4}, and S1 = T − {2, 3, 4, 5, 6, 7} = {1}. We get the sched-191

ule σ defined as sσ1 = 0, sσ4 = 1, sσ2 = sσ5 = 2, sσ3 = sσ6 = 3 and sσ7 = 4.192

Lemma 5. Each path of the multistage auxiliary graph G from a vertex of T1193

to a vertex of Tk? is associated with a feasible solution.194

Proof. Let p(V1), . . . , p(Vk?) be a path of G with p(Vα) ∈ Tα. Let us de-195

fine the sequences Vα = p(Vα) ∪ Zα for α ∈ {1, . . . , k?}, Sk? = Vk? and196

for each α ∈ {1, . . . , k? − 1}, Sα = Vα − Vα+1.197

By definition of G, each set Sα is consistent and can be scheduled fol-198

lowing resource and precedence constraints of the sub-graph (Sα, A) within199

a makespan Cα = uα−uα−1. We prove that the schedule obtained by merging200

the schedules of the successive slices S1, . . . , Sk? is feasible.201

By definition, Z1 ⊆ V1 and Z1 = {i ∈ T, f(i) ≥ 1} = T , thus V1 =202

T . Moreover, for each arc (p(Vα), p(Vα+1)) of G with α ∈ {1, . . . , k? − 1},203

p(Vα+1) ∪ Zα+1 ⊆ p(Vα) ∪ Zα, thus Vα+1 ⊆ Vα and then Vk? ⊆ Vk?−1 ⊆ . . . ⊆204

V1. Then, each task i ∈ T belongs to exactly one slice Sα and S1, . . . , Sk? is205

a partition of T .206

By definition, Sα ⊆ Xα, thus for any task of Sα, release dates and207

deadlines are fulfilled. Resource constraints are fulfilled by definition of208

each set Sα, for each α ∈ {1, . . . , k?}.209

Lastly let us consider two tasks (i, j) ∈ T 2 with (i, j) ∈ A. Let suppose210

that i ∈ Sα and j ∈ Sβ. If α = β, the constraint is fulfilled since there211

exists a feasible schedule of Sα for the sub-graph (Sα, A). If α < β, the212

set Sα is scheduled before Sβ, the constraint is then fulfilled. Lastly, if213

α > β, then Vα is not strictly consistent since i ∈ Vα and j 6∈ Vα, which214

is a contradiction. Thus, the lemma is proved.215

The next theorem is a simple outcome of Lemmas 4 and 5.216

Theorem 1. There exists a feasible schedule of makespan C if and only if217

there exists a path in the multistage auxiliary graph G from a vertex of T1 to218

a vertex of Tk?.219

Our algorithm simply builds the multistage auxiliary graph G starting220

from Tk? to T1. Vertices without successor from Tα with α 6= k? are removed.221

In the next section, we investigate the time complexity for computing G.222

8

5. Complexity for the computation of the multistage auxiliary graph223

Lemmas 6 and 7 study the complexity of two specific tests considered by224

our previous algorithm.225

Lemma 6. Checking the consistency of a set V ⊆ T can be done in time O(n3)226

and checking the strict consistency of a set V ⊆ T can be done in time O(n2)227

(with n = |T |).228

Proof. For any task x ∈ T , the computation of the sets of descendants Γ(x)+?229

and of ancestors Γ(x)−? can be done once in time O(n2) using a depth-first230

search algorithm. Checking that V is consistent can be done by checking231

that, for any couple (i, j) ∈ V 2 with i 6= j, Γ(i)+? ∩ Γ(j)−? ⊆ V . The overall232

complexity is then O(n3).233

Similarly, checking that for any task x ∈ V , Γ+(x) ⊆ V can be done in
time O(|Γ+(x)|). The overall complexity is bounded by∑

x∈V

|Γ+(x)| ≤
∑
x∈T

|Γ+(x)| ≤ n2,

the complexity of the algorithm is then O(n2).234

Lemma 7. The complexity of checking the existence of a feasible schedule235

of fixed duration C on m machines for a consistent set of tasks V ⊆ T with236

the precedence relations modelled by G′ = (V,A) is O(|V |3 × 22|V |).237

Proof. Let us denote by P(V) the set of consistent subsets of V . Let us238

consider the directed graph H = (P(V), E) which arcs are built as follows:239

an arc (v, v′) ∈ E if v (v′, |v′−v| ≤ m and for any task i ∈ v′−v, Γ−?G′ (i) ⊆ v240

where Γ−?G′ (i) is the set of the ancestors of i in G′.241

Paths of H from ∅ to V are associated to feasible schedules. Indeed, let242

us consider a path v0 = ∅, v1, . . . , vp = V of H. For any value β ∈ {1, . . . , p},243

Yβ = vβ − vβ−1 are executed at time β − 1. Conversely any feasible schedule244

corresponds to a path ofH. Thus, there exists a feasible schedule of makespan245

at most C if the value of a shortest path (considering each arc valued by 1)246

from ∅ to V is inferior than or equal to C.247

The number of vertices of H satisfies |P(V)| ≤ 2|V |. By Lemma 6, check-248

ing that any element v ∈ P(V) is consistent can be done in time O(|V |3 ×249

2|V |). Checking that e = (v, v′) ∈ E has a time complexity bounded by250

O(|V |2) thus the construction of H can be done in time O(|V |3 × 22|V |).251

9

Now, any arc e = (v, v′) ∈ E verifies v (v′ and thus |v| < |v′|. Then, H252

has no circuit. The shortest path can be computed from a topological sort253

in time complexity bounded by O(22|V |), thus the lemma holds.254

Lemma 8. For any instance I, the number of vertices |T | of the multi-255

stage auxiliary graph G is in O(n2pw(I)), while the number of arcs |A| is in256

O(n22pw(I)).257

Proof. By Lemma 3, for any value α ∈ {1, . . . , k?}, each element v ∈ Tα258

is included in Xα thus |Tα| ≤ 2|Xα| ≤ 2pw(I)+1. Then, |T | =
∑k?

α=1 |Tα| ≤259

k? × 2pw(I)+1. Since k? ≤ 2n, we get |T | ≤ 2n2pw(I)+1.260

Now, the number or arcs of G verifies |A| ≤
∑k?−1

α=1 (|Tα| × |Tα+1|) ≤261

k?(2pw(I)+1)2 ≤ 2n× 22pw(I)+2 which concludes the lemma.262

We are now ready to prove our main theorem:263

Theorem 2. Computing the graph G is in time O(n424pw(I)) for any in-264

stance I.265

Proof. Let us consider all the steps for the construction of the multistage266

auxiliary graph G for an instance I of the scheduling problem with n = |T |.267

The computation of sets Xα and Zα for α ∈ {1, . . . , k?} can be done in268

time complexity O(n log n). For the definition of sets Tα, α = 1, . . . , k?, we269

observe that for each subset v ⊆ Xα, we have to test if v ∪ Zα is strictly270

consistent, which requires O(n2) instructions by Lemma 6. By Lemma 8,271

the construction of T is thus in time O(n3 × 2pw(I)).272

Now, for any couple (v, v′) ∈ Tα × Tα+1, the consistency of S = (v ∪273

Zα) − (v′ ∪ Zα+1) is checked in time O(n3) by Lemma 6. The existence274

of a schedule of S on m machines within a makespan Cα = uα − uα−1 is275

in time O(|S|3 × 22|S|) following Lemma 7. Now, since S ⊆ Xα, |S| ≤276

pw(I) + 1 and thus checking the existence of an arc (v, v′) in A is in time277

O(n3 + pw(I)3 × 22(pw(I)). Following Lemma 8, the overall complexity for278

the determination of A is then O(n× 22pw(I) × (n3 + pw(I)3 × 22pw(I))) and279

thus O(n4 × 24pw(I)). The theorem follows.280

Corollary 1. P |prec, pi = 1, ri, di|? is fixed-parameter tractable by the path-281

width pw(I).282

Proof. By Theorem 1, an instance I has a solution if and only if there exists283

a path in G from a vertex of T1 to one from Tk? . By removing vertices284

without successor, it is equivalent to test that the remaining set |T1| > 0. By285

Theorem 2, building G is in time O(n424pw(I)), the corollary.286

10

Corollary 2 is a simple outcome of Theorem 2.287

Corollary 2. Let I be an instance of P |prec, pi = 1, ri, di|? such that pw(I)288

belongs to O(log2 n). The existence of a feasible schedule can be solved in289

time O(n8).290

By augmenting our algorithm by a binary search on an upper bound of the291

objectives, we obtain in the next corollary the fixed-parameter tractability292

of two optimization problems:293

Corollary 3. Scheduling problems P |prec, pi = 1, ri|Cmax and P |prec, pi =294

1, ri|Lmax are fixed-parameter tractable by the pathwidth pw(I).295

6. Conclusion and perspectives296

For any instance I of the decision problem P |prec, pi = 1, ri, di|?, we in-297

troduced the pathwidth pw(I) as a simple measure of the parallelism. We298

proved that the previous decision problem is fixed-parameter tractable by299

the parameter pw(I). This result can be easily extended to P |prec, pi =300

1, ri|Cmax and P |prec, pi = 1, ri|Lmax using a binary search. As far as301

we know, it is the first fixed-parameter algorithm for these scheduling prob-302

lems. Extensions of this result should be considered to solve more general303

scheduling problems with precedence and resource constraints.304

Acknowledgments. I thank Claire Hanen for many stimulating discussions305

and Theo Pedersen for his proofreading of the paper. I am also very grateful306

to the three reviewers for their helpful recommendations.307

Funding. This research did not receive any specific grant from funding agen-308

cies in the public, commercial, or not-for-profit sectors.309

References310

[1] Baptiste, P., Timkovsky, V.G., 2004. Shortest path to nonpreemptive311

schedules of unit-time jobs on two identical parallel machines with min-312

imum total completion time. Math. Methods Oper. Res. 60, 145–153.313

[2] van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon,314

N., Woeginger, G.J., 2016. Precedence-constrained scheduling problems315

parameterized by partial order width, in: Kochetov, Y., Khachay, M.,316

11

Beresnev, V., Nurminski, E., Pardalos, P. (Eds.), Discrete Optimization317

and Operations Research, Springer International Publishing. pp. 105–318

120.319

[3] Bodlaender, H.L., 1992. A tourist guide through treewidth. Acta Cy-320

bern. 11, 1–21.321

[4] Bodlaender, H.L., Fellows, M.R., 1995. W[2]-hardness of precedence322

constrained k-processor scheduling. Oper. Res. Lett. 18, 93–97.323

[5] Coffman Jr., E.G., Dereniowski, D., Kubiak, W., 2012. An efficient324

algorithm for finding ideal schedules. Acta Inf. 49, 1–14.325

[6] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D.,326

Pilipczuk, M., Pilipczuk, M., Saurabh, S., 2015. Parameterized Al-327

gorithms. 1st ed., Springer Publishing Company, Incorporated.328

[7] Dolev, D., Warmuth, M.K., 1984. Scheduling precedence graphs of329

bounded height. J. Algorithms 5, 48–59.330

[8] Downey, R.G., Fellows, M.R., 2013. Fundamentals of Parameterized331

Complexity. 1st ed., Springer-Verlag London.332

[9] Du, J., Leung, J.Y.T., Young, G.H., 1991. Scheduling chain-structured333

tasks to minimize makespan and mean flow time. Information and Com-334

putation 92, 219 – 236.335

[10] Garey, M., Johnson, D., Tarjan, R., Yannakakis, M., 1983. Scheduling336

opposing forests. SIAM Journal on Algebraic Discrete Methods 4, 72–93.337

[11] Graham, R., Lawler, E., Lenstra, J., Kan, A., 1979. Optimization and338

approximation in deterministic sequencing and scheduling: a survey, in:339

Hammer, P., Johnson, E., Korte, B. (Eds.), Discrete Optimization II.340

Elsevier. volume 5 of Annals of Discrete Mathematics, pp. 287 – 326.341

[12] Günther, E., König, F.G., Megow, N., 2014. Scheduling and packing342

malleable and parallel tasks with precedence constraints of bounded343

width. Journal of Combinatorial Optimization 27, 164–181.344

[13] Mnich, M., van Bevern, R., 2018. Parameterized complexity of machine345

scheduling: 15 open problems. Computers and Operations Research 100,346

254 – 261.347

12

[14] Möhring, R.H., 1989. Computationally tractable classes of ordered sets,348

in: Rival, I. (Ed.), Algorithms and Order. Springer Netherlands, Dor-349

drecht, pp. 105–193.350

[15] Prot, D., Bellenguez-Morineau, O., 2018. A survey on how the structure351

of precedence constraints may change the complexity class of scheduling352

problems. Journal of Scheduling 21, 3–16.353

13

