Alix Munier Kordon

A Fixed-Parameter Algorithm for Scheduling Unit Dependent Tasks on Parallel Machines with Time Windows

Keywords: parallel identical machines, makespan, maximum lateness, parameterized complexity

This paper proves that the existence of a feasible schedule for a set of dependent tasks of unit execution times with release dates and deadlines on a limited number of processors is a fixed-parameter tractable problem. The parameter considered is the pathwidth of the interval graph associated with the time windows of the tasks. A fixed-parameter algorithm based on a dynamic programming approach is developed and proved to solve this decision problem.

Fixed-parameter algorithms for the two classical problems P |prec, p i = 1, r i |C max and P |prec, p i = 1, r i |L max are then derived using a binary search. They are, as far as we know, the first fixed-parameter algorithms for these scheduling problems.

Introduction

This paper tackles a basic scheduling problem defined as follows: we consider a set T of n tasks of unit duration. Precedence relations are expressed by an (acyclic) precedence graph noted G = (T, A). If s σ i denotes the starting time of a task i ∈ T according to a feasible schedule σ, each arc e = (i, j) ∈ A expresses the precedence constraint s σ i + 1 ≤ s σ j . Moreover, each task must be executed during its time window, i.e. for each task i ∈ T , r i ≤ s σ i < d i where r i is the release time of i and d i its deadline. We assume without loss of generality that min i∈T r i = 0. Lastly, m identical machines are available, so that at most m tasks can be scheduled at each time instant. The question is the existence of a feasible schedule. This problem is referred to as P |prec, p i = 1, r i , d i | using standard notations [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF].

Let C(σ) = max i∈T (s σ i + 1) be the makespan of a schedule σ and L(σ) = max i∈T (max(0, s σ i + 1 -d i)) its maximum lateness. Let us consider the optimization problem P |prec, p i = 1, r i |C max . For each upper bound C ≥ 0 of the makespan, the deadline of each task i ∈ T can be set to

d i = C -i
where i is the maximum number of arcs of a path starting from i. We observe that any solution of the corresponding instance of P |prec,

p i = 1, r i , d i |
is a feasible solution of P |prec, p i = 1, r i |C max . We conclude that any algo- The optimisation problem P |prec, p i = 1|C max has been widely studied. It was proved to be NP-hard initially for opposing forests by Garey et al. [START_REF] Garey | Scheduling opposing forests[END_REF].

rithm
The recent survey of Prot and Bellenguez-Morineau [START_REF] Prot | A survey on how the structure of precedence constraints may change the complexity class of scheduling problems[END_REF] presents several complexity results depending on the structure of the precedence graph and the number of processors.

The development of fixed-parameter algorithms for NP-complete problems is a way to get polynomial-time algorithms when some parameters are fixed [START_REF] Cygan | Parameterized Algorithms[END_REF][START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF]. More formally, a fixed-parameter algorithm solves any instance of the problem of size n in time f (k) × poly(n), where f is allowed to be a computable superpolynomial function and k the associated parameter.

Several authors developed exact algorithms for P |prec, p i = 1|C max . Dolev

and Warmuth [START_REF] Dolev | Scheduling precedence graphs of bounded height[END_REF] developed a dynamic programming algorithm of time complexity O(n h(G)(m-1)+1) to solve this problem. The parameter h(G) represents the number of nodes of the longest path of the precedence graph G.

Few years later, Möhring [START_REF] Möhring | Computationally tractable classes of ordered sets[END_REF] developed another dynamic programming algorithm of time complexity O(n w(G)). The parameter w(G) is the width of the precedence graph G defined as the size of its largest antichain. None of these algorithms are fixed-parameter ones.

Mnich and van Bevern [START_REF] Mnich | Parameterized complexity of machine scheduling: 15 open problems[END_REF] surveyed main results on parameterized com- al. [START_REF] Du | Scheduling chain-structured tasks to minimize makespan and mean flow time[END_REF] proved that P 2|chains|C max is strongly NP-hard for unbounded width.

Günther et al. [START_REF] Günther | Scheduling and packing malleable and parallel tasks with precedence constraints of bounded width[END_REF] proved that P 2|chains, w(G) ≤ 3|C max is weakly NP-hard.

Bodlaender and Fellows [4] proved that P |prec,

p i = 1|C max is W[2]-hard pa-
rameterized by the width and the number of machines. More recently, van Bevern et al. [START_REF] Van Bevern | Precedence-constrained scheduling problems parameterized by partial order width[END_REF] proved that P 2|prec,

p j ∈ {1, 2}|C max is W[2]-hard parame-
terized by the width w(G), and that this result is an argument to look at the parameterized complexity of P 3|prec, p i = 1|C max using w(G) as parameter.

The existence of a fixed-parameter algorithm for the optimisation problem P |prec, p i = 1|C max is a challenging question, but as we described above, most of the authors focused their study on the width w(G) as a parameter.

The parameter considered in this paper is the pathwidth pw(I) of an instance I of the decision problem P |prec, The pathwidth pw(I) is a simple measure of the parallelism of the instance I. One can observe that pw(I) is the pathwidth of the interval graph associated with the set of intervals {(r i , d i), i ∈ T } [START_REF] Bodlaender | A tourist guide through treewidth[END_REF]. As far as we know, this measure was not yet considered as a parameter for a scheduling problem.

p i = 1, r i , d i | . Let
We prove in this paper that the decision problem P |prec, p i = 1, r i , d i | can be solved in time O(n 2 2 4×pw(I)) using a dynamic programming approach based on a multistage auxiliary graph which longest paths model all the feasible schedules. By coupling our algorithm with a binary search based on a lower bound of the respective objectives, we get that the two opti-

misation problems P |prec, p i = 1, r i |C max and P |prec, p i = 1, r i |L max are
fixed-parameter tractable parameterized by the pathwidth.

Baptiste and Timkovsky [START_REF] Baptiste | Shortest path to nonpreemptive schedules of unit-time jobs on two identical parallel machines with minimum total completion time[END_REF] developed a similar approach to get a polynomial time algorithm of time complexity O(n 9) for P 2|prec,

p i = 1, r i | C j .
They also conjectured the existence of ideal schedules, i.e. that minimize both the makespan and the total completion time for the previous instance. More recently, Coffman et al. [START_REF] Coffman | An efficient algorithm for finding ideal schedules[END_REF] proved that each optimal solution of P 2|prec, p i = 1, r i | C j minimizes the makespan of the same instance and they improved the algorithm of Baptiste and Timkowsky to get a complexity in time O(n 3).

This paper is organised as follows: Section 2 presents additional notations and an example. Section 3 is devoted to the description of properties of feasible schedules. These properties will be considered in Section 4 to build the multistage auxiliary graph G whose longest paths represent all the feasible solutions (if any). Section 5 details the complexity of the construction of G.

Section 6 is our conclusion.

Additional notations and example

For any task i ∈ T , the set of immediate successors and predecessors of i is respectively denoted by Γ + (i) and Γ -(i). For any couple of tasks (i, j) ∈ T 2 , we denote by i → j if there is a path in G from i to j. The descendants of a task i ∈ T , denoted by Γ + (i) is the set of tasks j = i such that i → j.

Similarly, Γ -(i) denotes the set of ancestors of i, i.e. the set of tasks j = i such that j → i.

We assume without loss of generality that release dates and deadlines are consistent with respect to precedence constraints, i.e. if (i, j) ∈ A

then r i + 1 ≤ r j and d i + 1 ≤ d j . For any task i ∈ T , f (i) is the small- est value α ∈ {1, . . . , k } such that i ∈ X α .
Figure 1 presents an instance I of our scheduling problem for two machines. We get k = 5 and u α = α for α ∈ {0, . . . , 5}. The corresponding sets are X 1 = {1}, X 2 = {1, 2, 4}, X 3 = {2, 3, 4, 5, 6}, X 4 = {3, 5, 6, 7} and

X 5 = {7}. The pathwidth is pw(I) = |X 3 | -1 = 4. We also have f (1) = 1, f (2) = f (4) = 2, f (3) = f (5) = f (6) = 3 and f (7) = 4.

Basic properties of feasible solutions

Let us suppose that σ is a feasible solution of our scheduling problem. For any value α ∈ {1, . . . , k }, we define the slice

S α = {i ∈ T, u α-1 ≤ s σ i < u α }.
Consider the feasible schedule σ for our example given in Figure 2. We get the slices S 1 = {1}, S 2 = {2, 4}, S 3 = {3, 5}, S 4 = {6} and S 5 = {7}. Figure 2: A feasible schedule σ associated with the example given in Figure 1.

Definition 1. A set of tasks V ⊆ T is said to be consistent if for any couple

(i, j) ∈ V 2 with i = j such that i → j, any task k of a path in G from i to j belongs to V . Definition 2. A set V ⊆ T is said to be strictly consistent if for any x ∈ V , Γ + (x) ⊆ V .
We observe that any strictly consistent set V is consistent, but the reverse is not true. The consequence is that Definition 2 is more restrictive than Definition 1.

Lemma 1. For any value α ∈ {1, . . . , k }, S α is consistent.

Proof. Suppose, for the sake of contradiction, that S α is not consistent. Then, there exist a couple (i, j) ∈ S 2 α and a task k ∈ S β with β = α and i → k → j.

If β > α, then the precedence k → j cannot be fulfilled since s σ k ≥ u α > s σ j .

Similarly, if β < α, the precedence i → k cannot be fulfilled as s σ k < u α-1 ≤ s σ i , thus the lemma is proved.

Lemma 2. For any value α ∈ {1, . . . , k }, ∪ k β=α S β is strictly consistent.

Proof. Suppose, for the sake of contradiction, that there exists α ∈ {1, . . . , k }

such that ∪ k β=α S β is not strictly consistent. Let then i ∈ ∪ k β=α S β with Γ + (i) ⊆ ∪ k β=α S β and j ∈ Γ + (i) -∪ k β=α S β . Thus, j ∈ S β with β < α,
and then s σ j < u α-1 ≤ s σ i . The precedence i → j is not fulfilled by σ, a contradiction.

Lemma 3. For any α ∈ {1, . . . , k }, let Z α = {i ∈ T, f (i) ≥ α}. If σ
is a feasible schedule, then any subset V α = ∪ k β=α S β can be partitioned such as

V α = Z α ∪ p(V) with p(V) ⊆ X α .
Proof. Any element i ∈ Z α satisfies f (i) ≥ α and thus r i ≥ u α-1 . Since σ is feasible, s σ i ≥ r i , and thus i ∈ V α . We conclude that

Z α ⊆ V α . Now, let i ∈ p(V α) = V α -Z α , then f (i) < α, thus r i < u α-1 .
Then, there exists β < α with i ∈ X β . Since i ∈ V α , there exists β ∈ {α, . . . , k } with i ∈ S β , and then

s σ i ≤ u β ≤ d i . Since β ≥ α, u β ≥ u α . As r i < u α-1
and

d i ≥ u α , (r i , d i) ∩ (u α-1 , u α) = ∅ and thus i ∈ X α , which concludes the proof.
For the example given by Figure 1, we get Elements of T are associated with subsets of T . The set T is partitioned into k sets T 1 , . . . , T k such that, for any value α ∈ {1, . . . , k }, elements of T α are strictly consistent subsets of X α -Z α . Then, every element v ∈ T α

Z 5 = ∅, Z 4 = {7}, Z 3 = {3, 5, 6, 7}, Z 2 = {2, 3, 4, 5, 6, 7} and Z 1 = T . For the schedule σ from Figure 2, V 1 = T = Z 1 , V 2 = {2, 3, 4, 5, 6, 7} = Z 2 , V 3 = {3, 5, 6, 7} = Z 3 V 4 = {6, 7} = {6} ∪ Z 4 and V 5 = {7} = {7} ∪ Z 5 . We deduce that p(V 1) = p(V 2) = p(V 3) = ∅, p(V 4) = {6} and p(V 5) = {7}.
verifies v ∪ Z α ⊆ X α ∪ Z α ⊆ k β=α X β . Moreover, p(v ∪ Z α) = v.
Now, let us suppose that v and v are two vertices respectively of T α and T α+1 for α ∈ {1, . . . , k -1}. Then, there is an arc (v, v) in A if:

1. v ∪Z α+1 ⊆ v∪Z α and S = v∪Z α -(v ∪Z α+1
) is in X α and is consistent;

2. There exists a schedule of tasks from S on m machines of makespan We prove in Lemma 4 that any feasible schedule σ is associated with a path of the multistage auxiliary graph G from a vertex of T 1 to a vertex of T k . Indeed, let S 1 , . . . , S k be the slices of σ and the corresponding sequence V α = ∪ k β=α S β , for each α ∈ {1, . . . , k }. Then, σ is associated with

C α = u α -u α-
the path p(V 1), p(V 2), . . . , p(V k) of G.
Let us consider for example the schedule σ given in Figure 2. Recall that Let us consider now a path p(V 1), . . . , p(V k) of G. We prove in Lemma 5 that the sequence of slices S k = p(V k)∪Z k and for each α ∈ {1, . . . , k -1},

p(V 1) = p(V 2) = p(V 3) = ∅, p(V 4) = {6} and p(V 5) = {7}. The schedule σ is thus associated with the path ∅ → ∅ → ∅ → {6} → {7}. ∅ ∅ {4} {2} ∅ {5, 6} {3, 5} {3, 6} {5} {3} {6} {7} T 5 T 4 T 3 T 2 T 1
S α = p(V α) ∪ Z α -(p(V α+1) ∪ Z α+1) defines a feasible schedule.
Let us consider for example the path of the graph G given by Figure 3 from Proof. Let p(V 1), . . . , p(V k) be a path of G with p(V α) ∈ T α . Let us define the sequences

p(V 1) from p(V 5) such that p(V 1) = p(V 2) = ∅, p(V 3) = {2}, p(V 4) = {3, 6} and
V α = p(V α) ∪ Z α for α ∈ {1, . . . , k }, S k = V k and for each α ∈ {1, . . . , k -1}, S α = V α -V α+1 .
By definition of G, each set S α is consistent and can be scheduled following resource and precedence constraints of the sub-graph (S α , A) within a makespan C α = u α -u α-1 . We prove that the schedule obtained by merging the schedules of the successive slices S 1 , . . . , S k is feasible.

By definition, Z 1 ⊆ V 1 and Z 1 = {i ∈ T, f (i) ≥ 1} = T , thus V 1 = T . Moreover, for each arc (p(V α), p(V α+1)) of G with α ∈ {1, . . . , k -1}, p(V α+1) ∪ Z α+1 ⊆ p(V α) ∪ Z α , thus V α+1 ⊆ V α and then V k ⊆ V k -1 ⊆ . . . ⊆ V 1 .
Then, each task i ∈ T belongs to exactly one slice S α and S 1 , . . . , S k is a partition of T .

By definition, S α ⊆ X α , thus for any task of S α , release dates and deadlines are fulfilled. Resource constraints are fulfilled by definition of each set S α , for each α ∈ {1, . . . , k }.

Lastly let us consider two tasks (i, j) ∈ T 2 with (i, j) ∈ A. Let suppose that i ∈ S α and j ∈ S β . If α = β, the constraint is fulfilled since there exists a feasible schedule of S α for the sub-graph (S α , A). If α < β, the set S α is scheduled before S β , the constraint is then fulfilled. Lastly, if α > β, then V α is not strictly consistent since i ∈ V α and j ∈ V α , which is a contradiction. Thus, the lemma is proved.

The next theorem is a simple outcome of Lemmas 4 and 5.

Theorem 1. There exists a feasible schedule of makespan C if and only if there exists a path in the multistage auxiliary graph G from a vertex of T 1 to a vertex of T k .

Our algorithm simply builds the multistage auxiliary graph G starting from T k to T 1 . Vertices without successor from T α with α = k are removed.

In the next section, we investigate the time complexity for computing G.

Complexity for the computation of the multistage auxiliary graph

Lemmas 6 and 7 study the complexity of two specific tests considered by our previous algorithm. Proof. For any task x ∈ T , the computation of the sets of descendants Γ(x) + and of ancestors Γ(x) -can be done once in time O(n 2) using a depth-first search algorithm. Checking that V is consistent can be done by checking that, for any couple (i, j) ∈ V 2 with i = j, Γ(i) + ∩ Γ(j) -⊆ V . The overall complexity is then O(n 3).

Similarly, checking that for any task x ∈ V , Γ + (x) ⊆ V can be done in time O(|Γ + (x)|). The overall complexity is bounded by

x∈V |Γ + (x)| ≤ x∈T |Γ + (x)| ≤ n 2 ,
the complexity of the algorithm is then O(n 2). Proof. Let us denote by P(V) the set of consistent subsets of V . Let us consider the directed graph H = (P(V), E) which arcs are built as follows: Proof. By Lemma 3, for any value α ∈ {1, . .

an arc (v, v) ∈ E if v v , |v -v| ≤ m and for any task i ∈ v -v, Γ - G (i) ⊆ v where Γ - G (i)
. , k }, each element v ∈ T α is included in X α thus |T α | ≤ 2 |Xα| ≤ 2 pw(I)+1 . Then, |T | = k α=1 |T α | ≤ k × 2 pw(I)+1 . Since k ≤ 2n, we get |T | ≤ 2n2 pw(I)+1 . Now, the number or arcs of G verifies |A| ≤ k -1 α=1 (|T α | × |T α+1 |) ≤ k (2 pw(I)+1) 2 ≤ 2n × 2 2pw(I)+2
which concludes the lemma.

We are now ready to prove our main theorem:

Conclusion and perspectives

For any instance I of the decision problem P |prec, p i = 1, r i , d i | , we introduced the pathwidth pw(I) as a simple measure of the parallelism. We proved that the previous decision problem is fixed-parameter tractable by the parameter pw(I). This result can be easily extended to P |prec, p i = 1, r i |C max and P |prec, p i = 1, r i |L max using a binary search. As far as we know, it is the first fixed-parameter algorithm for these scheduling problems. Extensions of this result should be considered to solve more general scheduling problems with precedence and resource constraints.

 solving the decision problem P |prec, p i = 1, r i , d i | can be combined with binary search to solve P |prec, p i = 1, r i |C max . A similar remark can be made for the optimisation problem P |prec, p i = 1, r i |L max . Indeed, for each instance of this problem and each upper bound λ ≥ 0 of the maximum lateness, we can set the deadline of each task i ∈ T to d i = d i + λ and solve the associated decision problem P |prec, p i = 1, r i , d i | . So, each algorithm solving the decision problem P |prec, p i = 1, r i , d i | can thus be extended for P |prec, p i = 1, r i |C max or P |prec, p i = 1, r i |L max by adding a binary search on the upper bound of respectively the makespan or the maximum lateness.

 plexity for scheduling problems and identified 15 open problems. They point out that the fixed-parameter tractability of P 3|prec, p i = 1|C max parameterized by the width w(G) of the precedence graph G is an open challenging question. The width w(G) leads to several negative results. Du et

 us consider the strictly increasing sequences u α , α ∈ N corresponding to all the time instants of the beginnings and endings of the intervals [r i , d i], i ∈ T . By definition of release dates, u 0 = 0. Moreover, the last element u k of the sequence satisfies k ≤ 2n -1. Then, for any α ∈ {1, . . . , k }, we set X α = {i ∈ T, (u α-1 , u α) ∩ (r i , d i) = ∅}. The pathwidth is defined as pw(I) = max α∈{1,...,k } (|X α | -1).

Figure 1 :

 1 Figure 1: An instance I of P |prec, p i = 1, r i , d i | for m = 2 machines.

4.

 Representation of feasible solutions and description of the algorithm Let I be an instance of P |prec, p i = 1, r i , d i | . The idea of the algorithm is to build a multistage auxiliary graph G = (T , A) whose longest paths describe all the feasible solutions (if any) of I.

1

 1 meeting the precedence constraints induced by the subgraph G = (S, A) of G.

Figure 3

 3 Figure 3 presents the multistage auxiliary graph G = (T , A) associated with the instance given in Figure 1.

Figure 3 :

 3 Figure 3: The multistage auxiliary graph G = (T , A) associated with the example given in Figure 1. Vertices without successor are removed.

= s σ 5 = 2 , s σ 3 = s σ 6 = 3 and s σ 7 = 4 .Lemma 5 .

 52645 p(V 5) = {7}. Corresponding slices are S 5 = {7}, S 4 = {3, 6, 7} -{7} = {3, 6}, S 3 = {2, 3, 5, 6, 7} -{3, 6, 7} = {2, 5}, S 2 = {2, 3, 4, 5, 6, 7} -{2, 3, 5, 6, 7} = {4}, and S 1 = T -{2, 3, 4, 5, 6, 7} = {1}. We get the schedule σ defined as s σ 1 = 0, s σ 4 = 1, s σ 2 Each path of the multistage auxiliary graph G from a vertex of T 1 to a vertex of T k is associated with a feasible solution.

Lemma 6 .

 6 Checking the consistency of a set V ⊆ T can be done in time O(n 3) and checking the strict consistency of a set V ⊆ T can be done in time O(n 2) (with n = |T |).

Lemma 7 .

 7 The complexity of checking the existence of a feasible schedule of fixed duration C on m machines for a consistent set of tasks V ⊆ T with the precedence relations modelled by G = (V, A) is O(|V | 3 × 2 2|V |).

Lemma 8 .

 8 is the set of the ancestors of i in G . Paths of H from ∅ to V are associated to feasible schedules. Indeed, let us consider a path v 0 = ∅, v 1 , . . . , v p = V of H. For any value β ∈ {1, . . . , p}, Y β = v β -v β-1 are executed at time β -1. Conversely any feasible schedule corresponds to a path of H. Thus, there exists a feasible schedule of makespan at most C if the value of a shortest path (considering each arc valued by 1) from ∅ to V is inferior than or equal to C. The number of vertices of H satisfies |P(V)| ≤ 2 |V | . By Lemma 6, checking that any element v ∈ P(V) is consistent can be done in time O(|V | 3 × 2 |V |). Checking that e = (v, v) ∈ E has a time complexity bounded by O(|V | 2) thus the construction of H can be done in time O(|V | 3 × 2 2|V |). Now, any arc e = (v, v) ∈ E verifies v v and thus |v| < |v |. Then, H has no circuit. The shortest path can be computed from a topological sort in time complexity bounded by O(2 2|V |), thus the lemma holds. For any instance I, the number of vertices |T | of the multistage auxiliary graph G is in O(n2 pw(I)), while the number of arcs |A| is in O(n2 2pw(I)).

Theorem 2 .Corollary 2 .Corollary 3 .

 223 Computing the graph G is in time O(n 4 2 4pw(I)) for any instance I. Proof. Let us consider all the steps for the construction of the multistage auxiliary graph G for an instance I of the scheduling problem with n = |T |.The computation of sets X α and Z α for α ∈ {1, . . . , k } can be done in time complexity O(n log n). For the definition of sets T α , α = 1, . . . , k , we observe that for each subset v ⊆ X α , we have to test if v ∪ Z α is strictly consistent, which requires O(n 2) instructions by Lemma 6. By Lemma 8, the construction of T is thus in time O(n 3 × 2 pw(I)).Now, for any couple(v, v) ∈ T α × T α+1 , the consistency of S = (v ∪ Z α) -(v ∪ Z α+1) is checked in time O(n 3) by Lemma 6. The existence of a schedule of S on m machines within a makespanC α = u α -u α-1 is in time O(|S| 3 × 2 2|S|)following Lemma 7. Now, since S ⊆ X α , |S| ≤ pw(I) + 1 and thus checking the existence of an arc (v, v) in A is in time O(n 3 + pw(I) 3 × 2 2(pw(I)). Following Lemma 8, the overall complexity for the determination of A is then O(n × 2 2pw(I) × (n 3 + pw(I) 3 × 2 2pw(I))) and thus O(n 4 × 2 4pw(I)). The theorem follows. Corollary 1. P |prec, p i = 1, r i , d i | is fixed-parameter tractable by the pathwidth pw(I). Proof. By Theorem 1, an instance I has a solution if and only if there exists a path in G from a vertex of T 1 to one from T k . By removing vertices without successor, it is equivalent to test that the remaining set |T 1 | > 0. By Theorem 2, building G is in time O(n 4 2 4pw(I)), the corollary. Corollary 2 is a simple outcome of Theorem 2. Let I be an instance of P |prec, p i = 1, r i , d i | such that pw(I) belongs to O(log 2 n). The existence of a feasible schedule can be solved in time O(n 8). By augmenting our algorithm by a binary search on an upper bound of the objectives, we obtain in the next corollary the fixed-parameter tractability of two optimization problems: Scheduling problems P |prec, p i = 1, r i |C max and P |prec, p i = 1, r i |L max are fixed-parameter tractable by the pathwidth pw(I).

Acknowledgments. I thank Claire Hanen for many stimulating discussions and Theo Pedersen for his proofreading of the paper. I am also very grateful to the three reviewers for their helpful recommendations.

Funding. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.